1
|
Mandel IA, Podoksenov YK, Mikheev SL, Suhodolo IV, Svirko YS, Shipulin VM, Ivanova AV, Yavorovskiy AG, Yaroshetskiy AI. Endothelial Function and Hypoxic–Hyperoxic Preconditioning in Coronary Surgery with a Cardiopulmonary Bypass: Randomized Clinical Trial. Biomedicines 2023; 11:biomedicines11041044. [PMID: 37189663 DOI: 10.3390/biomedicines11041044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
A hypoxic–hyperoxic preconditioning (HHP) may be associated with cardioprotection by reducing endothelial damage and a beneficial effect on postoperative outcome in patients undergoing cardiac surgery with cardiopulmonary bypass (CPB). Patients (n = 120) were randomly assigned to an HHP and a control group. A safe, inhaled oxygen fraction for the hypoxic preconditioning phase (10–14% oxygen for 10 min) was determined by measuring the anaerobic threshold. At the hyperoxic phase, a 75–80% oxygen fraction was used for 30 min. The cumulative frequency of postoperative complications was 14 (23.3%) in the HHP vs. 23 (41.1%), p = 0.041. The nitrate decreased after surgery by up to 20% in the HHP group and up to 38% in the control group. Endothelin-1 and nitric oxide metabolites were stable in HHP but remained low for more than 24 h in the control group. The endothelial damage markers appeared to be predictors of postoperative complications. The HHP with individual parameters based on the anaerobic threshold is a safe procedure, and it can reduce the frequency of postoperative complications. The endothelial damage markers appeared to be predictors of postoperative complications.
Collapse
|
2
|
Vrettou CS, Giannakoulis VG, Gallos P, Kotanidou A, Siempos II. Effect of Different Early Oxygenation Levels on Clinical Outcomes of Patients Presenting in the Emergency Department With Severe Traumatic Brain Injury. Ann Emerg Med 2023; 81:273-281. [PMID: 36402630 DOI: 10.1016/j.annemergmed.2022.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 08/06/2022] [Accepted: 09/28/2022] [Indexed: 11/19/2022]
Abstract
STUDY OBJECTIVE Despite the almost universal administration of supplemental oxygen in patients presenting in the emergency department (ED) with severe traumatic brain injury, optimal early oxygenation levels are unknown. Therefore, we aimed to examine the effect of different early oxygenation levels on the clinical outcomes of patients presenting in the emergency department with severe traumatic brain injury. METHODS We performed a secondary analysis of the Resuscitation Outcomes Consortium Traumatic Brain Injury Hypertonic Saline randomized controlled trial by including patients with Glasgow Coma Scale ≤8. Early oxygenation levels were assessed by the worst value of arterial partial pressure of oxygen (PaO2) during the first 4 hours of presentation in the emergency department. The primary outcome was 6-month neurologic status, as assessed by the Extended Glasgow Outcome Scale. A binary logistic regression was utilized, and an odds ratio (OR) with 95% (95% confidence intervals) was calculated. RESULTS A total of 910 patients were included. In unadjusted (crude) analysis, a PaO2 of 101 to 250 mmHg (OR, 0.59 [0.38 to 0.91]), or 251 to 400 mmHg (OR, 0.53 [0.34 to 0.83]) or ≥401 mmHg (OR, 0.31 [0.20 to 0.49]) was less likely to be associated with poor neurologic status when compared with a PaO2 of ≤100 mmHg. This was also the case for adjusted analyses (including age, pupillary reactivity, and Revised Trauma Score). CONCLUSION High oxygenation levels as early as the first 4 hours of presentation in the emergency department may not be adversely associated with the long-term neurologic status of patients with severe traumatic brain injury. Therefore, during the early phase of trauma, clinicians may focus on stabilizing patients while giving low priority to the titration of oxygenation levels.
