1
|
Weiss HR, Mellender SJ, Kiss GK, Chiricolo A, Liu X, Chi OZ. Lysophosphatidic Acid Reduces Microregional Oxygen Supply/Consumption Balance after Cerebral Ischemia-Reperfusion. J Vasc Res 2020; 57:178-184. [PMID: 32434183 DOI: 10.1159/000506011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 01/19/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Lysophosphatidic acid (LPA) is a small phospholipid-signaling molecule, which can alter responses to stress in the central nervous system. OBJECTIVE We hypothesized that exogenous LPA would increase the size of infarct and reduce microregional O2 supply/consumption balance after cerebral ischemia-reperfusion. METHODS This was tested in isoflurane-anesthetized rats with middle cerebral artery blockade for 1 h and reperfusion for 2 h with or without LPA (1 mg/kg, at 30, 60, and 90 min after reperfusion). Regional cerebral blood flow was determined using a C14-iodoantipyrine autoradiographic technique. Regional small-vessel (20-60 µm in diameter) arterial and venous oxygen saturations were determined microspectrophotometrically. RESULTS There were no significant hemodynamic or arterial blood gas differences between groups. The control ischemic-reperfused cortex had a similar O2 consumption to the contralateral cortex. However, microregional O2 supply/consumption balance was significantly reduced in the ischemic-reperfused cortex with many areas of low O2 saturation (43 of 80 veins with O2 saturation below 50%). LPA did not significantly alter cerebral blood flow, but it did significantly increase O2 extraction and consumption of the ischemic-reperfused region. It also significantly increased the number of small veins with low O2 saturations in the reperfused region (76 of 80 veins with O2 saturation below 50%). This was associated with a significantly increased cortical infarct size after LPA administration (11.4 ± 0.5% control vs. 16.4 ± 0.6% LPA). CONCLUSION This suggests that LPA reduces cell survival and that it is associated with an increase in the number of small microregions with reduced local oxygen balance after cerebral ischemia-reperfusion.
Collapse
Affiliation(s)
- Harvey R Weiss
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA,
| | - Scott J Mellender
- Department of Anesthesiology and Perioperative Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Geza K Kiss
- Department of Anesthesiology and Perioperative Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Antonio Chiricolo
- Department of Anesthesiology and Perioperative Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Xia Liu
- Department of Anesthesiology and Perioperative Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Oak Z Chi
- Department of Anesthesiology and Perioperative Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| |
Collapse
|
2
|
García-Varela L, Vállez García D, Rodríguez-Pérez M, van Waarde A, Sijbesma JWA, Schildt A, Kwizera C, Aguiar P, Sobrino T, Dierckx RAJO, Elsinga PH, Luurtsema G. Test-Retest Repeatability of [ 18F]MC225-PET in Rodents: A Tracer for Imaging of P-gp Function. ACS Chem Neurosci 2020; 11:648-658. [PMID: 31961646 PMCID: PMC7034080 DOI: 10.1021/acschemneuro.9b00682] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
![]()
In
longitudinal PET studies, animals are repeatedly anesthetized
which may affect the repeatability of PET measurements. The aim of
this study was to assess the effect of anesthesia on the P-gp function
as well as the reproducibility of [18F]MC225 PET scans.
Thus, dynamic PET scans with blood sampling were conducted in 13 Wistar
rats. Seven animals were exposed to isoflurane anesthesia 1 week before
the PET scan (“Anesthesia-exposed” PET). A second group
of six animals was used to evaluate the reproducibility of measurements
of P-gp function at the blood–brain barrier (BBB) with [18F]MC225. In this group, two PET scans were made with a 1
week interval (“Test” and “Retest” PET).
Pharmacokinetic parameters were calculated using compartmental models
and metabolite-corrected plasma as an input function. “Anesthesia-exposed”
animals showed a 28% decrease in whole-brain volume of distribution
(VT) (p < 0.001) compared
to “Test”, where the animals were not previously anesthetized.
