1
|
Vetter C, Meyer ER, Seidel K, Bervini D, Huber M, Krejci V. Co-administration of dexmedetomidine with total intravenous anaesthesia in carotid endarterectomy reduces requirements for propofol and improves haemodynamic stability: A single-centre, prospective, randomised controlled trial. Eur J Anaesthesiol 2025; 42:255-264. [PMID: 39529482 PMCID: PMC11784905 DOI: 10.1097/eja.0000000000002099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
BACKGROUND Total intravenous anaesthesia guided by electroencephalography and neurophysiological monitoring may be used for carotid endarterectomy. Reduction of brain metabolic demand during cross-clamping of the internal carotid artery with propofol titrated to burst suppression requires effect-site concentrations that may delay emergence and interfere with intraoperative neurophysiological monitoring. OBJECTIVE To test the hypothesis that dexmedetomidine decreases the effect-site concentration of propofol required for burst-suppression in patients undergoing carotid endarterectomy. DESIGN Randomised controlled trial. PARTICIPANTS Patients undergoing carotid endarterectomy. SETTING University Hospital of Berne, Switzerland, from October 2018 to September 2024. INTERVENTIONS Patients were randomised into a control ( n = 23) and a dexmedetomidine groups ( n = 22). Total intravenous anaesthesia was administered to both groups. Patients in the dexmedetomidine group received an intravenous bolus of dexmedetomidine (0.4 μg kg -1 over 10 min) before induction, followed by a continuous intravenous infusion (0.4 μg kg -1 h -1 ). The effect-site concentrations of propofol were titrated against frontal electroencephalography parameters. Burst suppression was induced with propofol during cross-clamping of the internal carotid artery. OUTCOME MEASURES The primary outcome was the effect-site concentration of propofol required for burst-suppression. The secondary outcomes were the requirement for vasoactive substances, neurophysiological monitoring parameters, and postoperative delirium. RESULTS The effect-site concentration of propofol required for burst suppression was 4.0 μg ml -1 [3.50 to 4.90] (median [interquartile range]) in the dexmedetomidine group compared with 6.0 μg ml -1 [5.5 to 7.3] in the control group ( P < 0.001). Less norepinephrine was required in the dexmedetomidine group (total 454 μg [246 to 818] compared with 1000 μg [444 to 1326] ( P = 0.015) in the control group). Dexmedetomidine did not affect intraoperative neurophysiological monitoring. CONCLUSION Co-administration of dexmedetomidine to total intravenous anaesthesia for carotid endarterectomy decreased the effect-site concentrations of propofol required for burst suppression by 33%. The propofol-sparing effect and peripheral alpha-agonism of dexmedetomidine may explain the reduced requirement for vasopressors. TRIAL REGISTRATION Clinicaltrials.gov identifier: NCT04662177.
Collapse
|
2
|
Zhu S, Bao X, Lomber SG. Motion-onset visually evoked potentials are amplified in the deaf. J Neurophysiol 2025; 133:684-696. [PMID: 39819102 DOI: 10.1152/jn.00527.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/19/2024] [Accepted: 01/11/2025] [Indexed: 01/19/2025] Open
Abstract
The loss of a sensory modality triggers a phenomenon known as cross-modal plasticity, where areas of the brain responsible for the lost sensory modality are reorganized and repurposed to the benefit of the remaining modalities. After perinatal or congenital deafness, superior visual motion detection abilities have been psychophysically identified in both humans and cats, and this advantage has been causally demonstrated to be mediated by reorganized auditory cortex. In our study, we investigated visually evoked potentials (VEPs) in response to motion-onset stimuli of varying speeds in both hearing and perinatally deafened cats under light anesthesia. Although the peak latencies did not differ between the two groups, we observed significantly greater VEP amplitudes in deaf cats, specifically in the P1 component and the signal power of the overall waveform. Through sigmoidal modeling, we identified that the speed offset and steepness at the threshold for 50% maximum neural activity was unchanged, showing that neuronal activity was modulated by motion speeds in a comparable manner between the hearing and deaf subjects and the deaf had greater potentials at all dot speeds. Our results suggest that the increased cortical activity by the auditory and visual cortices of deaf cats may account for their superior behavioral advantage in motion detection and indicates that cross-modal plasticity plays a significant role in the cortical processing of motion. NEW & NOTEWORTHY The present study investigated cross-modal plasticity after perinatal deafness in cats using motion-onset visually evoked potentials. Deaf animals were observed to have significantly greater evoked potentials in both peak components and the signal power of the overall waveforms. These results are discussed in relation to prior studies on deaf subjects in both human and animal research on evoked potentials and psychophysics.
Collapse
Affiliation(s)
- Siyu Zhu
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Xiaohan Bao
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Stephen G Lomber
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Bhardwaj M, Mathur V, Sisodia RS, Sharma S, Mishra A. Dexmedetomidine Versus Fentanyl in Intraoperative Neuromuscular Monitoring Using A Propofol-based Total Intravenous Anaesthesia Regimen in Spine Surgeries. Turk J Anaesthesiol Reanim 2024; 52:180-187. [PMID: 39478341 PMCID: PMC11589335 DOI: 10.4274/tjar.2024.241670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/11/2024] [Indexed: 11/28/2024] Open
Abstract
Objective This prospective, double-blind, randomized study aimed to compare the effects of dexmedetomidine and fentanyl on the latency and amplitude of transcranial motor evoked potentials (TcMEPs) under propofol-based total intravenous anaesthesia (TIVA) in spine surgery. Secondarily, intraoperative hemodynamics, total propofol consumption, recovery profile, and surgical field quality were compared. Methods TcMEP amplitude and latency recordings of bilateral abductor pollicis brevis and abductor hallucis muscles posted for elective lumbar spine surgery under TcMEP monitoring randomly divided into two study groups. Throughout the surgery, TIVA was administered using intravenous propofol (100-150 μg kg-1 min-1) and dexmedetomidine (0.5-0.7 μg kg-1 h-1) in group D and intravenous propofol (100-150 μg kg-1 min-1) and fentanyl (1 μg kg-1 h-1) in group F. TcMEPs were recorded at various time points during the surgery. Immediately after extubation recovery from anaesthesia was noted. Additionally, hemodynamic parameters, total propofol consumption, and surgical field quality were assessed. Results Latency and amplitude were comparable between the groups. Time to extubation was significantly longer in group D, but the mean (standard deviation) duration of stay in recovery was shorter in group D [47.55 (7.51) 95% confidence interval (CI) (44.863-50.237)] (P=0.046). Total propofol consumption was reduced in group D [220 (38) 95% CI (206.402-233.598)] (P=0.025) and surgical field condition was better in group D. Conclusions Dexmedetomidine and fentanyl do not have any effect on TcMEP amplitude and latency. However, dexmedetomidine provides the additional advantage of reduced total propofol consumption, shorter stay in recovery, and better surgical field quality.