Collapse
Affiliation(s)
- Charikleia S Vrettou
- First Department of Critical Care Medicine and Pulmonary Services, Evangelismos Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Vassilis G Giannakoulis
- First Department of Critical Care Medicine and Pulmonary Services, Evangelismos Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Parisis Gallos
- Department of Digital Systems, Computational Biomedicine Laboratory, University of Piraeus, Piraeus, Greece
| | - Anastasia Kotanidou
- First Department of Critical Care Medicine and Pulmonary Services, Evangelismos Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Ilias I Siempos
- First Department of Critical Care Medicine and Pulmonary Services, Evangelismos Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece; Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY.
| |
Collapse
|
3
|
Mandel IA, Podoksenov YK, Suhodolo IV, An DA, Mikheev SL, Podoksenov AY, Svirko YS, Gusakova AM, Shipulin VM, Yavorovskiy AG. Influence of Hypoxic and Hyperoxic Preconditioning on Endothelial Function in a Model of Myocardial Ischemia-Reperfusion Injury with Cardiopulmonary Bypass (Experimental Study). Int J Mol Sci 2020; 21:ijms21155336. [PMID: 32727110 PMCID: PMC7432780 DOI: 10.3390/ijms21155336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 11/22/2022] Open
Abstract
The aim of the experiment was to evaluate the effect of preconditioning based on changes in inspiratory oxygen fraction on endothelial function in the model of ischemia-reperfusion injury of the myocardium in the condition of cardiopulmonary bypass. The prospective randomized study included 32 rabbits divided into four groups: hypoxic preconditioning, hyperoxic preconditioning, hypoxic-hyperoxic preconditioning, and control group. All animals were anesthetized and mechanically ventilated. We provided preconditioning, then started cardiopulmonary bypass, followed by induced acute myocardial infarction (ischemia 45 min, reperfusion 120 min). We investigated endothelin-1, nitric oxide metabolites, asymmetric dimethylarginine during cardiopulmonary bypass: before ischemia, after ischemia, and after reperfusion. We performed light microscopy of myocardium, kidney, lungs, and gut mucosa. The endothelin-1 level was much higher in the control group than in all preconditioning groups after ischemia. The endothelin-1 even further increased after reperfusion. The total concentration of nitric oxide metabolites was significantly higher after all types of preconditioning compared with the control group. The light microscopy of the myocardium and other organs revealed a diminished damage extent in the hypoxic-hyperoxic preconditioning group as compared to the control group. Hypoxic-hyperoxic preconditioning helps to maintain the balance of nitric oxide metabolites, reduces endothelin-1 hyperproduction, and enforces organ protection.
Collapse
Affiliation(s)
- Irina A. Mandel
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Cardiology Research Institute, 111a Kievskaya Str., Tomsk 634012, Russia; (Y.K.P.); (S.L.M.); (A.Y.P.); (Y.S.S.); (A.M.G.); (V.M.S.)
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str., Moscow 119991, Russia;
- Federal Scientific and Clinical Center of Specialized Types of Medical Care and Medical Technologies of the Federal Medical and Biological Agency of Russia, 28 Orekhoviy Blvd., Moscow 115682, Russia
- Correspondence: ; Tel.: +790-3952-8337
| | - Yuri K. Podoksenov
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Cardiology Research Institute, 111a Kievskaya Str., Tomsk 634012, Russia; (Y.K.P.); (S.L.M.); (A.Y.P.); (Y.S.S.); (A.M.G.); (V.M.S.)
- Siberian State Medical University of the Ministry of Health of the Russian Federation, 2 Moskovskiy Tract Str., Tomsk 634050, Russia; (I.V.S.); (D.A.A.)
| | - Irina V. Suhodolo
- Siberian State Medical University of the Ministry of Health of the Russian Federation, 2 Moskovskiy Tract Str., Tomsk 634050, Russia; (I.V.S.); (D.A.A.)
| | - Darya A. An
- Siberian State Medical University of the Ministry of Health of the Russian Federation, 2 Moskovskiy Tract Str., Tomsk 634050, Russia; (I.V.S.); (D.A.A.)
| | - Sergey L. Mikheev
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Cardiology Research Institute, 111a Kievskaya Str., Tomsk 634012, Russia; (Y.K.P.); (S.L.M.); (A.Y.P.); (Y.S.S.); (A.M.G.); (V.M.S.)
