1
|
Jia L, Li H, Li T. Efficacy of Sevoflurane and Propofol Anesthesia on Perioperative Adverse Cardiovascular Events and Hemodynamics in Elderly Patients With Diabetes. Clin Ther 2024; 46:246-251. [PMID: 38350756 DOI: 10.1016/j.clinthera.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/05/2023] [Accepted: 01/18/2024] [Indexed: 02/15/2024]
Abstract
PURPOSE This study was undertaken to compare the effects of sevoflurane and propofol anesthesia on perioperative hemodynamics and perioperative adverse cardiovascular events (PACE) in elderly patients with diabetes undergoing general anesthesia for noncardiac surgery. METHODS According to the random number table (n = 40), 80 patients with diabetes undergoing noncardiac general anesthesia were divided into a control group and an observation group. In the control group, the patients were given propofol 4 to 6 mg/(kg·h), continuously pumped to maintain anesthesia. In the observation group, the patients were given maintained concentration of sevoflurane for 1 to 1.5 minimum alveolar concentration (MAC) for continuous inhalation, while remifentanil with volume fraction of 0.05 to 1 µg/(kg·min) was given for continuous pumping in both groups. The heart rate (HR) and mean arterial pressure (MAP) of the patients were recorded, and the serum creatine kinase-MB (CK-MB) and cardiac troponin I (cTnI) contents before anesthesia (T0), immediately after surgery (T3), and 24 hours later (T4) as well as the blood glucose levels at T0 and T3 were compared between the two groups. The occurrence of PACE in the two groups was compared during the perioperative period. FINDINGS The HR and MAP 5 minutes after intubation (T1), 1 hour after skin incision (T2), and at T3 in the two groups were significantly lower than those of T0 (P < 0.05), whereas the MAP and HR of T1, T2, and T3 in the observation group were significantly higher than those of the control group (P < 0.05). The T3 blood glucose levels were significantly higher in the two groups than that in T0 (P < 0.05), and the T3 blood glucose levels in the observation group were significantly lower than that in the control group (P < 0.05). CK-MB and cTnI in the two groups were significantly higher at T3 and T4 than T0 (P < 0.05), whereas CK-MB and cTnI in the observation group were significantly lower than in the control group at T3 and T4 (P < 0.05). The incidence of hypotension and PACE was significantly lower in the observation group than in the control group (P < 0.05). IMPLICATIONS Compared with propofol IV general anesthesia, sevoflurane inhalation anesthesia can improve perioperative hemodynamics stability and reduce the incidence of PACE in elderly patients with diabetes undergoing noncardiac surgery.
Collapse
Affiliation(s)
- Liling Jia
- Department of Anesthesiology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Hongfeng Li
- Department of Anesthesiology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Tuping Li
- Department of Anesthesiology, The Second Hospital of Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
2
|
Chen B, Lin M, Chen S, Chen W, Song J, Zhang Y. Mechanism underlying sevoflurane-induced protection in cerebral ischemia–reperfusion injury. OPEN CHEM 2021. [DOI: 10.1515/chem-2021-0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Cerebral ischemia is an extremely complex disease that can be caused by a variety of factors. Cerebral ischemia can cause great harm to human body. Sevoflurane is a volatile anesthetic that is frequently used in clinic, and has a lot of advantages, such as quick induction of general anesthesia, quick anesthesia recovery, no respiratory tract irritation, muscle relaxation, and small cycle effect. The mechanism of sevoflurane preconditioning or post-treatment induction is poorly understood. The purpose of this study was to illustrate the mechanism underlying sevoflurane-induced protection in cerebral ischemia–reperfusion injury and also provide theoretical guidance for future research.
Collapse
Affiliation(s)
- Bing Chen
- College of Life Science, Zhejiang Chinese Medical University , 548 Binwen Road, Binjiang District, Zhejiang Province , Hangzhou 310053 , China
| | - Minqiu Lin
- College of Life Science, Zhejiang Chinese Medical University , 548 Binwen Road, Binjiang District, Zhejiang Province , Hangzhou 310053 , China
| | - Simiao Chen
- College of Life Science, Zhejiang Chinese Medical University , 548 Binwen Road, Binjiang District, Zhejiang Province , Hangzhou 310053 , China
| | - Weiyan Chen
- Basic Medical Sciences, Zhejiang Chinese Medical University , 548 Binwen Road, Binjiang District, Zhejiang Province , Hangzhou 310053 , China
| | - Jingmei Song
- Basic Medical Sciences, Zhejiang Chinese Medical University , 548 Binwen Road, Binjiang District, Zhejiang Province , Hangzhou 310053 , China
| | - Yuyan Zhang
- College of Life Science, Zhejiang Chinese Medical University , 548 Binwen Road, Binjiang District, Zhejiang Province , Hangzhou 310053 , China
| |
Collapse
|
3
|
Lomivorotov VV, Moroz G, Abubakirov M, Osinsky R, Landoni G. Volatile and Intravenous Anesthetics for Brain Protection in Cardiac Surgery: Does the Choice of Anesthesia Matter? J Cardiothorac Vasc Anesth 2021; 36:567-576. [PMID: 33766470 DOI: 10.1053/j.jvca.2021.02.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 11/11/2022]
Abstract
Postoperative neurologic complications have a significant effect on morbidity, mortality, and long-term disability in patients undergoing cardiac surgery. The etiology of brain injury in patients undergoing cardiac surgery is multifactorial and remains unclear. There are several perioperative causative factors for neurologic complications, including microembolization, hypoperfusion, and systemic inflammatory response syndrome. Despite technologic advances and the development of new anesthetic drugs, there remains a high rate of postoperative neurologic complications. Moreover, despite the strong evidence that volatile anesthesia exerts cardioprotective effects in patients undergoing cardiac surgery, the neuroprotective effects of volatile agents remain unclear. Several studies have reported an association of using volatile anesthetics with improvement of biochemical markers of brain injury and postoperative neurocognitive function. However, there is a need for additional studies to define the optimal anesthetic drug for protecting the brain in patients undergoing cardiac surgery.