Collapse
Affiliation(s)
- Medha Bhardwaj
- Mahatma Gandhi Medical College & Hospital, Mahatma Gandhi University of Medical Sciences & Technology, Jaipur, Clinic of Neuroanaesthesia, Jaipur, India
| | - Vijay Mathur
- Mahatma Gandhi Medical College & Hospital, Mahatma Gandhi University of Medical Sciences & Technology, Jaipur, Clinic of Neuroanaesthesia, Jaipur, India
| | - Ravindra Singh Sisodia
- Mahatma Gandhi Medical College & Hospital, Mahatma Gandhi University of Medical Sciences & Technology, Jaipur, Clinic of Neuroanaesthesia, Jaipur, India
| | - Sunita Sharma
- Mahatma Gandhi Medical College & Hospital, Mahatma Gandhi University of Medical Sciences & Technology, Jaipur, Clinic of Neuroanaesthesia, Jaipur, India
| | - Akash Mishra
- Mahatma Gandhi Medical College & Hospital, Mahatma Gandhi University of Medical Sciences & Technology, Jaipur, Clinic of Community Medicine, Division of Biostatistics, Jaipur, India
| |
Collapse
|
4
|
Yang X, Zhang X, Lin P, Liu Z, Deng S, Liang S, Zhu X, Qiao Q, Chen Q. Effect of dexmedetomidine on somatosensory- and motor-evoked potentials in patients receiving craniotomy under propofol-sevoflurane combined anesthesia. Front Surg 2024; 11:1386049. [PMID: 39045089 PMCID: PMC11263188 DOI: 10.3389/fsurg.2024.1386049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/19/2024] [Indexed: 07/25/2024] Open
Abstract
Introduction Dexmedetomidine is often used as an adjunct to total intravenous anesthesia (TIVA) for procedures requiring intraoperative neurophysiologic monitoring (IONM). However, it has been reported that dexmedetomidine might mask the warning of a neurological deficit on intraoperative monitoring. Methods We reviewed the intraoperative neurophysiological monitoring data of 47 patients who underwent surgery and IONM from March 2019 to March 2021 at the Department of Neurosurgery, Renmin Hospital of Wuhan University. Pre- and postoperative motor function scores were recorded and analyzed. Dexmedetomidine was administered intravenously at 0.5 μg/kg/h 40 min after anesthesia and discontinued after 1 h in the dexmedetomidine group. Results We found that the amplitude of transcranial motor-evoked potentials (Tce-MEPs) was significantly lower in the dexmedetomidine group than in the negative control group (P < 0.0001). There was no statistically significant difference in the somatosensory-evoked potentials (SSEPs) amplitude or the Tce-MEPs or SSEPs latency. There was no significant decrease in postoperative motor function in the dexmedetomidine group compared with the preoperative group, suggesting that there is no evidence that dexmedetomidine affects patient prognosis. In addition, we noticed a synchronized bilateral decrease in the Tce-MEPs amplitude in the dexmedetomidine group and a mostly unilateral decrease on the side of the brain injury in the positive control group (P = 0.001). Discussion Although dexmedetomidine does not affect the prognosis of patients undergoing craniotomy, the potential risks and benefits of applying it as an adjunctive medication during craniotomy should be carefully evaluated. When dexmedetomidine is administered, Tce-MEPs should be monitored. When a decrease in the Tce-MEPs amplitude is detected, the cause of the decrease in the MEPs amplitude can be indirectly determined by whether the decrease is bilateral.
Collapse
Affiliation(s)
- Xue Yang
- Department of Neurosurgery, Wuhan University Renmin Hospital, Wuhan, China
| | - Xinyi Zhang
- Department of Neurosurgery, Wuhan University Renmin Hospital, Wuhan, China
| | - Puxuan Lin
- Department of Neurosurgery, Wuhan University Renmin Hospital, Wuhan, China
| | - Zeheng Liu
- Department of Neurosurgery, Wuhan University Renmin Hospital, Wuhan, China
| | - Shuhang Deng
- Department of Neurosurgery, Wuhan University Renmin Hospital, Wuhan, China
| | - Shanwen Liang
- Department of Neurosurgery, Wuhan University Renmin Hospital, Wuhan, China
| | - Xinyi Zhu
- Department of Neurosurgery, Wuhan University Renmin Hospital, Wuhan, China
| | - Qianqian Qiao
- Department of Anesthesiology, Wuhan University Renmin Hospital, Wuhan, China
| | - Qianxue Chen
- Department of Neurosurgery, Wuhan University Renmin Hospital, Wuhan, China
| |
Collapse
|
5
|
Gamble JJ, Goobie SM. Dexmedetomidine and neurophysiologic monitoring-A call for evidence to guide contemporary best practice for pediatric anesthesiologists. Paediatr Anaesth 2024; 34:101-103. [PMID: 37983954 DOI: 10.1111/pan.14802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/01/2023] [Accepted: 11/08/2023] [Indexed: 11/22/2023]
Affiliation(s)
- Jonathan J Gamble
- Department of Anesthesia, Perioperative Medicine, and Pain Management, University of Saskatchewan, Royal University Hospital, Saskatoon, Saskatchewan, Canada
| | - Susan M Goobie
- Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Angelliaume A, Alhada TL, Parent HF, Royer J, Harper L. Intraoperative neurophysiological monitoring in scoliosis surgery: literature review of the last 10 years. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2023; 32:3072-3076. [PMID: 37434021 DOI: 10.1007/s00586-023-07837-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 05/26/2023] [Accepted: 06/20/2023] [Indexed: 07/13/2023]
Abstract
INTRODUCTION Patients with spinal deformities undergoing corrective surgery are at risk for iatrogenic spinal cord injury (SCI) and subsequent neurological deficit. Intraoperative neurophysiological monitoring (IONM) allows early detection of SCI which enables early intervention resulting in a better prognosis. The primary aim of this literature review was to search if there are threshold values of TcMEP and SSEP in the literature that are widely accepted as alert during IONM. The secondary aim was to update knowledge concerning IONM during scoliosis surgery. METHOD PubMed/MEDLINE and Cochrane library electronic databases were used to search publication from 2012 to 2022. The following keywords were used: evoked potential, scoliosis, surgery, intraoperative monitoring and neurophysiological. We included all studies dealing with SSEP and TcMEP monitoring during scoliosis surgery. Two authors reviewed all titles and abstracts to identify studies that met the inclusion criteria. RESULTS We included 43 papers. Rates of IONM alert and neurological deficit varied from 0.56 to 64% and from 0.15 to 8.3%, respectively. Threshold values varied from a loss of 50 to 90% for TcMEP amplitude, whereas it seems that a loss of 50% in amplitude and/or an increase of 10% of latency is widely accepted for SSEP. Causes of IONM changes most frequently reported were surgical maneuver. CONCLUSION Concerning SSEP, a loss of 50% in amplitude and/or an increase of 10% of latency is widely accepted as an alert. For TcMEP, it seems that the use of highest threshold values can avoid unnecessary surgical procedure for the patient without increasing risk of neurological deficit.