The VT at “Retest” also
decreased (19%) compared to “Test” (p < 0.001). The k2 values in whole-brain
were significantly increased by 18% in “Anesthesia-exposed”
(p = 0.005) and by 15% in “Retest”
(p = 0.008) compared to “Test”. However,
no significant differences were found in the influx rate constant K1, which is considered as the best parameter
to measure the P-gp function. Moreover, Western Blot analysis did
not find significant differences in the P-gp expression of animals
not pre-exposed to anesthesia (“Test”) or pre-exposed
animals (“Retest”). To conclude, anesthesia may affect
the brain distribution of [18F]MC225 but it does not affect
the P-gp expression or function.
Collapse
Affiliation(s)
- Lara García-Varela
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O.
Box 30001, 9713 GZ Groningen, The Netherlands
| | - David Vállez García
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O.
Box 30001, 9713 GZ Groningen, The Netherlands
| | - Manuel Rodríguez-Pérez
- Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela 15706, Spain
| | - Aren van Waarde
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O.
Box 30001, 9713 GZ Groningen, The Netherlands
| | - Jürgen W. A. Sijbesma
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O.
Box 30001, 9713 GZ Groningen, The Netherlands
| | - Anna Schildt
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O.
Box 30001, 9713 GZ Groningen, The Netherlands
| | - Chantal Kwizera
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O.
Box 30001, 9713 GZ Groningen, The Netherlands
| | - Pablo Aguiar
- Department of Nuclear Medicine and Molecular Imaging Group, Clinical University Hospital, IDIS Health Research Institute, Santiago de Compostela 15706, Spain
| | - Tomás Sobrino
- Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela 15706, Spain
| | - Rudi A. J. O. Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O.
Box 30001, 9713 GZ Groningen, The Netherlands
| | - Philip H. Elsinga
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O.
Box 30001, 9713 GZ Groningen, The Netherlands
| | - Gert Luurtsema
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O.
Box 30001, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
3
|
Weiss HR, Mellender SJ, Kiss GK, Liu X, Chi OZ. Improvement in Microregional Oxygen Supply/Consumption Balance and Infarct Size After Cerebral Ischemia-Reperfusion With Inhibition of p70 Ribosomal S6 Kinase (S6K1). J Stroke Cerebrovasc Dis 2019; 28:104276. [DOI: 10.1016/j.jstrokecerebrovasdis.2019.06.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 06/21/2019] [Accepted: 06/26/2019] [Indexed: 01/03/2023] Open
|
4
|
Weiss HR, Chi OZ, Kiss GK, Liu X, Damito S, Jacinto E. Akt activation improves microregional oxygen supply/consumption balance after cerebral ischemia-reperfusion. Brain Res 2018; 1683:48-54. [PMID: 29371097 DOI: 10.1016/j.brainres.2018.01.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 01/03/2018] [Accepted: 01/17/2018] [Indexed: 11/27/2022]
Abstract
There have been reports that activation of Akt may provide neuroprotection after cerebral ischemia-reperfusion. We tested the hypothesis that activation of Akt would decrease infarct size and improve microregional O2 supply/consumption balance after cerebral ischemia-reperfusion. This hypothesis was tested in isoflurane-anesthetized rats with middle cerebral artery blockade for 1 h and reperfusion for 2 h with or without SC-79 (Akt activator, 0.05 mg/kg, three doses). Regional cerebral blood flow was determined using a C14-iodoantipyrine autoradiographic technique. Regional small vessel (20-60 μm diameter) arterial and venous oxygen saturations were determined microspectrophotometrically. Akt phosphorylation was determined by Western blot. There were no significant hemodynamic or blood gas differences between groups. The control ischemic-reperfused cortex had a similar O2 consumption, but lower blood flow and higher O2 extraction compared to the contralateral cortex. However, microregional O2 supply/consumption balance was significantly reduced in the ischemic-reperfused cortex with many areas of low O2 saturation (42 of 80 veins with O2 saturation below 50%). SC-79 did not significantly affect cerebral O2 consumption, but significantly improved O2 supply/consumption balance in the reperfused area (18 of 80 veins with O2 saturation below 50%). This was associated with a reduced cortical infarct size (13.3 ± 0.5% control vs 6.7 ± 0.3% SC-79). In control, Akt phosphorylation was elevated at 2 h after ischemia. With SC-79, Akt was activated at 15 min but not at 2 h in the ischemic reperfused area. These results suggest that early Akt activation is important for not only cell survival, but also for the control of local oxygen balance after cerebral ischemia-reperfusion.
