1
|
Matsugi E, Takashima S, Doteguchi S, Kobayashi T, Okayasu M. Real-world safety and effectiveness of inhaled nitric oxide therapy for pulmonary hypertension during the perioperative period of cardiac surgery: a post-marketing study of 2817 patients in Japan. Gen Thorac Cardiovasc Surg 2024; 72:311-323. [PMID: 37713058 PMCID: PMC11018662 DOI: 10.1007/s11748-023-01971-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/13/2023] [Indexed: 09/16/2023]
Abstract
OBJECTIVE To evaluate the real-world safety and effectiveness of inhaled nitric oxide (INOflo® for Inhalation 800 ppm) for perioperative pulmonary hypertension associated with cardiac surgery in Japan. METHODS This was a prospective, non-interventional, all-case, post-marketing study of pediatric and adult patients who received perioperative INOflo with cardiac surgery from November 2015-December 2020. Safety and effectiveness were monitored from INOflo initiation to 48 h after treatment completion or withdrawal. Safety outcomes included adverse drug reactions, blood methemoglobin concentrations, and inspired nitrogen dioxide concentrations over time. Effectiveness outcomes included changes in central venous pressure among pediatrics, mean pulmonary arterial pressure among adults, and the partial pressure of arterial oxygen/fraction of inspired oxygen ratio (PaO2/FiO2) in both populations. RESULTS The safety analysis population included 2,817 Japanese patients registered from 253 clinical sites (pediatrics, n = 1375; adults, n = 1442). INOflo was generally well tolerated; 15 and 20 adverse drug reactions were reported in 14 pediatrics (1.0%) and 18 adults (1.2%), respectively. No clinically significant elevations in blood methemoglobin and inspired nitrogen dioxide concentrations were observed. INOflo treatment was associated with significant reductions in both central venous pressure among pediatrics and mean pulmonary arterial pressure among adults, and significant improvements in PaO2/FiO2 among pediatrics and adults with PaO2/FiO2 ≤ 200 at baseline. CONCLUSIONS Perioperative INOflo treatment was a safe and effective strategy to improve hemodynamics and oxygenation in patients with pulmonary hypertension during cardiac surgery. These data support the use of INOflo for this indication in Japanese clinical practice.
Collapse
Affiliation(s)
- Emi Matsugi
- Medical Affairs, Mallinckrodt Pharmaceuticals, 1-12-32 Akasaka, Minato-ku, Tokyo, 107-6030, Japan.
| | | | - Shuhei Doteguchi
- Medical Affairs, Mallinckrodt Pharmaceuticals, 1-12-32 Akasaka, Minato-ku, Tokyo, 107-6030, Japan
| | - Tomomi Kobayashi
- Medical Affairs, Mallinckrodt Pharmaceuticals, 1-12-32 Akasaka, Minato-ku, Tokyo, 107-6030, Japan
| | - Motohiro Okayasu
- Medical Affairs, Mallinckrodt Pharmaceuticals, 1-12-32 Akasaka, Minato-ku, Tokyo, 107-6030, Japan
| |
Collapse
|
2
|
Muenster S, Zarragoikoetxea I, Moscatelli A, Balcells J, Gaudard P, Pouard P, Marczin N, Janssens SP. Inhaled NO at a crossroads in cardiac surgery: current need to improve mechanistic understanding, clinical trial design and scientific evidence. Front Cardiovasc Med 2024; 11:1374635. [PMID: 38646153 PMCID: PMC11027901 DOI: 10.3389/fcvm.2024.1374635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/27/2024] [Indexed: 04/23/2024] Open
Abstract
Inhaled nitric oxide (NO) has been used in pediatric and adult perioperative cardiac intensive care for over three decades. NO is a cellular signaling molecule that induces smooth muscle relaxation in the mammalian vasculature. Inhaled NO has the unique ability to exert its vasodilatory effects in the pulmonary vasculature without any hypotensive side-effects in the systemic circulation. In patients undergoing cardiac surgery, NO has been reported in numerous studies to exert beneficial effects on acutely lowering pulmonary artery pressure and reversing right ventricular dysfunction and/or failure. Yet, various investigations failed to demonstrate significant differences in long-term clinical outcomes. The authors, serving as an advisory board of international experts in the field of inhaled NO within pediatric and adult cardiac surgery, will discuss how the existing