Collapse
Affiliation(s)
- Vladimir V Lomivorotov
- Department of Anesthesiology and Intensive Care, E. Meshalkin National Medical Research Center, Novosibirsk, Russia; Department of Anesthesiology and Intensive Care, Novosibirsk State University, Novosibirsk, Russia.
| | - Gleb Moroz
- Department of Anesthesiology and Intensive Care, E. Meshalkin National Medical Research Center, Novosibirsk, Russia
| | - Marat Abubakirov
- Department of Anesthesiology and Intensive Care, E. Meshalkin National Medical Research Center, Novosibirsk, Russia
| | - Roman Osinsky
- Department of Anesthesiology and Intensive Care, E. Meshalkin National Medical Research Center, Novosibirsk, Russia
| | - Giovanni Landoni
- Anesthesia and Intensive Care Department, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
4
|
Pagel PS, Crystal GJ. The Discovery of Myocardial Preconditioning Using Volatile Anesthetics: A History and Contemporary Clinical Perspective. J Cardiothorac Vasc Anesth 2018; 32:1112-1134. [DOI: 10.1053/j.jvca.2017.12.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Indexed: 12/24/2022]
|
5
|
Chen S, Lotz C, Roewer N, Broscheit JA. Comparison of volatile anesthetic-induced preconditioning in cardiac and cerebral system: molecular mechanisms and clinical aspects. Eur J Med Res 2018; 23:10. [PMID: 29458412 PMCID: PMC5819224 DOI: 10.1186/s40001-018-0308-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 02/12/2018] [Indexed: 12/17/2022] Open
Abstract
Volatile anesthetic-induced preconditioning (APC) has shown to have cardiac and cerebral protective properties in both pre-clinical models and clinical trials. Interestingly, accumulating evidences demonstrate that, except from some specific characters, the underlying molecular mechanisms of APC-induced protective effects in myocytes and neurons are very similar; they share several major intracellular signaling pathways, including mediating mitochondrial function, release of inflammatory cytokines and cell apoptosis. Among all the experimental results, cortical spreading depolarization is a relative newly discovered cellular mechanism of APC, which, however, just exists in central nervous system. Applying volatile anesthetic preconditioning to clinical practice seems to be a promising cardio-and neuroprotective strategy. In this review, we also summarized and discussed the results of recent clinical research of APC. Despite all the positive experimental evidences, large-scale, long-term, more precisely controlled clinical trials focusing on the perioperative use of volatile anesthetics for organ protection are still needed.
Collapse
Affiliation(s)
- Shasha Chen
- Department of Anesthesiology and Critical Care, University of Wuerzburg, Oberduerrbacher Str.6, 97080, Wuerzburg, Germany.
| | - Christopher Lotz
- Department of Anesthesiology and Critical Care, University of Wuerzburg, Oberduerrbacher Str.6, 97080, Wuerzburg, Germany
| | - Norbert Roewer
- Department of Anesthesiology and Critical Care, University of Wuerzburg, Oberduerrbacher Str.6, 97080, Wuerzburg, Germany
| | - Jens-Albert Broscheit
- Department of Anesthesiology and Critical Care, University of Wuerzburg, Oberduerrbacher Str.6, 97080, Wuerzburg, Germany
| |
Collapse
|
6
|
Deryagin OG, Gavrilova SA, Gainutdinov KL, Golubeva AV, Andrianov VV, Yafarova GG, Buravkov SV, Koshelev VB. Molecular Bases of Brain Preconditioning. Front Neurosci 2017; 11:427. [PMID: 28790886 PMCID: PMC5524930 DOI: 10.3389/fnins.2017.00427] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 07/11/2017] [Indexed: 12/20/2022] Open
Abstract
Preconditioning of the brain induces tolerance to the damaging effects of ischemia and prevents cell death in ischemic penumbra. The development of this phenomenon is mediated by mitochondrial adenosine triphosphate-sensitive potassium (KATP+) channels and nitric oxide signaling (NO). The aim of this study was to investigate the dynamics of molecular changes in mitochondria after ischemic preconditioning (IP) and the effect of pharmacological preconditioning (PhP) with the KATP+-channels opener diazoxide on NO levels after ischemic stroke in rats. Immunofluorescence-histochemistry and laser-confocal microscopy were applied to evaluate the cortical expression of electron transport chain enzymes, mitochondrial KATP+-channels, neuronal and inducible NO-synthases, as well as the dynamics of nitrosylation and nitration of proteins in rats during the early and delayed phases of IP. NO cerebral content was studied with electron paramagnetic resonance (EPR) spectroscopy using spin trapping. We found that 24 h after IP in rats, there is a two-fold decrease in expression of mitochondrial KATP+-channels (p = 0.012) in nervous tissue, a comparable increase in expression of cytochrome c oxidase (p = 0.008), and a decrease in intensity of protein S-nitrosylation and nitration (p = 0.0004 and p = 0.001, respectively). PhP led to a 56% reduction of free NO concentration 72 h after ischemic stroke simulation (p = 0.002). We attribute this result to the restructuring of tissue energy metabolism, namely the provision of increased catalytic sites to mitochondria and the increased elimination of NO, which prevents a decrease in cell sensitivity to oxygen during subsequent periods of severe ischemia.