Collapse
Affiliation(s)
- Harvey R Weiss
- Dept. of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, United States.
| | - Oak Z Chi
- Dept. of Anesthesiology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, United States
| | - Geza K Kiss
- Dept. of Anesthesiology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, United States
| | - Xia Liu
- Dept. of Anesthesiology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, United States
| | - Stacey Damito
- Dept. of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, United States
| | - Estela Jacinto
- Dept. of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, United States
| |
Collapse
|
5
|
Zhang H, Xiong X, Liu J, Gu L, Li F, Wan Y, Xu S. Emulsified Isoflurane Protects Against Transient Focal Cerebral Ischemia Injury in Rats via the PI3K/Akt Signaling Pathway. Anesth Analg 2016; 122:1377-84. [DOI: 10.1213/ane.0000000000001172] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
6
|
Peri-infarct depolarizations during focal ischemia in the awake Spontaneously Hypertensive Rat. Minimizing anesthesia confounds in experimental stroke. Neuroscience 2016; 325:142-52. [PMID: 27026594 DOI: 10.1016/j.neuroscience.2016.03.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/02/2016] [Accepted: 03/21/2016] [Indexed: 11/22/2022]
Abstract
Anesthesia profoundly impacts peri-infarct depolarizations (PIDs), but only one prior report has described their monitoring during experimental stroke in awake animals. Since temporal patterns of PID occurrence are model specific, the current study examined PID incidence during focal ischemia in the awake Spontaneously Hypertensive Rat (SHR), and documented the impact of both prior and concurrent isoflurane anesthesia. For awake recordings, electrodes were implanted under isoflurane anesthesia 1day to 5weeks prior to occlusion surgery. Rats were then subjected to permanent or transient (2h) tandem occlusion of the middle cerebral and ipsilateral common carotid arteries, followed by PID monitoring for up to 3days. Comparison perfusion imaging studies evaluated PID-associated hyperemic transients during permanent ischemia under anesthesia at varied intervals following prior isoflurane exposure. Prior anesthesia attenuated PID number at intervals up to 1week, establishing 2weeks as a practical recovery duration following surgical preparation to avoid isoflurane preconditioning effects. PIDs in awake SHR were limited to the first 4h after permanent occlusions. Maintaining anesthesia during this interval reduced PID number, and prolonged their occurrence through several hours following anesthesia termination. Although PID number otherwise correlated with infarct size, PID suppression by anesthesia was not protective in the absence of reperfusion. PIDs persisted up to 36h after transient occlusions. These results differ markedly from the one previous report of such monitoring in awake Sprague-Dawley rats, which found an extended biphasic PID time course during 24h after both permanent and transient filament occlusions. PID occurrence closely reflects the time course of infarct progression in the respective models, and may be more useful than absolute PID number as an index of ongoing pathology.