Collapse
Affiliation(s)
| | - Toul-la Alhada
- Department of Pediatric Surgery, Pellegrin University Hospital, Place Amélie Raba-Léon, 33000, Bordeaux, France
| | | | - Julia Royer
- Department of Pediatric Surgery, Pellegrin University Hospital, Place Amélie Raba-Léon, 33000, Bordeaux, France
| | - Luke Harper
- Department of Pediatric Surgery, Pellegrin University Hospital, Place Amélie Raba-Léon, 33000, Bordeaux, France
| |
Collapse
|
7
|
Pathak S, Gupta P, Kaushal A, Biswas K. Effect of Ketamine and Dexmedetomidine as Adjuvant to Total Intravenous Anesthesia on Intraoperative Cranial Nerve Monitoring in the Patients Undergoing Posterior Fossa Craniotomies-A Randomized Quadruple Blind Placebo-Controlled Study. Asian J Neurosurg 2023; 18:587-596. [PMID: 38152535 PMCID: PMC10749862 DOI: 10.1055/s-0043-1772762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023] Open
Abstract
Objectives Total intravenous anesthesia (TIVA) is used during surgery with intraoperative neurophysiological monitoring. Addition of adjuvant may minimize suppression of potentials by reducing doses of propofol. We studied the effect of addition of ketamine or dexmedetomidine to propofol-fentanyl-based TIVA on corticobulbar motor evoked potential (CoMEP) in patients undergoing posterior fossa surgeries. Materials and Methods Forty-two patients were assigned to three groups ( n = 14 each), Group S-saline, Group D-dexmedetomidine (0.25 μg/kg/h), and Group K-ketamine (0.25 mg/kg/h). Patients received propofol and fentanyl infusions along with study drugs. CoMEPs were recorded from muscles innervated by cranial nerves bilaterally at predefined intervals (T baseline , T 2 , T 3 , T 4 , and T 5 ). Effect on amplitude and latency of CoMEPs was assessed. Results A significant fall in CoMEP amplitude was observed across all analyzed muscles at time T 4 and T 5 in saline and dexmedetomidine group as compared with ketamine group, p -value less than 0.05. A significant increase in latency was observed at T4 and T5 among groups ( p -value, D vs. K = 0.239, D vs. S = 0.123, and K vs. S = 0.001). Conclusion Both ketamine and dexmedetomidine provide and allow effective recording of CoMEPs. Ketamine emerges as a better agent especially when prolonged surgical duration is expected as even propofol-fentanyl-based TIVA adversely affects CoMEPs when used for long duration.
Collapse
Affiliation(s)
- Sharmishtha Pathak
- Department of Anaesthesiology, Pain Medicine and Critical Care, Jai Prakash Narayan Apex Trauma Center, All India Institute of Medical Sciences, Ansari Nagar, Delhi, India
| | - Priyanka Gupta
- Department of Anaesthesiology, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Ashutosh Kaushal
- Department of Anaesthesiology, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Konish Biswas
- Department of Neuroanaesthesiology and Critical Care, Medanta, Patna, Bihar, India
| |
Collapse
|
8
|
Ma K, Bebawy JF, Hemmer LB. Multimodal Analgesia and Intraoperative Neuromonitoring. J Neurosurg Anesthesiol 2023; 35:172-176. [PMID: 36662721 DOI: 10.1097/ana.0000000000000904] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 12/23/2022] [Indexed: 01/21/2023]
Abstract
Intraoperative neuromonitoring has been a valuable tool for ensuring the functional integrity of vital neural structures by providing real-time feedback to the operative team during procedures where neurological structures are at risk. Commonly used intravenous and inhaled anesthetic drugs are known to affect waveform parameters measured with various intraoperative neuromonitoring modalities. While the concept of opioid-sparing multimodal analgesia has gained popularity in recent years, the impact of such a strategy on intraoperative neuromonitoring remains poorly characterized, in contrast to the more well-established concepts and literature regarding the effects of other hypnotic agents on neuromonitoring quality. The purpose of this focused review is to provide an overview of the clinical evidence pertaining to the pharmacological interaction of certain multimodal analgesics with routine intraoperative neuromonitoring modalities.
Collapse
Affiliation(s)
- Kan Ma
- Department of Anesthesiology and Pain Medicine, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - John F Bebawy
- Anesthesiology & Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Laura B Hemmer
- Anesthesiology & Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
9
|
Joy JJ, Bidkar PU, Swaminathan S, Balasubramanian M, Dey A, Chinnarasan VC, Gunasekaran A. Comparison of Dexmedetomidine Versus Fentanyl-Based Anesthetic Protocols Under Patient State Index Guidance in Patients Undergoing Elective Neurosurgical Procedures with Intraoperative Neurophysiological Monitoring. Cureus 2023; 15:e35864. [PMID: 37033575 PMCID: PMC10078854 DOI: 10.7759/cureus.35864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2023] [Indexed: 03/09/2023] Open
Abstract
Objectives The study was designed to elucidate the effects of dexmedetomidine as an anesthetic adjunct to propofol in total intravenous anesthesia (TIVA) on anesthetic dose reduction, the quality of intraoperative neurophysiological monitoring (IONM) recordings, analgesic requirements, and recovery parameters in patients undergoing neurosurgical procedures with neurophysiological monitoring. Methods A total of 54 patients for elective neurosurgical procedures with IONM were randomized to group D (dexmedetomidine) and group F (fentanyl). A loading dose of the study drug of 1µg/kg followed by 0.5 µg/kg/h infusion was used in two groups. Propofol-based TIVA with a Schneider target-controlled infusion model was used for induction and maintenance with effect site concentration of 4-5 and 2.5-4 µg/mL, respectively, titrated to a Patient State Index (PSI) of 25-40. Baseline IONM recordings were obtained after induction. The mean propofol consumption, number of patient movements, quality of IONM recordings, number of fentanyl boluses, hemodynamic characteristics, and recovery parameters were recorded. Results The mean propofol consumption was significantly lower in group D when compared to group F (101.4 ± 13.5 µg/kg/min vs 148.0 ± 29.8 µg/kg/min). Baseline IONM recordings were acquired in all patients without any difficulty. The two groups were comparable with respect to the number of additional boluses of fentanyl, patient movements, and recovery characteristics. Conclusion Dexmedetomidine as an adjuvant to propofol in TIVA reduces the requirement of the latter, without affecting the IONM recordings. The addition of dexmedetomidine also ensures stable hemodynamics and decreases the requirement of opioids with similar recovery characteristics.