- Siberian State Medical University of the Ministry of Health of the Russian Federation, 2 Moskovskiy Tract Str., Tomsk 634050, Russia; (I.V.S.); (D.A.A.)
- Swiss Medica XXI C.A., 21/1 Annenskaya str., Moscow 127521, Russia
| | - Andrey Yu. Podoksenov
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Cardiology Research Institute, 111a Kievskaya Str., Tomsk 634012, Russia; (Y.K.P.); (S.L.M.); (A.Y.P.); (Y.S.S.); (A.M.G.); (V.M.S.)
| | - Yulia S. Svirko
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Cardiology Research Institute, 111a Kievskaya Str., Tomsk 634012, Russia; (Y.K.P.); (S.L.M.); (A.Y.P.); (Y.S.S.); (A.M.G.); (V.M.S.)
- Siberian State Medical University of the Ministry of Health of the Russian Federation, 2 Moskovskiy Tract Str., Tomsk 634050, Russia; (I.V.S.); (D.A.A.)
| | - Anna M. Gusakova
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Cardiology Research Institute, 111a Kievskaya Str., Tomsk 634012, Russia; (Y.K.P.); (S.L.M.); (A.Y.P.); (Y.S.S.); (A.M.G.); (V.M.S.)
| | - Vladimir M. Shipulin
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Cardiology Research Institute, 111a Kievskaya Str., Tomsk 634012, Russia; (Y.K.P.); (S.L.M.); (A.Y.P.); (Y.S.S.); (A.M.G.); (V.M.S.)
- Siberian State Medical University of the Ministry of Health of the Russian Federation, 2 Moskovskiy Tract Str., Tomsk 634050, Russia; (I.V.S.); (D.A.A.)
| | - Andrey G. Yavorovskiy
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str., Moscow 119991, Russia;
| |
Collapse
|
4
|
Machado HS, Nunes CS, Sá P, Couceiro A, da Silva ÁM, Águas A. Increased lung inflammation with oxygen supplementation in tracheotomized spontaneously breathing rabbits: an experimental prospective randomized study. BMC Anesthesiol 2014; 14:86. [PMID: 25320562 PMCID: PMC4197313 DOI: 10.1186/1471-2253-14-86] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 09/25/2014] [Indexed: 12/30/2022] Open
Abstract
Background Mechanical ventilation is a well–known trigger for lung inflammation. Research focuses on tidal volume reduction to prevent ventilator-induced lung injury. Mechanical ventilation is usually applied with higher than physiological oxygen fractions. The purpose of this study was to investigate the after effect of oxygen supplementation during a spontaneous ventilation set up, in order to avoid the inflammatory response linked to mechanical ventilation. Methods A prospective randomised study using New Zealand rabbits in a university research laboratory was carried out. Rabbits (n = 20) were randomly assigned to 4 groups (n = 5 each group). Groups 1 and 2 were submitted to 0.5 L/min oxygen supplementation, for 20 or 75 minutes, respectively; groups 3 and 4 were left at room air for 20 or 75 minutes. Ketamine/xylazine was administered for induction and maintenance of anaesthesia. Lungs were obtained for histological examination in light microscopy. Results All animals survived the complete experiment. Procedure duration did not influence the degree of inflammatory response. The hyperoxic environment was confirmed by blood gas analyses in animals that were subjected to oxygen supplementation, and was accompanied with lower mean respiratory rates. The non-oxygen supplemented group had lower mean oxygen arterial partial pressures and higher mean respiratory rates during the procedure. All animals showed some inflammatory lung response. However, rabbits submitted to oxygen supplementation showed significant more lung inflammation (Odds ratio = 16), characterized by more infiltrates and with higher cell counts; the acute inflammatory response cells was mainly constituted by eosinophils and neutrophils, with a relative proportion of 80 to 20% respectively. This cellular observation in lung tissue did not correlate with a similar increase in peripheral blood analysis. Conclusions Oxygen supplementation in spontaneous breathing is associated with an increased inflammatory response when compared to breathing normal room air. This inflammatory response was mainly constituted with polymorphonuclear cells (eosinophils and neutrophils). As confirmed in all animals by peripheral blood analyses, the eosinophilic inflammatory response was a local organ event.