Collapse
|
7
|
Floriano BP, Wagatsuma JT, Ferreira JZ, Abimussi CJX, Menegheti TM, Santos PSP, Oliva VNLS. Effects on indicators of tissue perfusion in dogs anesthetized with isoflurane at two multiples of the minimum alveolar concentration. Am J Vet Res 2016; 77:24-31. [DOI: 10.2460/ajvr.77.1.24] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Chi OZ, Barsoum S, Vega-Cotto NM, Jacinto E, Liu X, Mellender SJ, Weiss HR. Effects of rapamycin on cerebral oxygen supply and consumption during reperfusion after cerebral ischemia. Neuroscience 2015; 316:321-7. [PMID: 26742793 DOI: 10.1016/j.neuroscience.2015.12.045] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/18/2015] [Accepted: 12/23/2015] [Indexed: 01/08/2023]
Abstract
Activation of the mammalian target of rapamycin (mTOR) leads to cell growth and survival. We tested the hypothesis that inhibition of mTOR would increase infarct size and decrease microregional O2 supply/consumption balance after cerebral ischemia-reperfusion. This was tested in isoflurane-anesthetized rats with middle cerebral artery blockade for 1h and reperfusion for 2h with and without rapamycin (20mg/kg once daily for two days prior to ischemia). Regional cerebral blood flow was determined using a C(14)-iodoantipyrine autoradiographic technique. Regional small-vessel arterial and venous oxygen saturations were determined microspectrophotometrically. The control ischemic-reperfused cortex had a similar blood flow and O2 consumption to the contralateral cortex. However, microregional O2 supply/consumption balance was significantly reduced in the ischemic-reperfused cortex. Rapamycin significantly increased cerebral O2 consumption and further reduced O2 supply/consumption balance in the reperfused area. This was associated with an increased cortical infarct size (13.5±0.8% control vs. 21.5±0.9% rapamycin). We also found that ischemia-reperfusion increased AKT and S6K1 phosphorylation, while rapamycin decreased this phosphorylation in both the control and ischemic-reperfused cortex. This suggests that mTOR is important for not only cell survival, but also for the control of oxygen balance after cerebral ischemia-reperfusion.
Collapse
Affiliation(s)
- O Z Chi
- Dept. of Anesthesiology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, United States
| | - S Barsoum
- Dept. of Anesthesiology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, United States
| | - N M Vega-Cotto
- Dept. of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, United States
| | - E Jacinto
- Dept. of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, United States
| | - X Liu
- Dept. of Anesthesiology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, United States
| | - S J Mellender
- Dept. of Anesthesiology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, United States
| | - H R Weiss
- Dept. of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, United States.
| |
Collapse
|
9
|
Dittmar MS, Petermichl W, Lindner R, Sinner B, Graf BM, Schlachetzki F, Gruber M. In Vitro Induction of Endothelial Apoptosis of the Post-Hypoxic Blood-Brain Barrier by Isoflurane but Not by Sevoflurane and Midazolam. PLoS One 2015; 10:e0130408. [PMID: 26091107 PMCID: PMC4475016 DOI: 10.1371/journal.pone.0130408] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 05/20/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The effects of anesthetics on the injured brain continue to be the subject of controversial discussion. Since isoflurane has recently been shown to induce apoptosis of cerebral endothelial cells, this study compared different anesthetic compounds regarding their potential to induce cerebro-vascular apoptosis. METHODS The in vitro model of the blood-brain barrier used in this study consisted of astrocyte-conditioned human umbilical vein endothelial cells (AC-HUVEC) has been used. After 24 h of deep hypoxia and reoxygenation or control treatment, AC-HUVEC were exposed to 0, 0.5, 1.0, or 2.0 times the minimum alveolar concentration of isoflurane or sevoflurane, or 0, 75, 150, or 300 nM of midazolam for 2 h. After 24 h, AC-HUVEC were harvested, and the degree of apoptosis was assessed by means of Western blots for the Bax and Bcl-2 ratio and, for controls and the highest concentration groups, terminal deoxynucleotidyl-mediated dUTP-biotin nick end labeling (TUNEL). RESULTS Without hypoxic pretreatment, 2.0 MAC of isoflurane slightly increased TUNEL intensity compared to control and sevoflurane, but without any significant changes in the Bax and Bcl-2 ratio. After hypoxic pretreatment, exposure to isoflurane led to a multifold increase in the Bax and Bcl-2 ratio in a dose dependent manner, which was also significantly higher than the ratio observed in the 2 MAC sevoflurane group. TUNEL intensity in the post-hypoxic 2 MAC isoflurane group was increased by a factor of 11 vs. control and by 40 vs. sevoflurane. Sevoflurane and midazolam did not significantly alter these markers of apoptosis, when compared to the control group. CONCLUSIONS Isoflurane administered after hypoxia elevates markers of apoptosis in endothelial cells transdifferentiated to the cerebro-vascular endothelium. Endothelial apoptosis may be a previously underestimated mechanism of anesthetic neurotoxicity. Administration of high concentrations of isoflurane in experimental settings may have negative effects on the blood-brain barrier.