Collapse
Affiliation(s)
- Oleg G Deryagin
- Department of Physiology and General Pathology, Medical Faculty, Lomonosov Moscow State UniversityMoscow, Russia
| | - Svetlana A Gavrilova
- Department of Physiology and General Pathology, Medical Faculty, Lomonosov Moscow State UniversityMoscow, Russia
| | - Khalil L Gainutdinov
- Laboratory of Neurorehabilitation of Motor Disorders, Institute of Fundamental Medicine and Biology, Kazan Federal UniversityKazan, Russia.,Laboratory of Spin Physics and Spin Chemistry, Zavoisky Physical-Technical Institute of the Russian Academy of SciencesKazan, Russia
| | - Anna V Golubeva
- Department of Physiology and General Pathology, Medical Faculty, Lomonosov Moscow State UniversityMoscow, Russia
| | - Vyatcheslav V Andrianov
- Laboratory of Neurorehabilitation of Motor Disorders, Institute of Fundamental Medicine and Biology, Kazan Federal UniversityKazan, Russia.,Laboratory of Spin Physics and Spin Chemistry, Zavoisky Physical-Technical Institute of the Russian Academy of SciencesKazan, Russia
| | - Guzel G Yafarova
- Laboratory of Neurorehabilitation of Motor Disorders, Institute of Fundamental Medicine and Biology, Kazan Federal UniversityKazan, Russia.,Laboratory of Spin Physics and Spin Chemistry, Zavoisky Physical-Technical Institute of the Russian Academy of SciencesKazan, Russia
| | - Sergey V Buravkov
- Research Laboratory of Cellular Structure and Tissue Imaging Analysis, Medical Faculty, Lomonosov Moscow State UniversityMoscow, Russia
| | - Vladimir B Koshelev
- Department of Physiology and General Pathology, Medical Faculty, Lomonosov Moscow State UniversityMoscow, Russia
| |
Collapse
|
7
|
Yang Y, Chen X, Min H, Song S, Zhang J, Fan S, Yi L, Wang H, Gu X, Ma Z, Gao Q. Persistent mitoKATP Activation Is Involved in the Isoflurane-induced Cytotoxicity. Mol Neurobiol 2016; 54:1101-1110. [DOI: 10.1007/s12035-016-9710-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 01/11/2016] [Indexed: 01/27/2023]
|
8
|
Lotz C, Kehl F. Volatile Anesthetic-Induced Cardiac Protection: Molecular Mechanisms, Clinical Aspects, and Interactions With Nonvolatile Agents. J Cardiothorac Vasc Anesth 2015; 29:749-60. [DOI: 10.1053/j.jvca.2014.11.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Indexed: 02/07/2023]
|
9
|
Kunst G, Klein AA. Peri-operative anaesthetic myocardial preconditioning and protection - cellular mechanisms and clinical relevance in cardiac anaesthesia. Anaesthesia 2015; 70:467-82. [PMID: 25764404 PMCID: PMC4402000 DOI: 10.1111/anae.12975] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2014] [Indexed: 12/11/2022]
Abstract
Preconditioning has been shown to reduce myocardial damage caused by ischaemia–reperfusion injury peri-operatively. Volatile anaesthetic agents have the potential to provide myocardial protection by anaesthetic preconditioning and, in addition, they also mediate renal and cerebral protection. A number of proof-of-concept trials have confirmed that the experimental evidence can be translated into clinical practice with regard to postoperative markers of myocardial injury; however, this effect has not been ubiquitous. The clinical trials published to date have also been too small to investigate clinical outcome and mortality. Data from recent meta-analyses in cardiac anaesthesia are also not conclusive regarding intra-operative volatile anaesthesia. These inconclusive clinical results have led to great variability currently in the type of anaesthetic agent used during cardiac surgery. This review summarises experimentally proposed mechanisms of anaesthetic preconditioning, and assesses randomised controlled clinical trials in cardiac anaesthesia that have been aimed at translating experimental results into the clinical setting.
Collapse
Affiliation(s)
- G Kunst
- Department of Anaesthetics, King's College Hospital NHS Foundation Trust, London, UK
| | | |
Collapse
|
10
|
Agarwal B, Stowe DF, Dash RK, Bosnjak ZJ, Camara AKS. Mitochondrial targets for volatile anesthetics against cardiac ischemia-reperfusion injury. Front Physiol 2014; 5:341. [PMID: 25278902 PMCID: PMC4165278 DOI: 10.3389/fphys.2014.00341] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 08/20/2014] [Indexed: 12/15/2022] Open
Abstract
Mitochondria are critical modulators of cell function and are increasingly recognized as proximal sensors and effectors that ultimately determine the balance between cell survival and cell death. Volatile anesthetics (VA) are long known for their cardioprotective effects, as demonstrated by improved mitochondrial and cellular functions, and by reduced necrotic and apoptotic cell death during cardiac ischemia and reperfusion (IR) injury. The molecular mechanisms by which VA impart cardioprotection are still poorly understood. Because of the emerging role of mitochondria as therapeutic targets in diseases, including ischemic heart disease, it is important to know if VA-induced cytoprotective mechanisms are mediated at the mitochondrial level. In recent years, considerable evidence points to direct effects of VA on mitochondrial channel/transporter protein functions and electron transport chain (ETC) complexes as potential targets in mediating cardioprotection. This review furnishes an integrated overview of targets that VA impart on mitochondrial channels/transporters and ETC proteins that could provide a basis for cation regulation and homeostasis, mitochondrial bioenergetics, and reactive oxygen species (ROS) emission in redox signaling for cardiac cell protection during IR injury.