Collapse
|
10
|
Jiang X, Tang X, Liu S, Liu L. Effects of dexmedetomidine on evoked potentials in spinal surgery under combined intravenous inhalation anesthesia: a randomized controlled trial. BMC Anesthesiol 2023; 23:36. [PMID: 36721105 PMCID: PMC9887773 DOI: 10.1186/s12871-023-01990-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 01/18/2023] [Indexed: 02/02/2023] Open
Abstract
OBJECTIVE We aimed to investigate the effects of different doses of dexmedetomidine (Dex) on evoked potentials in adult patients undergoing spinal surgery under intravenous anesthesia with low-concentration desflurane. METHODS Ninety patients were divided into three groups at random. To maintain anesthesia in the control group (group C), desflurane 0.3 MAC (minimal alveolar concentration), propofol, and remifentanil were administered. Dex (0.5 μg·kg-1) was injected for 10 min as a loading dose in the low-dose Dex group (group DL), then adjusted to 0.2 μg·kg-1·h-1 until the operation was completed. Dex (1 μg·kg-1) was injected for 10 min as a loading dose in the high-dose Dex group (group DH), then adjusted to 0.7 μg·kg-1·h-1 until the operation was completed. The additional medications were similar to those given to group C. The perioperative hemodynamics, body temperature, intraoperative drug dosages, fluid volume, urine volume, blood loss, the latency and amplitude of somatosensory evoked potentials (SEPs) at four different time points, the incidence of positive cases of SEPs and transcranial motor evoked potentials (tcMEPs), and perioperative adverse reactions were all recorded. RESULTS Data from 79 patients were analyzed. The MAP measured at points T2-T4 in group DH was higher than at corresponding points in group C (P < 0.05). The MAP at point T4 in group DL was higher than at corresponding points in group C (P < 0.05). The remifentanil dosage in group DH was significantly lower than in group C (P = 0.015). The fluid volume in group DL was significantly lower than in group C (P = 0.009). There were no significant differences among the three groups in the amplitude and latency of SEP at different time points, nor in the incidence of warning SEP signals. The incidence of positive tcMEP signals did not differ significantly between groups C and DL (P > 0.05), but was significantly higher in group DH than in groups DL (P < 0.05) or C (P < 0.05). The incidence of intraoperative hypertension was significantly higher in group DH than in group C (P = 0.017). CONCLUSIONS Low-dose Dex has no effect on the SEPs and tcMEPs monitoring during spinal surgery. High-dose Dex has no effect on SEPs monitoring, but it may increase the rate of false positive tcMEPs signals and the incidence of intraoperative hypertension. TRIAL REGISTRATION This study has completed the registration of the Chinese Clinical Trial Center at 11/09/2020 with the registration number ChiCTR2000038154.
Collapse
Affiliation(s)
- Xinyu Jiang
- grid.452206.70000 0004 1758 417XDepartment of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District Chongqing, 400016 People’s Republic of China
| | - Xiaoning Tang
- grid.452206.70000 0004 1758 417XDepartment of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District Chongqing, 400016 People’s Republic of China
| | - Shaoquan Liu
- grid.452206.70000 0004 1758 417XDepartment of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 People’s Republic of China
| | - Ling Liu
- grid.452206.70000 0004 1758 417XDepartment of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District Chongqing, 400016 People’s Republic of China
| |
Collapse
|
11
|
Mitzelfelt T, Bao X, Barnes P, Lomber SG. Visually evoked potentials (VEPs) across the visual field in hearing and deaf cats. Front Neurosci 2023; 17:997357. [PMID: 36937669 PMCID: PMC10020186 DOI: 10.3389/fnins.2023.997357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 01/24/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction Congenitally deaf cats perform better on visual localization tasks than hearing cats, and this advantage has been attributed to the posterior auditory field. Successful visual localization requires both visual processing of the target and timely generation of an action to approach the target. Activation of auditory cortex in deaf subjects during visual localization in the peripheral visual field can occur either via bottom-up stimulus-driven and/or top-down goal-directed pathways. Methods In this study, we recorded visually evoked potentials (VEPs) in response to a reversing checkerboard stimulus presented in the hemifield contralateral to the recorded hemisphere in both hearing and deaf cats under light anesthesia. Results Although VEP amplitudes and latencies were systematically modulated by stimulus eccentricity, we found little evidence of changes in VEP in deaf cats that can explain their behavioral advantage. A statistical trend was observed, showing larger peak amplitudes and shorter peak latencies in deaf subjects for stimuli in the near- and mid-peripheral field. Additionally, latency of the P1 wave component had a larger inter-sweep variation in deaf subjects. Discussion Our results suggested that cross-modal plasticity following deafness does not play a major part in cortical processing of the peripheral visual field when the "vision for action" system is not recruited.
Collapse
Affiliation(s)
| | - Xiaohan Bao
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Paisley Barnes
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - Stephen G. Lomber
- Department of Physiology, McGill University, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
- *Correspondence: Stephen G. Lomber,
| |
Collapse
|
12
|
Chang S, Zwueste D, Ambros B, Norton J, Leis ML. Comparison of the effect of sedation and general anesthesia on pattern and flash visual evoked potentials in normal dogs. BMC Vet Res 2022; 18:272. [PMID: 35831819 PMCID: PMC9277965 DOI: 10.1186/s12917-022-03375-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 06/30/2022] [Indexed: 11/12/2022] Open
Abstract
Background Visual evoked potentials (VEPs) can provide objective functional assessment of the post-retinal visual pathway. This study compared the effects of sedation (butorphanol and dexmedetomidine) and general anesthesia (propofol and sevoflurane) on pattern and flash VEPs. Dogs (n = 13) underwent sedation or anesthesia and VEPs were obtained from 3 subcutaneous recording electrodes placed on the head (O1, Oz, O2). Results Pattern VEPs could only be recorded under sedation and a maximum of 3 peaks were identified (N75, P100, N135). Flash VEPs could be recorded under both sedation and anesthesia and a maximum of 5 peaks were identified (N1, P1, N2, P2, N3). The latency of the N1 peak and the baseline-N1 amplitude were significantly longer under general anesthesia. Conclusion Visual evoked potentials should be preferentially recorded in dogs sedated with dexmedetomidine and butorphanol, regardless of the stimulus. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03375-5.
Collapse
Affiliation(s)
- Stephanie Chang
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada
| | - Danielle Zwueste
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada
| | - Barbara Ambros
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada
| | - Jonathan Norton
- Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Marina L Leis
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada.
| |
Collapse
|
13
|
Liu T, Qin Y, Qi H, Luo Z, Yan L, Yu P, Dong B, Zhao S, Wu X, Chang Z, Liu Z, Liu X, Yuan T, Li H, Xiao L, Wang G. A Loading Dose of Dexmedetomidine With Constant Infusion Inhibits Intraoperative Neuromonitoring During Thoracic Spinal Decompression Surgery: A Randomized Prospective Study. Front Pharmacol 2022; 13:840320. [PMID: 35330828 PMCID: PMC8940210 DOI: 10.3389/fphar.2022.840320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/27/2022] [Indexed: 11/13/2022] Open
Abstract
Background: The effect of a bolus dose of dexmedetomidine on intraoperative neuromonitoring (IONM) parameters during spinal surgeries has been variably reported and remains a debated topic. Methods: A randomized, double-blinded, placebo-controlled study was performed to assess the effect of dexmedetomidine (1 μg/kg in 10 min) followed by a constant infusion rate on IONM during thoracic spinal decompression surgery (TSDS). A total of 165 patients were enrolled and randomized into three groups. One group received propofol- and remifentanil-based total intravenous anesthesia (TIVA) (T group), one group received TIVA combined with dexmedetomidine at a constant infusion rate (0.5 μg kg-1 h-1) (D1 group), and one group received TIVA combined with dexmedetomidine delivered in a loading dose (1 μg kg-1 in 10 min) followed by a constant infusion rate (0.5 μg kg-1 h-1) (D2 group). The IONM data recorded before test drug administration was defined as the baseline value. We aimed at comparing the parameters of IONM. Results: In the D2 group, within-group analysis showed suppressive effects on IONM parameters compared with baseline value after a bolus dose of dexmedetomidine. Furthermore, the D2 group also showed inhibitory effects on IONM recordings compared with both the D1 group and the T group, including a statistically significant decrease in SSEP amplitude and MEP amplitude, and an increase in SSEP latency. No significance was found in IONM parameters between the T group and the D1 group. Conclusion: Dexmedetomidine delivered in a loading dose can significantly inhibit IONM parameters in TSDS. Special attention should be paid to the timing of a bolus dose of dexmedetomidine under IONM. However, dexmedetomidine delivered at a constant speed does not exert inhibitory effects on IONM data.