Collapse
Affiliation(s)
- Humberto S Machado
- Serviço de Anestesiologia, Centro Hospitalar do Porto, Largo Abel Salazar, Porto, 4099-001 Portugal
| | - Catarina S Nunes
- Serviço de Anestesiologia, Centro Hospitalar do Porto, Largo Abel Salazar, Porto, 4099-001 Portugal ; Departamento de Ciências e Tecnologia, Universidade Aberta, Rua da Escola Politécnica 141, Lisboa, 1269-001 Portugal
| | - Paula Sá
- Serviço de Anestesiologia, Centro Hospitalar do Porto, Largo Abel Salazar, Porto, 4099-001 Portugal
| | - Antonio Couceiro
- Serviço de Anatomia Patológica, Centro Hospitalar Gaia/Espinho, Rua Conceição Fernandes, Vila Nova de Gaia, 4430 Portugal
| | - Álvaro Moreira da Silva
- Serviço de Cuidados Intensivos, Centro Hospitalar do Porto, Largo Abel Salazar, Porto, 4099-001 Portugal
| | - Artur Águas
- Departamento de Anatomia Normal, Instituto Ciências Biomédicas Abel Salazar - Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, Porto, 4050-313 Portugal ; Unidade Multidisciplinar de Investigação Biomédica, Rua Jorge Viterbo Ferreira, 228, Porto, 4050-313 Portugal
| |
Collapse
|
5
|
Tsaknis G, Siempos II, Kopterides P, Maniatis NA, Magkou C, Kardara M, Panoutsou S, Kotanidou A, Roussos C, Armaganidis A. Metformin attenuates ventilator-induced lung injury. Crit Care 2012; 16:R134. [PMID: 22827994 PMCID: PMC3580719 DOI: 10.1186/cc11439] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 06/01/2012] [Accepted: 07/24/2012] [Indexed: 02/04/2023] Open
Abstract
INTRODUCTION Diabetic patients may develop acute lung injury less often than non-diabetics; a fact that could be partially ascribed to the usage of antidiabetic drugs, including metformin. Metformin exhibits pleiotropic properties which make it potentially beneficial against lung injury. We hypothesized that pretreatment with metformin preserves alveolar capillary permeability and, thus, prevents ventilator-induced lung injury. METHODS Twenty-four rabbits were randomly assigned to pretreatment with metformin (250 mg/Kg body weight/day per os) or no medication for two days. Explanted lungs were perfused at constant flow rate (300 mL/min) and ventilated with injurious (peak airway pressure 23 cmH₂O, tidal volume ≈17 mL/Kg) or protective (peak airway pressure 11 cmH₂O, tidal volume ≈7 mL/Kg) settings for 1 hour. Alveolar capillary permeability was assessed by ultrafiltration coefficient, total protein concentration in bronchoalveolar lavage fluid (BALF) and angiotensin-converting enzyme (ACE) activity in BALF. RESULTS High-pressure ventilation of the ex-vivo lung preparation resulted in increased microvascular permeability, edema formation and microhemorrhage compared to protective ventilation. Compared to no medication, pretreatment with metformin was associated with a 2.9-fold reduction in ultrafiltration coefficient, a 2.5-fold reduction in pulmonary edema formation, lower protein concentration in BALF, lower ACE activity in BALF, and fewer histological lesions upon challenge of the lung preparation with injurious ventilation. In contrast, no differences regarding pulmonary artery pressure and BALF total cell number were noted. Administration of metformin did not impact on outcomes of lungs subjected to protective ventilation. CONCLUSIONS Pretreatment with metformin preserves alveolar capillary permeability and, thus, decreases the severity of ventilator-induced lung injury in this model.