Collapse
Affiliation(s)
- Bhawana Agarwal
- Department of Anesthesiology, Medical College of WisconsinMilwaukee, WI, USA
| | - David F. Stowe
- Department of Anesthesiology, Medical College of WisconsinMilwaukee, WI, USA
- Department of Physiology, Medical College of WisconsinMilwaukee, WI, USA
- Cardiovascular Research Center, Medical College of WisconsinMilwaukee, WI, USA
- Zablocki VA Medical CenterMilwaukee, WI, USA
- Department of Biomedical Engineering, Marquette UniversityMilwaukee, WI, USA
| | - Ranjan K. Dash
- Department of Physiology, Medical College of WisconsinMilwaukee, WI, USA
- Department of Biomedical Engineering, Marquette UniversityMilwaukee, WI, USA
- Biotechnology and Bioengineering Center, Medical College of WisconsinMilwaukee, WI, USA
| | - Zeljko J. Bosnjak
- Department of Anesthesiology, Medical College of WisconsinMilwaukee, WI, USA
- Department of Physiology, Medical College of WisconsinMilwaukee, WI, USA
- Cardiovascular Research Center, Medical College of WisconsinMilwaukee, WI, USA
| | - Amadou K. S. Camara
- Department of Anesthesiology, Medical College of WisconsinMilwaukee, WI, USA
- Cardiovascular Research Center, Medical College of WisconsinMilwaukee, WI, USA
| |
Collapse
|
11
|
Abstract
The field of mitochondrial ion channels has recently seen substantial progress, including the molecular identification of some of the channels. An integrative approach using genetics, electrophysiology, pharmacology, and cell biology to clarify the roles of these channels has thus become possible. It is by now clear that many of these channels are important for energy supply by the mitochondria and have a major impact on the fate of the entire cell as well. The purpose of this review is to provide an up-to-date overview of the electrophysiological properties, molecular identity, and pathophysiological functions of the mitochondrial ion channels studied so far and to highlight possible therapeutic perspectives based on current information.
Collapse
|
12
|
Ren X, Wang Z, Ma H, Zuo Z. Sevoflurane postconditioning provides neuroprotection against brain hypoxia-ischemia in neonatal rats. Neurol Sci 2014; 35:1401-4. [PMID: 24705859 DOI: 10.1007/s10072-014-1726-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 03/15/2014] [Indexed: 10/25/2022]
Abstract
Application of volatile anesthetics after brain ischemia provides neuroprotection in adult animals (anesthetic postconditioning). We tested whether postconditioning with sevoflurane, the most commonly used general anesthetic in pediatric anesthesia, reduced neonatal brain injury in rats. Seven-day-old Sprague-Dawley rats were subjected to brain hypoxia-ischemia (HI). They were postconditioned with sevoflurane in the presence or absence of 5-hydroxydecanoic acid, a mitochondrial KATP channel inhibitor. Sevoflurane postconditioning dose-dependently reduced brain tissue loss observed 7 days after brain HI. This effect was induced by clinically relevant concentrations and abolished by 5-hydroxydecanoic acid. These results suggest that sevoflurane postconditioning protects neonatal brain against brain HI via mitochondrial KATP channels.
Collapse
Affiliation(s)
- Xiaoyan Ren
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | | | | | | |
Collapse
|
13
|
|
14
|
Degani-Costa LH, Faresin SM, dos Reis Falcão LF. Preoperative evaluation of the patient with pulmonary disease. Braz J Anesthesiol 2013; 64:22-34. [PMID: 24565385 DOI: 10.1016/j.bjane.2012.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 11/19/2012] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND OBJECTIVES In daily clinical practice, pulmonary complications related to surgical procedure are common, increasing the morbidity and mortality of patients. Assessment of the risk of pulmonary complications is an important step in the preoperative evaluation. Thus, we review the most relevant aspects of preoperative assessment of the patient with lung disease. CONTENT Pulmonary risk stratification depends on clinical symptoms and patient's physical status. Age, preexisting respiratory diseases, nutritional status, and continued medical treatment are usually more important than additional tests. Pulmonary function tests are of great relevance when high abdominal or thoracic procedures are scheduled, particularly when lung resection are considered. CONCLUSION Understanding the perioperative evaluation of the potential risk for developing pulmonary complication allows the medical team to choose the adequate anesthetic technique and surgical and clinical care required by each patient, thereby reducing adverse respiratory outcomes.