Collapse
Affiliation(s)
- Tun Liu
- Department of Anesthesiology, Xi’an Honghui Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Yue Qin
- Department of Anesthesiology, Xi’an Honghui Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Huaguang Qi
- Department of Functional Inspection Section, Xi’an Honghui Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Zhenguo Luo
- Department of Anesthesiology, Xi’an Honghui Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Liang Yan
- Department of Spine Surgery, Xi’an Honghui Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Pengfei Yu
- Department of Gastrointestinal Surgery, Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Buhuai Dong
- Department of Anesthesiology, Xi’an Honghui Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Songchuan Zhao
- Department of Spine Surgery, Xi’an Honghui Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Xucai Wu
- Department of Anesthesiology, Xi’an Honghui Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Zhen Chang
- Department of Spine Surgery, Xi’an Honghui Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Zhian Liu
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, School of Life Science and Technology, Institute of Biomedical Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Xuemei Liu
- Department of Functional Inspection Section, Xi’an Honghui Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Tao Yuan
- Department of Functional Inspection Section, Xi’an Honghui Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Houkun Li
- Department of Spine Surgery, Xi’an Honghui Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Li Xiao
- Department of Anesthesiology, Xi’an Honghui Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Gang Wang
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, School of Life Science and Technology, Institute of Biomedical Engineering, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
14
|
Saxena N, Muthukumaraswamy SD, Richmond L, Babic A, Singh KD, Hall JE, Wise RG, Shaw AD. A comparison of GABA-ergic (propofol) and non-GABA-ergic (dexmedetomidine) sedation on visual and motor cortical oscillations, using magnetoencephalography. Neuroimage 2021; 245:118659. [PMID: 34767940 PMCID: PMC9227747 DOI: 10.1016/j.neuroimage.2021.118659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/22/2021] [Accepted: 10/14/2021] [Indexed: 11/18/2022] Open
Abstract
Studying changes in cortical oscillations can help elucidate the mechanistic link between receptor physiology and the clinical effects of anaesthetic drugs. Propofol, a GABA-ergic drug produces divergent effects on visual cortical activity: increasing induced gamma-band responses (GBR) while decreasing evoked responses. Dexmedetomidine, an α2- adrenergic agonist, differs from GABA-ergic sedatives both mechanistically and clinically as it allows easy arousability from deep sedation with less cognitive side-effects. Here we use magnetoencephalography (MEG) to characterize and compare the effects of GABA-ergic (propofol) and non-GABA-ergic (dexmedetomidine) sedation, on visual and motor cortical oscillations. Sixteen male participants received target-controlled infusions of propofol and dexmedetomidine, producing mild-sedation, in a placebo-controlled, cross-over study. MEG data was collected during a combined visuomotor task. The key findings were that propofol significantly enhanced visual stimulus induced GBR (44% increase in amplitude) while dexmedetomidine decreased it (40%). Propofol also decreased the amplitudes of the Mv100 (visual M100) (27%) and Mv150 (52%) visual evoked fields (VEF), whilst dexmedetomidine had no effect on these. During the motor task, neither drug had any significant effect on movement related gamma synchrony (MRGS), movement related beta de-synchronisation (MRBD) or Mm100 (movement-related M100) movement-related evoked fields (MEF), although dexmedetomidine slowed the Mm300. Dexmedetomidine increased (92%) post-movement beta synchronisation/rebound (PMBR) power while propofol reduced it (70%, statistically non- significant). Overall, dexmedetomidine and propofol, at equi-sedative doses, produce contrasting effects on visual induced GBR, VEF, PMBR and MEF. These findings provide a mechanistic link between the known receptor physiology of these sedative drugs with their known clinical effects and may be used to explore mechanisms of other anaesthetic drugs on human consciousness.
Collapse
Affiliation(s)
- Neeraj Saxena
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff CF24 4HQ, United Kingdom; Department of Anaesthetics, Intensive Care and Pain Medicine, Cwm Taf Morgannwg University Health Board, Llantrisant CF72 8XR, United Kingdom.
| | - Suresh D Muthukumaraswamy
- School of Pharmacy, Faculty of Medical and Health Sciences, Auckland University, Auckland 1123, New Zealand; School of Psychology, Faculty of Medical and Health Sciences, Auckland University, Auckland 1123, New Zealand
| | - Lewys Richmond
- Department of Anaesthetics, Morriston Hospital, Swansea, SA6 6NL, United Kingdom
| | - Adele Babic
- Department of Anaesthetics, Royal Gwent Hospital, Newport, NP20 2UB, United Kingdom
| | - Krish D Singh
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff CF24 4HQ, United Kingdom
| | - Judith E Hall
- Department of Anaesthetics, Intensive Care and Pain Medicine, School of Medicine, Cardiff University, Cardiff CF14 4XW, United Kingdom
| | - Richard G Wise
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff CF24 4HQ, United Kingdom; Institute for Advanced Biomedical Technologies, "G. D'Annunzio University" of Chieti-Pescara, 66100, Chieti, Italy; Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio University" of Chieti-Pescara, 66100, Chieti, Italy
| | - Alexander D Shaw
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff CF24 4HQ, United Kingdom; Department of Psychology, University of Exeter, United Kingdom
| |
Collapse
|
15
|
Perioperative Care of Patients Undergoing Major Complex Spinal Instrumentation Surgery: Clinical Practice Guidelines From the Society for Neuroscience in Anesthesiology and Critical Care. J Neurosurg Anesthesiol 2021; 34:257-276. [PMID: 34483301 DOI: 10.1097/ana.0000000000000799] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/14/2021] [Indexed: 11/25/2022]
Abstract
Evidence-based standardization of the perioperative management of patients undergoing complex spine surgery can improve outcomes such as enhanced patient satisfaction, reduced intensive care and hospital length of stay, and reduced costs. The Society for Neuroscience in Anesthesiology and Critical Care (SNACC) tasked an expert group to review existing evidence and generate recommendations for the perioperative management of patients undergoing complex spine surgery, defined as surgery on 2 or more thoracic and/or lumbar spine levels. Institutional clinical management protocols can be constructed based on the elements included in these clinical practice guidelines, and the evidence presented.