Collapse
Affiliation(s)
- Michael S. Dittmar
- Department of Anesthesiology, Regensburg University Medical Center, Regensburg, Germany
- * E-mail:
| | - Walter Petermichl
- Department of Anesthesiology, Regensburg University Medical Center, Regensburg, Germany
| | - Regina Lindner
- Department of Anesthesiology, Regensburg University Medical Center, Regensburg, Germany
| | - Barbara Sinner
- Department of Anesthesiology, Regensburg University Medical Center, Regensburg, Germany
| | - Bernhard M. Graf
- Department of Anesthesiology, Regensburg University Medical Center, Regensburg, Germany
| | - Felix Schlachetzki
- Department of Neurology, Bezirksklinikum Regensburg, University of Regensburg, Regensburg, Germany
| | - Michael Gruber
- Department of Anesthesiology, Regensburg University Medical Center, Regensburg, Germany
| |
Collapse
|
10
|
Milner E, Johnson AW, Nelson JW, Harries MD, Gidday JM, Han BH, Zipfel GJ. HIF-1α Mediates Isoflurane-Induced Vascular Protection in Subarachnoid Hemorrhage. Ann Clin Transl Neurol 2015; 2:325-37. [PMID: 25909079 PMCID: PMC4402079 DOI: 10.1002/acn3.170] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 12/11/2014] [Indexed: 01/05/2023] Open
Abstract
Objective Outcome after aneurysmal subarachnoid hemorrhage (SAH) depends critically on delayed cerebral ischemia (DCI) – a process driven primarily by vascular events including cerebral vasospasm, microvessel thrombosis, and microvascular dysfunction. This study sought to determine the impact of postconditioning – the phenomenon whereby endogenous protection against severe injury is enhanced by subsequent exposure to a mild stressor – on SAH-induced DCI. Methods Adult male C57BL/6 mice were subjected to sham, SAH, or SAH plus isoflurane postconditioning. Neurological outcome was assessed daily via sensorimotor scoring. Contributors to DCI including cerebral vasospasm, microvessel thrombosis, and microvascular dysfunction were measured 3 days later. Isoflurane-induced changes in hypoxia-inducible factor 1alpha (HIF-1α)-dependent genes were assessed via quantitative polymerase chain reaction. HIF-1α was inhibited pharmacologically via 2-methoxyestradiol (2ME2) or genetically via endothelial cell HIF-1α-null mice (EC-HIF-1α-null). All experiments were performed in a randomized and blinded fashion. Results Isoflurane postconditioning initiated at clinically relevant time points after SAH significantly reduced cerebral vasospasm, microvessel thrombosis, microvascular dysfunction, and neurological deficits in wild-type (WT) mice. Isoflurane modulated HIF-1α-dependent genes – changes that were abolished in 2ME2-treated WT mice and EC-HIF-1α-null mice. Isoflurane-induced DCI protection was attenuated in 2ME2-treated WT mice and EC-HIF-1α-null mice. Interpretation Isoflurane postconditioning provides strong HIF-1α-mediated macro- and microvascular protection in SAH, leading to improved neurological outcome. These results implicate cerebral vessels as a key target for the brain protection afforded by isoflurane postconditioning, and HIF-1α as a critical mediator of this vascular protection. They also identify isoflurane postconditioning as a promising novel therapeutic for SAH.