Collapse
Affiliation(s)
- Luiza Helena Degani-Costa
- Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil; Massachusetts General Hospital, Harvard Medical School, MA, USA
| | - Sonia Maria Faresin
- Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Luiz Fernando dos Reis Falcão
- Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil; Massachusetts General Hospital, Harvard Medical School, MA, USA.
| |
Collapse
|
15
|
Pagel PS. Myocardial Protection by Volatile Anesthetics in Patients Undergoing Cardiac Surgery: A Critical Review of the Laboratory and Clinical Evidence. J Cardiothorac Vasc Anesth 2013; 27:972-82. [DOI: 10.1053/j.jvca.2012.10.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Indexed: 11/11/2022]
|
16
|
Abstract
Reactive oxygen species (ROS) have been associated with various human diseases, and considerable attention has been paid to investigate their physiological effects. Various ROS are synthesized in the mitochondria and accumulate in the cytoplasm if the cellular antioxidant defense mechanism fails. The critical balance of this ROS synthesis and antioxidant defense systems is termed the redox system of the cell. Various cardiovascular diseases have also been affected by redox to different degrees. ROS have been indicated as both detrimental and protective, via different cellular pathways, for cardiac myocyte functions, electrophysiology, and pharmacology. Mostly, the ROS functions depend on the type and amount of ROS synthesized. While the literature clearly indicates ROS effects on cardiac contractility, their effects on cardiac excitability are relatively under appreciated. Cardiac excitability depends on the functions of various cardiac sarcolemal or mitochondrial ion channels carrying various depolarizing or repolarizing currents that also maintain cellular ionic homeostasis. ROS alter the functions of these ion channels to various degrees to determine excitability by affecting the cellular resting potential and the morphology of the cardiac action potential. Thus, redox balance regulates cardiac excitability, and under pathological regulation, may alter action potential propagation to cause arrhythmia. Understanding how redox affects cellular excitability may lead to potential prophylaxis or treatment for various arrhythmias. This review will focus on the studies of redox and cardiac excitation.
Collapse
Affiliation(s)
- Nitin T Aggarwal
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin, Madison, WI 53792, USA
| | | |
Collapse
|
17
|
Van Allen NR, Krafft PR, Leitzke AS, Applegate RL, Tang J, Zhang JH. The role of Volatile Anesthetics in Cardioprotection: a systematic review. Med Gas Res 2012; 2:22. [PMID: 22929111 PMCID: PMC3598931 DOI: 10.1186/2045-9912-2-22] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 08/10/2012] [Indexed: 02/06/2023] Open
Abstract
This review evaluates the mechanism of volatile anesthetics as cardioprotective agents in both clinical and laboratory research and furthermore assesses possible cardiac side effects upon usage. Cardiac as well as non-cardiac surgery may evoke perioperative adverse events including: ischemia, diverse arrhythmias and reperfusion injury. As volatile anesthetics have cardiovascular effects that can lead to hypotension, clinicians may choose to administer alternative anesthetics to patients with coronary artery disease, particularly if the patient has severe preoperative ischemia or cardiovascular instability. Increasing preclinical evidence demonstrated that administration of inhaled anesthetics - before and during surgery - reduces the degree of ischemia and reperfusion injury to the heart. Recently, this preclinical data has been implemented clinically, and beneficial effects have been found in some studies of patients undergoing coronary artery bypass graft surgery. Administration of volatile anesthetic gases was protective for patients undergoing cardiac surgery through manipulation of the potassium ATP (KATP) channel, mitochondrial permeability transition pore (mPTP), reactive oxygen species (ROS) production, as well as through cytoprotective Akt and extracellular-signal kinases (ERK) pathways. However, as not all studies have demonstrated improved outcomes, the risks for undesirable hemodynamic effects must be weighed against the possible benefits of using volatile anesthetics as a means to provide cardiac protection in patients with coronary artery disease who are undergoing surgery.
Collapse
Affiliation(s)
- Nicole R Van Allen
- Department of Physiology, Loma Linda University School of Medicine, Risley Hall, Room 223, Loma Linda, CA 92354, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Zhang Y, Dong Y, Xu Z, Xie Z. Propofol and magnesium attenuate isoflurane-induced caspase-3 activation via inhibiting mitochondrial permeability transition pore. Med Gas Res 2012; 2:20. [PMID: 22901676 PMCID: PMC3489514 DOI: 10.1186/2045-9912-2-20] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 08/03/2012] [Indexed: 11/25/2022] Open
Abstract
Background The inhalation anesthetic isoflurane has been shown to open the mitochondrial permeability transition pore (mPTP) and induce caspase activation and apoptosis, which may lead to learning and memory impairment. Cyclosporine A, a blocker of mPTP opening might attenuate the isoflurane-induced mPTP opening, lessening its ripple effects. Magnesium and anesthetic propofol are also mPTP blockers. We therefore set out to determine whether propofol and magnesium can attenuate the isoflurane-induced caspase activation and mPTP opening. Methods We investigated the effects of magnesium sulfate (Mg2+), propofol, and isoflurane on the opening of mPTP and caspase activation in H4 human neuroglioma cells stably transfected to express full-length human amyloid precursor protein (APP) (H4 APP cells) and in six day-old wild-type mice, employing Western blot analysis and flowcytometry. Results Here we show that Mg2+ and propofol attenuated the isoflurane-induced caspase-3 activation in H4-APP cells and mouse brain tissue. Moreover, Mg2+ and propofol, the blockers of mPTP opening, mitigated the isoflurane-induced mPTP opening in the H4-APP cells. Conclusion These data illustrate that Mg2+ and propofol may ameliorate the isoflurane-induced neurotoxicity by inhibiting its mitochondrial dysfunction. Pending further studies, these findings may suggest the use of Mg2+ and propofol in preventing and treating anesthesia neurotoxicity.