Collapse
|
16
|
Pacreu S, Vilà E, Moltó L, Fernández‐Candil J, Fort B, Lin Y, León A. Effect of dexmedetomidine on evoked-potential monitoring in patients undergoing brain stem and supratentorial cranial surgery. Acta Anaesthesiol Scand 2021; 65:1043-1053. [PMID: 33884609 DOI: 10.1111/aas.13835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 03/29/2021] [Accepted: 04/03/2021] [Indexed: 01/27/2023]
Abstract
BACKGROUND Dexmedetomidine is used as adjuvant in total intravenous anaesthesia (TIVA), but there have been few studies concerning its effect on intraoperative neurophysiological monitoring (IONM) during cranial surgery. Our aim was to study the effect of dexmedetomidine on IONM in patients undergoing brain stem and supratentorial cranial surgery. METHODS Two prospective, randomized, double-blind substudies were conducted. In substudy 1, during TIVA with an infusion of propofol and remifentanil, 10 patients received saline solution (SS) (PR group) and another 10 (PRD group) received dexmedetomidine (0.5 mcg/kg/h). Total dosage of propofol and remifentanil, intensity, latency and amplitude of motor-evoked potentials following transcranial electrical stimulation (tcMEPs) as well as somatosensory-evoked potentials (SSEP) were recorded at baseline, 15, 30, 45 minutes, and at the end of surgery. In order to identify differences in the same patient after dexmedetomidine administration, we designed substudy 2 with 20 new patients randomized to two groups. After 30 minutes with TIVA, 10 patients received dexmedetomidine (0.5 mcg/kg/h) and 10 patients SS. The same variables were recorded. RESULTS In substudy 1, propofol requirements were significantly lower (P = .004) and tcMEP intensity at the end of surgery was significantly higher in PRD group, but no statistically significant differences were observed for remifentanil requirements, SSEP and tcMEP latency or amplitude. In substudy 2, no differences in any of the variables were identified. CONCLUSIONS The administration of dexmedetomidine at a dosage of 0.5 mg/kg/h may reduce propofol requirements and adversely affect some neuromonitoring variables. However, it can be an alternative on IONM during cranial surgeries. REDEX EudraCT: 2014-000962-23.
Collapse
Affiliation(s)
- Susana Pacreu
- Anaesthesiology, Reanimation, and Pain Therapy Unit Parc de Salut MARInstitut Mar d'Investigacions Mèdiques (IMIM) Barcelona Spain
| | - Esther Vilà
- Anaesthesiology, Reanimation, and Pain Therapy Unit Parc de Salut MARInstitut Mar d'Investigacions Mèdiques (IMIM) Barcelona Spain
| | - Luis Moltó
- Anaesthesiology, Reanimation, and Pain Therapy Unit Parc de Salut MARInstitut Mar d'Investigacions Mèdiques (IMIM) Barcelona Spain
| | - Juan Fernández‐Candil
- Anaesthesiology, Reanimation, and Pain Therapy Unit Parc de Salut MARInstitut Mar d'Investigacions Mèdiques (IMIM) Barcelona Spain
| | - Beatriz Fort
- Anaesthesiology, Reanimation, and Pain Therapy Unit Parc de Salut MARInstitut Mar d'Investigacions Mèdiques (IMIM) Barcelona Spain
| | - Yiyang Lin
- Neurology Unit Neurophysiologic Section Parc de Salut MAR Barcelona Spain
| | - Alba León
- Neurology Unit Neurophysiologic Section Parc de Salut MAR Barcelona Spain
| |
Collapse
|
17
|
Andleeb R, Agrawal S, Gupta P. Evaluation of the Effect of Continuous Infusion of Dexmedetomidine or a Subanesthetic Dose Ketamine on Transcranial Electrical Motor Evoked Potentials in Adult Patients Undergoing Elective Spine Surgery under Total Intravenous Anesthesia: A Randomized Controlled Exploratory Study. Asian Spine J 2021; 16:221-230. [PMID: 34407570 PMCID: PMC9066250 DOI: 10.31616/asj.2021.0015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 11/23/2022] Open
Abstract
Study Design Prospective, randomized, placebo-controlled, double-blind exploratory study. Purpose To compare effects of dexmedetomidine or a subanesthetic dose of ketamine on the amplitude and latency of transcranial electrically generated motor evoked potentials. Overview of Literature Total intravenous anesthesia (TIVA) is a standard anesthesia technique for transcranial electrical motor evoked potential monitoring in spine surgery. We aimed to determine whether the use of dexmedetomidine and ketamine as a component of TIVA exerted any beneficial effect on the quality of monitoring. Methods A total of 90 American Society of Anesthesiologist grade I-III patients, aged 18-65 years, with a motor power of ≥4/5 grade as per the Medical Research Council Scale in all four limbs who were scheduled for elective spine surgery under transcranial electrical motor evoked potential monitoring were enrolled. The subjects were randomly allocated into the following three groups: group PD who received 0.5 μg/kg/hr dexmedetomidine infusion, group PK who received 0.5 mg/kg/hr ketamine infusion, and group PS who received normal saline infusion, along with standard propofol-fentanyl based TIVA regime. Amplitude and latency of bilateral motor evoked potentials of the tibialis anterior and abductor halluces muscle were recorded at Ti (at train-of-four ratio >90%), T30 (30 minutes post-Ti), T60 (60 minutes post-Ti), and Tf (at the end of spine manipulation). Results Baseline median amplitudes were comparable among the study groups. In group PK, we noted a gradually enhanced response by 24%-100% from the baseline amplitude. The median amplitudes of all the muscles were higher in group PK than those in groups PS and PD at time points T60 and Tf (p <0.05). Conclusions The present study demonstrated that compared with dexmedetomidine and control treatment, a subanesthetic dose of ketamine caused gradual improvement in amplitudes without affecting the latency.
Collapse
Affiliation(s)
- Roshan Andleeb
- Department of Anaesthesiology and Critical Care, All India Institute of Medical Sciences, Rishikesh, India
| | - Sanjay Agrawal
- Department of Anaesthesiology and Critical Care, All India Institute of Medical Sciences, Rishikesh, India
| | - Priyanka Gupta
- Department of Anaesthesiology and Critical Care, All India Institute of Medical Sciences, Rishikesh, India
| |
Collapse
|
18
|
Kapoor I, Mahajan C, Prabhakar H. Dexmedetomidine in Modern Neuroanesthesia Practice. CURRENT ANESTHESIOLOGY REPORTS 2021. [DOI: 10.1007/s40140-021-00450-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Aldana E, Álvarez López-Herrero N, Benito H, Colomina MJ, Fernández-Candil J, García-Orellana M, Guzmán B, Ingelmo I, Iturri F, Martín Huerta B, León A, Pérez-Lorensu PJ, Valencia L, Valverde JL. Consensus document for multimodal intraoperatory neurophisiological monitoring in neurosurgical procedures. Basic fundamentals. ACTA ACUST UNITED AC 2020; 68:82-98. [PMID: 32624233 DOI: 10.1016/j.redar.2020.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/04/2020] [Accepted: 02/18/2020] [Indexed: 01/27/2023]
Abstract
The present work aims to establish a guide to action, agreed by anaesthesiologists and neurophysiologists alike, to perform effective intraoperative neurophysiological monitoring for procedures presenting a risk of functional neurological injury, and neurosurgical procedures. The first section discusses the main techniques currently used for intraoperative neurophysiological monitoring. The second exposes the anaesthetic and non-anaesthetic factors that are likely to affect the electrical records of the nervous system structures. This section is followed by an analysis detailing the adverse effects associated with the most common techniques and their use. Finally, the last section describes a series of guidelines to be followed upon the various intraoperative clinical events.