Collapse
Affiliation(s)
- George Tsaknis
- GP Livanos and M Simou Laboratories, Evangelismos Hospital, University of Athens-Medical School, Ipsilandou 45-47, Athens, 106 75, Greece
- Critical Care Department, Attikon Hospital, University of Athens-Medical School, Rimini 1, Haidari, Athens, 124 62, Greece
| | - Ilias I Siempos
- GP Livanos and M Simou Laboratories, Evangelismos Hospital, University of Athens-Medical School, Ipsilandou 45-47, Athens, 106 75, Greece
- Critical Care Department, Attikon Hospital, University of Athens-Medical School, Rimini 1, Haidari, Athens, 124 62, Greece
| | - Petros Kopterides
- Critical Care Department, Attikon Hospital, University of Athens-Medical School, Rimini 1, Haidari, Athens, 124 62, Greece
| | - Nikolaos A Maniatis
- GP Livanos and M Simou Laboratories, Evangelismos Hospital, University of Athens-Medical School, Ipsilandou 45-47, Athens, 106 75, Greece
- Critical Care Department, Attikon Hospital, University of Athens-Medical School, Rimini 1, Haidari, Athens, 124 62, Greece
| | - Christina Magkou
- Department of Histopathology, Evangelismos Hospital, Ipsilandou 45-47, Athens, 106 75, Greece
| | - Matina Kardara
- GP Livanos and M Simou Laboratories, Evangelismos Hospital, University of Athens-Medical School, Ipsilandou 45-47, Athens, 106 75, Greece
| | - Stefania Panoutsou
- GP Livanos and M Simou Laboratories, Evangelismos Hospital, University of Athens-Medical School, Ipsilandou 45-47, Athens, 106 75, Greece
| | - Anastasia Kotanidou
- GP Livanos and M Simou Laboratories, Evangelismos Hospital, University of Athens-Medical School, Ipsilandou 45-47, Athens, 106 75, Greece
- First Department of Critical Care and Pulmonary Services, "Evangelismos" Hospital, University of Athens-Medical School, Ipsilandou 45-47, Athens, 106 75, Greece
| | - Charis Roussos
- GP Livanos and M Simou Laboratories, Evangelismos Hospital, University of Athens-Medical School, Ipsilandou 45-47, Athens, 106 75, Greece
- First Department of Critical Care and Pulmonary Services, "Evangelismos" Hospital, University of Athens-Medical School, Ipsilandou 45-47, Athens, 106 75, Greece
| | - Apostolos Armaganidis
- GP Livanos and M Simou Laboratories, Evangelismos Hospital, University of Athens-Medical School, Ipsilandou 45-47, Athens, 106 75, Greece
- Critical Care Department, Attikon Hospital, University of Athens-Medical School, Rimini 1, Haidari, Athens, 124 62, Greece
| |
Collapse
|
6
|
Kapetanakis T, Siempos II, Metaxas EI, Kopterides P, Agrogiannis G, Patsouris E, Lazaris AC, Stravodimos KG, Roussos C, Armaganidis A. Metabolic acidosis may be as protective as hypercapnic acidosis in an ex-vivo model of severe ventilator-induced lung injury: a pilot study. BMC Anesthesiol 2011; 11:8. [PMID: 21486492 PMCID: PMC3087686 DOI: 10.1186/1471-2253-11-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2010] [Accepted: 04/13/2011] [Indexed: 11/10/2022] Open
Abstract
Background There is mounting experimental evidence that hypercapnic acidosis protects against lung injury. However, it is unclear if acidosis per se rather than hypercapnia is responsible for this beneficial effect. Therefore, we sought to evaluate the effects of hypercapnic (respiratory) versus normocapnic (metabolic) acidosis in an ex vivo model of ventilator-induced lung injury (VILI). Methods Sixty New Zealand white rabbit ventilated and perfused heart-lung preparations were used. Six study groups were evaluated. Respiratory acidosis (RA), metabolic acidosis (MA) and normocapnic-normoxic (Control - C) groups were randomized into high and low