Collapse
Affiliation(s)
- Yiying Zhang
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, 149 13th St, Room 4310, Charlestown, MA, 02129-2060, USA.
| | | | | | | |
Collapse
|
19
|
Complex I and ATP synthase mediate membrane depolarization and matrix acidification by isoflurane in mitochondria. Eur J Pharmacol 2012; 690:149-57. [PMID: 22796646 DOI: 10.1016/j.ejphar.2012.07.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 06/21/2012] [Accepted: 07/02/2012] [Indexed: 11/22/2022]
Abstract
Short application of the volatile anesthetic isoflurane at reperfusion after ischemia exerts strong protection of the heart against injury. Mild depolarization and acidification of the mitochondrial matrix are involved in the protective mechanisms of isoflurane, but the molecular basis for these changes is not clear. In this study, mitochondrial respiration, membrane potential, matrix pH, matrix swelling, ATP synthesis and -hydrolysis, and H(2)O(2) release were assessed in isolated mitochondria. We hypothesized that isoflurane induces mitochondrial depolarization and matrix acidification through direct action on both complex I and ATP synthase. With complex I-linked substrates, isoflurane (0.5mM) inhibited mitochondrial respiration by 28 ± 10%, and slightly, but significantly depolarized membrane potential and decreased matrix pH. With complex II- and complex IV-linked substrates, respiration was not changed, but isoflurane still decreased matrix pH and depolarized mitochondrial membrane potential. Depolarization and matrix acidification were attenuated by inhibition of ATP synthase with oligomycin, but not by inhibition of mitochondrial ATP- and Ca(2+)-sensitive K(+) channels or uncoupling proteins. Isoflurane did not induce matrix swelling and did not affect ATP synthesis and hydrolysis, but decreased H(2)O(2) release in the presence of succinate in an oligomycin- and matrix pH-sensitive manner. Isoflurane modulated H(+) flux through ATP synthase in an oligomycin-sensitive manner. Our results indicate that isoflurane-induced mitochondrial depolarization and acidification occur due to inhibition of the electron transport chain at the site of complex I and increased proton flux through ATP synthase. K(+) channels and uncoupling proteins appear not to be involved in the direct effects of isoflurane on mitochondria.
Collapse
|
20
|
Faller S, Strosing KM, Ryter SW, Buerkle H, Loop T, Schmidt R, Hoetzel A. The volatile anesthetic isoflurane prevents ventilator-induced lung injury via phosphoinositide 3-kinase/Akt signaling in mice. Anesth Analg 2012; 114:747-56. [PMID: 22383671 DOI: 10.1213/ane.0b013e31824762f0] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Mechanical ventilation leads to ventilator-induced lung injury in animals, and can contribute to acute lung injury/acute respiratory distress syndrome in humans. Acute lung injury/acute respiratory distress syndrome currently causes an unacceptably high rate of morbidity and mortality among critically ill patients. Volatile anesthetics have been shown to exert anti-inflammatory and organ-protective effects in vivo. We investigated the effects of the volatile anesthetic isoflurane on lung injury during mechanical ventilation. METHODS C57BL/6N mice were ventilated with a tidal volume of 12 mL/kg body weight for 6 hours in the absence or presence of isoflurane, and, in a second series, with or without the specific phosphoinositide 3-kinase/Akt inhibitor LY294002. Lung injury was determined by comparative histology, and by the isolation of bronchoalveolar lavage for differential cell counting and analysis of cytokine levels using enzyme-linked immunosorbent assays. Lung homogenates were analyzed for protein expression by Western blotting. RESULTS Mechanical ventilation caused increases in alveolar wall thickening, cellular infiltration, and an elevated ventilator-induced lung injury score. Neutrophil influx and cytokine (i.e., interleukin-1β, and macrophage inflammatory protein-2) release were enhanced in the bronchoalveolar lavage of ventilated mice. The expression levels of the stress proteins hemeoxygenase-1 and heat shock protein-70 were elevated in lung tissue homogenates. Isoflurane ventilation significantly reduced lung damage, inflammation, and stress protein expression. In contrast, phosphorylation of Akt protein was substantially increased during mechanical ventilation with isoflurane. Inhibition of phosphoinositide 3-kinase/Akt signaling before mechanical ventilation completely reversed the lung-protective effects of isoflurane treatment in vivo. CONCLUSIONS Inhalation of isoflurane during mechanical ventilation protects against lung injury by preventing proinflammatory responses. This protection is mediated via phosphoinositide 3-kinase/Akt signaling.
Collapse
Affiliation(s)
- Simone Faller
- Department of Anesthesiology and Critical Care Medicine, University Medical Center Freiburg, Hugstetter Str. 55, D-79106 Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
21
|
|
22
|
Chiu PY, Wong SM, Leung HY, Leong PK, Chen N, Zhou L, Zuo Z, Lam PY, Ko KM. Acute treatment with Danshen-Gegen decoction protects the myocardium against ischemia/reperfusion injury via the redox-sensitive PKCɛ/mK(ATP) pathway in rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2011; 18:916-925. [PMID: 21855786 DOI: 10.1016/j.phymed.2011.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 03/21/2011] [Indexed: 05/31/2023]
Abstract
Danshen-Gegen (DG) decoction, an herbal formulation comprising Radix Salvia Miltiorrhiza and Radix Puerariae Lobatae, is prescribed for the treatment of coronary heart disease in Chinese medicine. Experimental and clinical studies have demonstrated that DG decoction can reduce the extent of atherosclerosis. In the present study, using an ex vivo rat model of myocardial ischemia/reperfusion (I/R) injury, we investigated the myocardial preconditioning effect of an aqueous DG extract prepared from an optimized weight-to-weight ratio of Danshen and Gegen. Short-term treatment with DG extract at a daily dose of 1 g/kg and 2 g/kg for 3 days protected against myocardial I/R injury in rats. The cardioprotection afforded by DG pretreatment was paralleled by enhancements in mitochondrial antioxidant status and membrane structural integrity, as well as a decrease in the sensitivity of mitochondria to Ca²⁺-stimulated permeability transition in vitro, particularly under I/R conditions. Short-term treatment with the DG extract also enhanced the translocation of PKCɛ from the cytosol to mitochondria in rat myocardium, and this translocation was inhibited by α-tocopherol co-treatment with DG extract in rats. Short-term DG treatment may precondition the myocardium via a redox-sensitive PKCɛ/mK(ATP) pathway, with resultant inhibition of the mitochondrial permeability transition through the opening of mitochondrial K(ATP) channels. Our results suggest that clinical studies examining the effectiveness of DG extract given prophylactically in affording protection against myocardial I/R injury would be warranted.