Collapse
Affiliation(s)
- E Aldana
- Anestesiología y Reanimación, Hospital Vithas Xanit Internacional, Benalmádena, Málaga, España
| | - N Álvarez López-Herrero
- Neurofisiología, Servicio de Neurocirugía, Hospital de la Santa Creu i Sant Pau, Barcelona, España
| | - H Benito
- Anestesiología y Reanimación, Hospital Clínico Universitario Lozano Blesa, Zaragoza, España
| | - M J Colomina
- Anestesiología y Reanimación, Hospital Universitari Bellvitge, L'Hospitalet de Llobregat, Universitat de Barcelona, Barcelona, España
| | | | - M García-Orellana
- Anestesiología y Reanimación, Hospital Clínic de Barcelona, Barcelona, España
| | - B Guzmán
- Neurofisiología clínica, Hospital Clínico Universitario Lozano de Blesa, Zaragoza, España
| | - I Ingelmo
- Anestesiología y Reanimación, Hospital Universitario Ramón y Cajal, Madrid, España
| | - F Iturri
- Anestesiología y Reanimación, Hospital Universitario de Cruces, Baracaldo, Vizcaya, España
| | - B Martín Huerta
- Anestesiología y Reanimación, Hospital de la Santa Creu i Sant Pau, Barcelona, España
| | - A León
- Neurofisiología, Servicio de Neurología, Parc de Salut Mar, Barcelona, España
| | - P J Pérez-Lorensu
- Neurofisiología Clínica, Unidad de Monitorización Neurofisiológica Intraoperatoria, Hospital Universitario de Canarias, Tenerife, España
| | - L Valencia
- Anestesiología y Reanimación, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, España
| | - J L Valverde
- Anestesiología y Reanimación, Hospital Vithas Xanit Internacional, Benalmádena, Málaga, España
| |
Collapse
|
20
|
Neuroanesthesia Guidelines for Optimizing Transcranial Motor Evoked Potential Neuromonitoring During Deformity and Complex Spinal Surgery: A Delphi Consensus Study. Spine (Phila Pa 1976) 2020; 45:911-920. [PMID: 32539292 DOI: 10.1097/brs.0000000000003433] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Expert opinion-modified Delphi study. OBJECTIVE We used a modified Delphi approach to obtain consensus among leading spinal deformity surgeons and their neuroanesthesiology teams regarding optimal practices for obtaining reliable motor evoked potential (MEP) signals. SUMMARY OF BACKGROUND DATA Intraoperative neurophysiological monitoring of transcranial MEPs provides the best method for assessing spinal cord integrity during complex spinal surgeries. MEPs are affected by pharmacological and physiological parameters. It is the responsibility of the spine surgeon and neuroanesthesia team to understand how they can best maintain high-quality MEP signals throughout surgery. Nevertheless, varying approaches to neuroanesthesia are seen in clinical practice. METHODS We identified 19 international expert spinal deformity treatment teams. A modified Delphi process with two rounds of surveying was performed. Greater than 50% agreement on the final statements was considered "agreement"; >75% agreement was considered "consensus." RESULTS Anesthesia regimens and protocols were obtained from the expert centers. There was a large amount of variability among centers. Two rounds of consensus surveying were performed, and all centers participated in both rounds of surveying. Consensus was obtained for 12 of 15 statements, and majority agreement was obtained for two of the remaining statements. Total intravenous anesthesia was identified as the preferred method of maintenance, with few centers allowing for low mean alveolar concentration of inhaled anesthetic. Most centers advocated for <150 μg/kg/min of propofol with titration to the lowest dose that maintains appropriate anesthesia depth based on awareness monitoring. Use of adjuvant intravenous anesthetics, including ketamine, low-dose dexmedetomidine, and lidocaine, may help to reduce propofol requirements without negatively effecting MEP signals. CONCLUSION Spine surgeons and neuroanesthesia teams should be familiar with methods for optimizing MEPs during deformity and complex spinal cases. Although variability in practices exists, there is consensus among international spinal deformity treatment centers regarding best practices. LEVEL OF EVIDENCE 5.
Collapse
|
21
|
Schoettker P, Pérez Arias A, Pralong E, Duff JM, Fournier N, Bathory I. Airtraq® vs. fibreoptic intubation in patients with an unstable cervical spine fracture: A neurophysiological study. TRENDS IN ANAESTHESIA AND CRITICAL CARE 2020. [DOI: 10.1016/j.tacc.2020.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Coetzee E, Gray R, Hollmann C, Enslin NJM, Coetzee JF. Anaesthetic management of a three-month-old baby for cervical limited dorsal myeloschisis repair using propofol and alfentanil infusions guided by pharmacokinetic simulation software: A case report. SOUTHERN AFRICAN JOURNAL OF ANAESTHESIA AND ANALGESIA 2019. [DOI: 10.36303/sajaa.2019.25.6.a5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We present an uncommon case of limited dorsal myeloschisis in a 3-month-old infant requiring repair guided by intraoperative neuromonitoring (IONM) and therefore avoidance of volatile anaesthetic agents. The case presented challenges in positioning, airway management, a lack of age appropriate pharmacokinetic models in target-controlled infusion (TCI) syringe pumps and unavailability of remifentanil, considered to be an essential drug in this setting. We overcame these challenges using manually controlled infusions of propofol and alfentanil guided by pharmacokinetic simulation software (Stelsim).