Collapse
Affiliation(s)
- Eric Milner
- Department of Neurological Surgery, Washington University School of Medicine St. Louis, Missouri, 63108 ; Program in Neuroscience, Washington University School of Medicine St. Louis, Missouri, 63108
| | - Andrew W Johnson
- Department of Neurological Surgery, Washington University School of Medicine St. Louis, Missouri, 63108
| | - James W Nelson
- Department of Neurological Surgery, Washington University School of Medicine St. Louis, Missouri, 63108
| | - Michael D Harries
- Department of Neurological Surgery, Washington University School of Medicine St. Louis, Missouri, 63108
| | - Jeffrey M Gidday
- Department of Neurological Surgery, Washington University School of Medicine St. Louis, Missouri, 63108 ; Hope Center for Neurological Disorders, Washington University School of Medicine St. Louis, Missouri, 63108
| | - Byung Hee Han
- Department of Neurological Surgery, Washington University School of Medicine St. Louis, Missouri, 63108 ; Hope Center for Neurological Disorders, Washington University School of Medicine St. Louis, Missouri, 63108
| | - Gregory J Zipfel
- Department of Neurological Surgery, Washington University School of Medicine St. Louis, Missouri, 63108 ; Hope Center for Neurological Disorders, Washington University School of Medicine St. Louis, Missouri, 63108 ; Department of Neurology, Washington University School of Medicine St. Louis, Missouri, 63108
| |
Collapse
|
11
|
Maud P, Thavarak O, Cédrick L, Michèle B, Vincent B, Olivier P, Régis B. Evidence for the use of isoflurane as a replacement for chloral hydrate anesthesia in experimental stroke: an ethical issue. BIOMED RESEARCH INTERNATIONAL 2014; 2014:802539. [PMID: 24719888 PMCID: PMC3955691 DOI: 10.1155/2014/802539] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 01/07/2014] [Indexed: 01/10/2023]
Abstract
Since an ethical issue has been raised regarding the use of the well-known anesthetic agent chloral hydrate, owing to its mutagenic and carcinogenic effects in animals, attention of neuroscientists has turned to finding out an alternative agent able to meet not only potency, safety, and analgesic efficacy, but also reduced neuroprotective effect for stroke research. The aim of this study was to compare the potential of chloral hydrate and isoflurane for both modulating the action of the experimental neuroprotectant MK801 and exerting analgesia. After middle cerebral artery occlusion in rats, no difference was observed in 24 h survival rate, success of ischemia, or infarct volume reduction between both anesthetics. However, isoflurane exerted a more pronounced analgesic effect than chloral hydrate as evidenced by formalin test 3 hours after anesthesia onset, thus encouraging the use of isoflurane in experimental stroke models.