scientific evidence can be further improved. We will summarize the basic mechanisms underlying the clinical applications of inhaled NO and how this translates into the mandate for inhaled NO in cardiac surgery. We will move on to the popular use of inhaled NO and will talk about the evidence base of the use of this selective pulmonary vasodilator. This review will elucidate what kind of clinical and biological barriers and gaps in knowledge need to be solved and how this has impacted in the development of clinical trials. The authors will elaborate on how the optimization of inhaled NO therapy, the development of biomarkers to identify the target population and the definition of response can improve the design of future large clinical trials. We will explain why it is mandatory to gain an international consensus for the state of the art of NO therapy far beyond this expert advisory board by including the different major players in the field, such as the different medical societies and the pharma industry to improve our understanding of the real-life effects of inhaled NO in large scale observational studies. The design for future innovative randomized controlled trials on inhaled NO therapy in cardiac surgery, adequately powered and based on enhanced biological phenotyping, will be crucial to eventually provide scientific evidence of its clinical efficacy beyond its beneficial hemodynamic properties.
Collapse
Affiliation(s)
- Stefan Muenster
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Iratxe Zarragoikoetxea
- Department of Anesthesiology and Intensive Care Medicine, Hospital Universitari I Politècnic Fe, Valencia, Spain
| | - Andrea Moscatelli
- Neonatal and Pediatric Intensive Care Unit, Emergency Department, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Joan Balcells
- Pediatric Intensive Care Unit, Vall d’Hebron Barcelona Campus Hospitalari, Universitari Vall d'Hebron, Barcelona, Spain
| | - Philippe Gaudard
- Department of Anesthesiology and Critical Care Medicine Arnaud de Villeneuve, CHU Montpellier, University of Montpellier, PhyMedExp, INSERM, CNRS, Montpellier, France
| | - Philippe Pouard
- Department of Anesthesiology and Critical Care, Assistance Publique-Hopitaux de Paris, Hopital Necker-Enfants Malades, Paris, France
| | - Nandor Marczin
- Department of Surgery and Cancer, Imperial College, London, United Kingdom
| | - Stefan P. Janssens
- Cardiac Intensive Care, Department of Cardiovascular Diseases, University Hospital Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Hiraoka E, Tanabe K, Izuta S, Kubota T, Kohsaka S, Kozuki A, Satomi K, Shiomi H, Shinke T, Nagai T, Manabe S, Mochizuki Y, Inohara T, Ota M, Kawaji T, Kondo Y, Shimada Y, Sotomi Y, Takaya T, Tada A, Taniguchi T, Nagao K, Nakazono K, Nakano Y, Nakayama K, Matsuo Y, Miyamoto T, Yazaki Y, Yahagi K, Yoshida T, Wakabayashi K, Ishii H, Ono M, Kishida A, Kimura T, Sakai T, Morino Y. JCS 2022 Guideline on Perioperative Cardiovascular Assessment and Management for Non-Cardiac Surgery. Circ J 2023; 87:1253-1337. [PMID: 37558469 DOI: 10.1253/circj.cj-22-0609] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Affiliation(s)
- Eiji Hiraoka
- Department of Internal Medicine, Tokyo Bay Urayasu Ichikawa Medical Center
| | - Kengo Tanabe
- Division of Cardiology, Mitsui Memorial Hospital
| | | | - Tadao Kubota
- Department of General Surgery, Tokyo Bay Urayasu Ichikawa Medical Center
| | - Shun Kohsaka
- Department of Cardiology, Keio University School of Medicine
| | - Amane Kozuki
- Division of Cardiology, Osaka Saiseikai Nakatsu Hospital
| | | | | | - Toshiro Shinke
- Division of Cardiology, Showa University School of Medicine
| | - Toshiyuki Nagai
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University
| | - Susumu Manabe
- Department of Cardiovascular Surgery, International University of Health and Welfare Narita Hospital
| | - Yasuhide Mochizuki
- Division of Cardiology, Department of Medicine, Showa University School of Medicine
| | - Taku Inohara
- Department of Cardiovascular Medicine, Keio University Graduate School of Medicine
| | - Mitsuhiko Ota
- Department of Cardiovascular Center, Toranomon Hospital