Collapse
|
23
|
Yu PH, Hsiao YT. Delayed evoked potentials in zebra finch ( Taeniopygia guttata) under midazolam-butorphanol-isoflurane anesthesia. PeerJ 2019; 7:e7937. [PMID: 31660277 PMCID: PMC6815651 DOI: 10.7717/peerj.7937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 09/23/2019] [Indexed: 12/12/2022] Open
Abstract
Avian animals are visually inclined, which has caused them to attract increasing attention for visual neurophysiology or electrophysiology studies, including the study of the visual evoked potential (VEP). VEP has developed into an investigative tool for understanding the physiology and the pathology of the visual pathway. Chemical restraint is a common method to minimize motion artifacts in animals when acquiring VEP data, but little is known about its influence on the signal in an avian animal. In addition, it is difficult to make comparisons between conscious state data when the animals are ultimately under anesthesia. Therefore, finding drugs and developing protocols that have an acceptable effect is valuable. We compared the local field potentials of physically and chemically restrained zebra finches (Taeniopygia guttata), a small avian species, to simulate a relatively challenging recording condition. Finches were sedated with midazolam-butorphanol, and anesthesia was maintained by isoflurane. Electrodes were implanted into the left nucleus rotundus, which is a visual nucleus in birds. The VEPs of the control group (N = 3) were recorded after they fully recovered and were restrained by towels. The other birds (N = 3) were recorded under anesthesia. The results show that without the visual stimuli, anesthesia generally suppressed the overall power of field potentials. However, by focusing on the spectra during VEPs, visual stimuli still triggered significant VEPs in frequencies below 30.8 Hz, which were even stronger than towel-restrained birds. The drugs also prolonged the latency of the VEP, increased the duration of the VEP when compared to towel-restrained birds. As regard to towel-restrained zebra finches, the field potentials were less synchronized and may need data preprocessing to have clear VEPs. In conclusion, the current study presents evidence of basic VEP for zebra finch under midazolam-butorphanol-isoflurane anesthesia with a protocol that is a safe and feasible anesthetic combination for chemical restraint, which is particularly useful for small animals when obtaining evoked potentials.
Collapse
Affiliation(s)
- Pin Huan Yu
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Tse Hsiao
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
24
|
Lam S, Nagata M, Sandhu SK, Veselis RA, McCormick PJ. Effect of ketamine on transcranial motor-evoked potentials during spinal surgery: a pilot study. Br J Anaesth 2019; 123:e530-e532. [PMID: 31601359 DOI: 10.1016/j.bja.2019.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/16/2019] [Accepted: 09/04/2019] [Indexed: 12/29/2022] Open
|
25
|
|
26
|
Affiliation(s)
- Zulfiqar Ali
- Associate Professor, Division of Neuroanesthesia and Neurocritical Care, Incharge Neurosurgical ICU SKIMS Soura, Srinagar, Jammu and Kashmir, India. E-mail:
| |
Collapse
|
27
|
Tsaousi GG, Pourzitaki C, Aloisio S, Bilotta F. Dexmedetomidine as a sedative and analgesic adjuvant in spine surgery: a systematic review and meta-analysis of randomized controlled trials. Eur J Clin Pharmacol 2018; 74:1377-1389. [DOI: 10.1007/s00228-018-2520-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 07/06/2018] [Indexed: 01/15/2023]
|
28
|
Abstract
PURPOSE OF REVIEW Intraoperative neurophysiologic monitoring (IONM) has been rapidly adopted as a standard monitoring technique for a growing number of surgical procedures. This article offers a basic review of IONM and discusses some of its latest applications and anesthetic techniques that optimize monitoring conditions. RECENT FINDINGS IONM has been demonstrated to alert the surgical team to potential injury and can also be used to detect impending positioning injuries. Upper extremity somatosensory evoked potential monitoring is particularly helpful in preventing ulnar neuropathy that is more common in patients who are positioned prone and with severe arm abduction. Somatosensory evoked potential monitoring has a high specificity for vascular compromise and neurologic ischemia that may occur during neurovascular procedures. Electroencephalography is also helpful in alerting the surgical and anesthesia teams to an impending ischemic event. Although a total intravenous anesthesia technique offers better monitoring conditions, propofol may prolong emergence. SUMMARY IONM is commonly used in a growing number and variety of surgical procedures, and has been shown to improve outcomes. IONM poses challenges for the anesthesiologist, but tailoring the anesthetic to be compatible with the monitoring techniques in use can help to prevent surgical complications.
Collapse
|
29
|
Stocki D. Review of Recent Advances in Pain Management for Pediatric Spinal Fusion. CURRENT ANESTHESIOLOGY REPORTS 2017. [DOI: 10.1007/s40140-017-0209-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Li Y, Meng L, Peng Y, Qiao H, Guo L, Han R, Gelb AW. Effects of Dexmedetomidine on motor- and somatosensory-evoked potentials in patients with thoracic spinal cord tumor: a randomized controlled trial. BMC Anesthesiol 2016; 16:51. [PMID: 27484701 PMCID: PMC4970285 DOI: 10.1186/s12871-016-0217-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 07/21/2016] [Indexed: 12/14/2022] Open
Abstract
Background We hypothesized that the addition of dexmedetomidine in a clinically relevant dose to propofol-remifentanil anesthesia regimen does not exert an adverse effect on motor-evoked potentials (MEP) and somatosensory-evoked potentials (SSEP) in adult patients undergoing thoracic spinal cord tumor resection. Methods Seventy-one adult patients were randomized into three groups. Propofol group (n = 25): propofol-remifentanil regimenand the dosage was adjusted to maintain the bispectral index (BIS) between 40 and 50. DP adjusted group (n = 23): Dexmedetomidine (0.5 μg/kg loading dose infused over 10 min followed by a constant infusion of 0.5 μg/kg/h) was added to the propofol-remifentanil regimen and propofol was adjusted to maintain BIS between 40 and 50. DP unadjusted group (n = 23): Dexmedetomidine (administer as DP adjusted group) was added to the propofol-remifentanil regimen and propofol was not adjusted. All patients received MEP, SSEP and BIS monitoring. Results There were no significant changes in the amplitude and latency of MEP and SSEP among different groups (P > 0.05). The estimated propofol plasma concentration in DP adjusted group (2.7 ± 0.3 μg/ml) was significantly lower than in propofol group (3.1 ± 0.2 μg/ml) and DP unadjusted group (3.1 ± 0.2 μg/ml) (P = 0.000). BIS in DP unadjusted group (35 ± 5) was significantly lower than in propofol group (44 ± 3) (P = 0.000). Conclusions The addition of dexmedetomidine to propofol-remifentanil regimen does not exert an adverse effect on MEP and SSEP monitoring in adult patients undergoing thoracic spinal cord tumor resection. Trial registration The study was registered with the Chinese Clinical Trial Registry on January 31st, 2014. The reference number was ChiCTR-TRC-14004229.
Collapse
Affiliation(s)
- Yan Li
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, No. 6 Tiantan Xili, Dongcheng District, Beijing, China, 100050
| | - Lingzhong Meng
- Departments of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA
| | - Yuming Peng
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, No. 6 Tiantan Xili, Dongcheng District, Beijing, China, 100050
| | - Hui Qiao
- Neurophysiological Monitoring, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lanjun Guo
- Neurosurgery/Neurophysiological Monitoring Service, University of California San Francisco, San Francisco, CA, USA
| | - Ruquan Han
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, No. 6 Tiantan Xili, Dongcheng District, Beijing, China, 100050.
| | - Adrian W Gelb
- Departments of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
31
|
|
32
|
Adams PS, Cassara A. Dexmedetomidine-related polyuria in a pediatric patient. J Anesth 2015; 30:352-5. [DOI: 10.1007/s00540-015-2101-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/01/2015] [Indexed: 10/22/2022]
|