Collapse
Affiliation(s)
- Po Yee Chiu
- Section of Biochemistry and Cell Biology, Division of Life Science, The Hong Kong University of Science & Technology, Clear Water Bay, Hong Kong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Delayed neuroprotection induced by sevoflurane via opening mitochondrial ATP-sensitive potassium channels and p38 MAPK phosphorylation. Neurol Sci 2011; 33:239-49. [PMID: 21720900 DOI: 10.1007/s10072-011-0665-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 06/13/2011] [Indexed: 02/07/2023]
Abstract
This study aimed to investigate the role of p38 MAPK phosphorylation and opening of the mitoK(ATP) channels in the sevoflurane-induced delayed neuroprotection in the rat brain. Adult male Sprague-Dawley rats (250-300 g) were randomly assigned into four groups: ischemia/reperfusion (Control), sevoflurane (Sevo), 5-hydroxydecanoate (5-HD) + sevoflurane (5-HD + Sevo) and 5-HD groups and were subjected to right middle cerebral artery occlusion (MCAO) for 2 h. Sevoflurane preconditioning was induced 24 h before MCAO in sevoflurane and 5-HD + sevoflurane groups by exposing the animals to 2.4% sevoflurane in oxygen for 60 min. In control and 5-HD groups: animals were exposed to oxygen for 60 min at 24 h before MCAO. A selective mitoK(ATP) channel antagonist, 5-hydroxydecanoate (5-HD, 40 mg/kg, i.p.), was administered 30 min before sevoflurane/oxygen exposure in the 5-HD + sevoflurane and 5-HD groups, respectively. Neurological deficits scores and the protein expression of phosphorylated p38 mitogen-activated protein kinase (p-p38 MAPK) were evaluated at 24 and 72 h after reperfusion. Cerebral infarct size was evaluated at 72 h after reperfusion by 2,3,5-triphenyltetrazolium chloride staining. Sevoflurane preconditioning produced marked improvement neurological functions and a reduction in brain infarct volumes than animals with brain ischemia only. Sevoflurane treatment also caused increased phosphorylation of p38 MAPK at 24 and 72 h after reperfusion. These beneficial effects were attenuated by 5-HD. Blockade of cerebral protection with 5-HD concomitant with decrease in p38 phosphorylation suggests that mitoK(ATP) channels opening and p38 phosphorylation participate signal transduction cascade of sevoflurane preconditioning and p38 MAPK activation may be a downstream of opening mitoK(ATP) channels.
Collapse
|
24
|
Sedlic F, Pravdic D, Hirata N, Mio Y, Sepac A, Camara AK, Wakatsuki T, Bosnjak ZJ, Bienengraeber M. Monitoring mitochondrial electron fluxes using NAD(P)H-flavoprotein fluorometry reveals complex action of isoflurane on cardiomyocytes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1749-58. [PMID: 20646994 DOI: 10.1016/j.bbabio.2010.07.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 07/09/2010] [Accepted: 07/13/2010] [Indexed: 11/26/2022]
Abstract
Mitochondrial bioenergetic studies mostly rely on isolated mitochondria thus excluding the regulatory role of other cellular compartments important for the overall mitochondrial function. In intact cardiomyocytes, we followed the dynamics of electron fluxes along specific sites of the electron transport chain (ETC) by simultaneous detection of NAD(P)H and flavoprotein (FP) fluorescence intensities using a laser-scanning confocal microscope. This method was used to delineate the effects of isoflurane, a volatile anesthetic and cardioprotective agent, on the ETC. Comparison to the effects of well-characterized ETC inhibitors and uncoupling agent revealed two distinct effects of isoflurane: uncoupling-induced mitochondrial depolarization and inhibition of ETC at the level of complex I. In correlation, oxygen consumption measurements in cardiomyocytes confirmed a dose-dependent, dual effect of isoflurane, and in isolated mitochondria an obstruction of the ETC primarily at the level of complex I. These effects are likely responsible for the reported mild stimulation of mitochondrial reactive oxygen species (ROS) production required for the cardioprotective effects of isoflurane. In conclusion, isoflurane exhibits complex effects on the ETC in intact cardiomyocytes, altering its electron fluxes, and thereby enhancing ROS production. The NAD(P)H-FP fluorometry is a useful method for exploring the effect of drugs on mitochondria and identifying their specific sites of action within the ETC of intact cardiomyocytes.