| | | | - Yutaka Kondo
- Department of Emergency and Critical Care Medicine, Juntendo University Urayasu Hospital
| | - Yumiko Shimada
- JADECOM Academy NP·NDC Training Center, Japan Association for Development of Community Medicine
| | - Yohei Sotomi
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine
| | - Tomofumi Takaya
- Department of Cardiovascular Medicine, Hyogo Prefectural Himeji Cardiovascular Center
| | - Atsushi Tada
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University
| | - Tomohiko Taniguchi
- Department of Cardiovascular Medicine, Kobe City Medical Center General Hospital
| | - Kazuya Nagao
- Department of Cardiology, Osaka Red Cross Hospital
| | - Kenichi Nakazono
- Department of Pharmacy, St. Marianna University Yokohama Seibu Hospital
| | | | | | - Yuichiro Matsuo
- Department of Internal Medicine, Tokyo Bay Urayasu Ichikawa Medical Center
| | | | | | | | | | | | - Hideki Ishii
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine
| | - Minoru Ono
- Department of Cardiovascular Surgery, Graduate School of Medicine, The University of Tokyo
| | | | - Takeshi Kimura
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine
| | - Tetsuro Sakai
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine
| | - Yoshihiro Morino
- Division of Cardiology, Department of Internal Medicine, Iwate Medical University
| |
Collapse
|
4
|
Bocé M, Tassé M, Mallet-Ladeira S, Pillet F, Da Silva C, Vicendo P, Lacroix PG, Malfant I, Rols MP. Effect of trans(NO, OH)-[RuFT(Cl)(OH)NO](PF 6) ruthenium nitrosyl complex on methicillin-resistant Staphylococcus epidermidis. Sci Rep 2019; 9:4867. [PMID: 30890745 PMCID: PMC6424994 DOI: 10.1038/s41598-019-41222-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 02/27/2019] [Indexed: 02/05/2023] Open
Abstract
Antibiotic resistance is becoming a global scourge with 700,000 deaths each year and could cause up to 10 million deaths by 2050. As an example, Staphylococcus epidermidis has emerged as a causative agent of infections often associated with implanted medical devices. S. epidermidis can form biofilms, which contribute to its pathogenicity when present in intravascular devices. These staphylococci, embedded in the biofilm matrix, are resistant to methicillin, which had long been the recommended therapy and which has nowadays been replaced by less toxic and more stable therapeutic agents. Moreover, current reports indicate that 75 to 90% of Staphylococcus epidermidis isolates from nosocomial infections are methicillin-resistant strains. The challenge of successfully combating antibiotics resistance in biofilms requires the use of compounds with a controlled mode of action that can act in combination with antibiotics. Ruthenium nitrosyl complexes are potential systems for NO release triggered by light. The influence of trans(NO, OH)-[RuFT(Cl)(OH)NO](PF6) on Staphylococcus epidermidis resistant to methicillin is described. The results show a 50% decrease in cell viability in bacteria treated with low concentrations of NO. When combined with methicillin, this low dose of NO dramatically decreases bacterial resistance and makes bacteria 100-fold more sensitive to methicillin.
Collapse
Affiliation(s)
- Mathilde Bocé
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, F-31077, Toulouse, France.,Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Marine Tassé
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, F-31077, Toulouse, France
| | - Sonia Mallet-Ladeira
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, F-31077, Toulouse, France
| | - Flavien Pillet
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Charlotte Da Silva
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Patricia Vicendo
- Laboratoire des Interactions Moléculaires et de la Réactivité Chimique et Photochimique, Université Paul Sabatier, 118 route de Narbonne, F-31062, Toulouse, France
| | - Pascal G Lacroix
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, F-31077, Toulouse, France
| | - Isabelle Malfant
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, F-31077, Toulouse, France.
| | - Marie-Pierre Rols
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|