peak inspiratory pressures, respectively. Each preparation was ventilated for 1 hour according to a standardized ventilation protocol. Lung injury was evaluated by means of pulmonary edema formation (weight gain), changes in ultrafiltration coefficient, mean pulmonary artery pressure changes as well as histological alterations. Results HPC group gained significantly greater weight than HPMA, HPRA and all three LP groups (P = 0.024), while no difference was observed between HPMA and HPRA groups regarding weight gain. Neither group differ on ultrafiltration coefficient. HPMA group experienced greater increase in the mean pulmonary artery pressure at 20 min (P = 0.0276) and 40 min (P = 0.0012) compared with all other groups. Histology scores were significantly greater in HP vs. LP groups (p < 0.001). Conclusions In our experimental VILI model both metabolic acidosis and hypercapnic acidosis attenuated VILI-induced pulmonary edema implying a mechanism other than possible synergistic effects of acidosis with CO2 for VILI attenuation.
Collapse
Affiliation(s)
- Theodoros Kapetanakis
- "G, P, Livanos and M, Simou" Laboratories, "Evangelismos" General Hospital, University of Athens Medical School, Athens, Greece.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Pretreatment with atorvastatin attenuates lung injury caused by high-stretch mechanical ventilation in an isolated rabbit lung model. Crit Care Med 2010; 38:1321-8. [PMID: 20308883 DOI: 10.1097/ccm.0b013e3181d9dad6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE We hypothesized that pretreatment with atorvastatin improves alveolar capillary permeability and hemodynamics and, thus, confers protection against lung injury caused by high-stretch mechanical ventilation. METHODS Twenty-four isolated sets of normal rabbit lungs were utilized. Treated animals received atorvastatin (20 mg/kg body weight/day by mouth) for 3 days before surgery. Lungs were perfused constantly (300 mL/min) and ventilated for 1 hr with pressure-control ventilation at either 23 (high pressure; resulting in tidal volume approximately 22 mL/kg) or 11 (low pressure; tidal volume approximately 10 mL/kg) cm H2O peak inspiratory pressure and positive end-expiratory pressure of 3 cm H2O. Four groups were examined: high pressure-no statin, high pressure-statin pretreatment, low pressure-no statin, and low pressure-statin pretreatment. RESULTS The high-pressure-no statin group sustained more damage than the low-pressure groups. In high-pressure groups, lungs of statin-pretreated vs. no statin-pretreated animals sustained a significantly lower increase in ultrafiltration coefficient (an accurate marker of alveolar capillary permeability; high-pressure-statin pretreatment vs. high-pressure-no statin, -0.013 +/- 0.017 g/min/mm Hg/100g vs. 1.723 +/- 0.495 g/min/mm Hg/100g; p < .001), lower weight gain (i.e., less edema formation; 4.62 +/- 1.50 grams vs. 17.75 +/- 4.71 grams; p = .005), improved hemodynamics (i.e., lower increase in mean pulmonary artery pressure; 0.56 +/- 0.51 mm Hg vs. 5.62 +/- 1.52 mm Hg; p = .04), lower protein concentration in bronchoalveolar lavage fluid (p < .001), and fewer histologic lesions (p = .013). Apoptosis of lung parenchyma cells was not different (p = .97). There was no difference between low-pressure-statin pretreatment and low-pressure-no statin groups regarding these outcomes. CONCLUSION In this model, atorvastatin improves alveolar capillary permeability and hemodynamics and, thus, attenuates lung injury caused by high-stretch mechanical ventilation.
Collapse
|