Collapse
Affiliation(s)
- Filip Sedlic
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Aldakkak M, Stowe DF, Cheng Q, Kwok WM, Camara AKS. Mitochondrial matrix K+ flux independent of large-conductance Ca2+-activated K+ channel opening. Am J Physiol Cell Physiol 2010; 298:C530-41. [PMID: 20053924 DOI: 10.1152/ajpcell.00468.2009] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Large-conductance Ca(2+)-activated K(+) channels (BK(Ca)) in the inner mitochondrial membrane may play a role in protecting against cardiac ischemia-reperfusion injury. NS1619 (30 microM), an activator of BK(Ca) channels, was shown to increase respiration and to stimulate reactive oxygen species generation in isolated cardiac mitochondria energized with succinate. Here, we tested effects of NS1619 to alter matrix K(+), H(+), and swelling in mitochondria isolated from guinea pig hearts. We found that 30 microM NS1619 did not change matrix K(+), H(+), and swelling, but that 50 and 100 microM NS1619 caused a concentration-dependent increase in matrix K(+) influx (PBFI fluorescence) only when quinine was present to block K(+)/H(+) exchange (KHE); this was accompanied by increased mitochondrial matrix volume (light scattering). Matrix pH (BCECF fluorescence) was decreased slightly by 50 and 100 microM NS1619 but markedly more so when quinine was present. NS1619 (100 microM) caused a significant leak in lipid bilayers, and this was enhanced in the presence of quinine. The K(+) ionophore valinomycin (0.25 nM), which like NS1619 increased matrix volume and increased K(+) influx in the presence of quinine, caused matrix alkalinization followed by acidification when quinine was absent, and only alkalinization when quinine was present. If K(+) is exchanged instantly by H(+) through activated KHE, then matrix K(+) influx should stimulate H(+) influx through KHE and cause matrix acidification. Our results indicate that KHE is not activated immediately by NS1619-induced K(+) influx, that NS1619 induces matrix K(+) and H(+) influx through a nonspecific transport mechanism, and that enhancement with quinine is not due to the blocking of KHE, but to a nonspecific effect of quinine to enhance current leak by NS1619.
Collapse
Affiliation(s)
- Mohammed Aldakkak
- M4280, 8701 Watertown Plank Rd., Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | |
Collapse
|
26
|
Differences in production of reactive oxygen species and mitochondrial uncoupling as events in the preconditioning signaling cascade between desflurane and sevoflurane. Anesth Analg 2009; 109:405-11. [PMID: 19608810 DOI: 10.1213/ane.0b013e3181a93ad9] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Signal transduction cascade of anesthetic-induced preconditioning has been extensively studied, yet many aspects of it remain unsolved. Here, we investigated the roles of reactive oxygen species (ROS) and mitochondrial uncoupling in cardiomyocyte preconditioning by two modern volatile anesthetics: desflurane and sevoflurane. METHODS Adult rat ventricular cardiomyocytes were isolated enzymatically. The preconditioning potency of desflurane and sevoflurane was assessed in cell survival experiments by evaluating myocyte protection from the oxidative stress-induced cell death. ROS production and flavoprotein fluorescence, an indicator of flavoprotein oxidation and mitochondrial uncoupling, were monitored in real time by confocal microscopy. The functional aspect of enhanced ROS generation by the anesthetics was assessed in cell survival and confocal experiments using the ROS scavenger Trolox. RESULTS Preconditioning of cardiomyocytes with desflurane or sevoflurane significantly decreased oxidative stress-induced cell death. That effect coincided with increased ROS production and increased flavoprotein oxidation detected during acute myocyte exposure to the anesthetics. Desflurane induced significantly greater ROS production and flavoprotein oxidation than sevoflurane. ROS scavenging with Trolox abrogated preconditioning potency of anesthetics and attenuated flavoprotein oxidation. CONCLUSION Preconditioning with desflurane or sevoflurane protects isolated rat cardiomyocytes from oxidative stress-induced cell death. Scavenging of ROS abolishes the preconditioning effect of both anesthetics and attenuates anesthetic-induced mitochondrial uncoupling, suggesting a crucial role for ROS in anesthetic-induced preconditioning and implying that ROS act upstream of mitochondrial uncoupling. Desflurane exhibits greater effect on stimulation of ROS production and mitochondrial uncoupling than sevoflurane.
Collapse
|
27
|
Zoratti M, De Marchi U, Gulbins E, Szabò I. Novel channels of the inner mitochondrial membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1787:351-63. [PMID: 19111672 DOI: 10.1016/j.bbabio.2008.11.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Revised: 11/24/2008] [Accepted: 11/26/2008] [Indexed: 12/15/2022]
Abstract
Along with a large number of carriers, exchangers and "pumps", the inner mitochondrial membrane contains ion-conducting channels which endow it with controlled permeability to small ions. Some have been shown to be the mitochondrial counterpart of channels present also in other cellular membranes. The manuscript summarizes the current state of knowledge on the major inner mitochondrial membrane channels, properties, identity and proposed functions. Considerable attention is currently being devoted to two K(+)-selective channels, mtK(ATP) and mtBK(Ca). Their activation in "preconditioning" is considered by many to underlie the protection of myocytes and other cells against subsequent ischemic damage. We have recently shown that in apoptotic lymphocytes inner membrane mtK(V)1.3 interacts with the pro-apoptotic protein Bax after the latter has inserted into the outer mitochondrial membrane. Whether the just-discovered mtIK(Ca) has similar cellular role(s) remains to be seen. The Ca(2+) "uniporter" has been characterized electrophysiologically, but still awaits a molecular identity. Chloride-selective channels are represented by the 107 pS channel, the first mitochondrial channel to be observed by patch-clamp, and by a approximately 400 pS pore we have recently been able to fully characterize in the inner membrane of mitochondria isolated from a colon tumour cell line. This we propose to represent a component of the Permeability Transition Pore. The available data exclude the previous tentative identification with porin, and indicate that it coincides instead with the still molecularly unidentified "maxi" chloride channel.
Collapse
|