Collapse
Affiliation(s)
- Pétrault Maud
- EA 1046-Département de Pharmacologie Médicale, Faculté de Médecine, CHU Lille, 1 Place de Verdun, 59045 Lille Cedex, France
- UDSL, 59000 Lille, France
| | - Ouk Thavarak
- EA 1046-Département de Pharmacologie Médicale, Faculté de Médecine, CHU Lille, 1 Place de Verdun, 59045 Lille Cedex, France
- UDSL, 59000 Lille, France
| | - Lachaud Cédrick
- EA 1046-Département de Pharmacologie Médicale, Faculté de Médecine, CHU Lille, 1 Place de Verdun, 59045 Lille Cedex, France
- UDSL, 59000 Lille, France
| | - Bastide Michèle
- EA 1046-Département de Pharmacologie Médicale, Faculté de Médecine, CHU Lille, 1 Place de Verdun, 59045 Lille Cedex, France
- IUT A, Université de Lille 1, 59653 Villeneuve d'Ascq Cedex, France
| | - Bérézowski Vincent
- EA 1046-Département de Pharmacologie Médicale, Faculté de Médecine, CHU Lille, 1 Place de Verdun, 59045 Lille Cedex, France
- Université d'Artois, 62307 Lens, France
| | - Pétrault Olivier
- EA 1046-Département de Pharmacologie Médicale, Faculté de Médecine, CHU Lille, 1 Place de Verdun, 59045 Lille Cedex, France
- Université d'Artois, 62307 Lens, France
| | - Bordet Régis
- EA 1046-Département de Pharmacologie Médicale, Faculté de Médecine, CHU Lille, 1 Place de Verdun, 59045 Lille Cedex, France
- UDSL, 59000 Lille, France
| |
Collapse
|
12
|
Weiss HR, Grayson J, Liu X, Barsoum S, Shah H, Chi OZ. Cerebral Ischemia and Reperfusion Increases the Heterogeneity of Local Oxygen Supply/Consumption Balance. Stroke 2013; 44:2553-8. [DOI: 10.1161/strokeaha.113.001172] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background and Purpose—
After cerebral vessel blockage, local blood flow and O
2
consumption becomes lower and oxygen extraction increases. With reperfusion, blood flow is partially restored. We examined the effects of ischemia-reperfusion on the heterogeneity of local venous oxygen saturation in rats in order to determine the pattern of microregional O
2
supply/consumption balance in reperfusion.
Methods—
The middle cerebral artery was blocked for 1 hour using the internal carotid approach in 1 group (n=9) and was then reperfused for 2 hours in another group (n=9) of isoflurane-anesthetized rats. Regional cerebral blood flow was determined using a C
14
-iodoantipyrine autoradiographic technique. Regional small vessel arterial and venous oxygen saturations were determined microspectrophotometrically.
Results—
After 1 hour of ischemia, local cerebral blood flow (92±10 versus 50±10 mL/min per 100 g) and O
2
consumption (4.5±0.6 versus 2.7±0.5 mL O
2
/min per 100 g) decreased compared with the contralateral cortex. Oxygen extraction increased (4.7±0.2 versus 5.4±0.3 mL O
2
/100 mL) and the variation in small vein (20–60 μm) O
2
saturation as determined by its coefficient of variation (=100×SD/mean) increased (5.5 versus 10.5). With 2 hours of reperfusion, the blood flow decrement was reduced and O
2
consumption returned to the value in the contralateral cortex. Oxygen extraction remained elevated in the ischemic-reperfused area and the coefficient of variation of small vein O
2
saturation increased further (17.3).
Conclusions—
These data indicated continued reduction of O
2
supply/consumption balance with reperfusion. They also demonstrated many small regions of low oxygenation within the reperfused cortical region.
Collapse
Affiliation(s)
- Harvey R. Weiss
- From the Department of Neuroscience and Cell Biology (H.R.W., H.S.) and Department of Anesthesiology (J.G., X.L., S.B., O.Z.C.), Rutgers Robert Wood Johnson Medical School, Piscataway, NJ
| | - Jeremy Grayson
- From the Department of Neuroscience and Cell Biology (H.R.W., H.S.) and Department of Anesthesiology (J.G., X.L., S.B., O.Z.C.), Rutgers Robert Wood Johnson Medical School, Piscataway, NJ
| | - Xia Liu
- From the Department of Neuroscience and Cell Biology (H.R.W., H.S.) and Department of Anesthesiology (J.G., X.L., S.B., O.Z.C.), Rutgers Robert Wood Johnson Medical School, Piscataway, NJ
| | - Sylviana Barsoum
- From the Department of Neuroscience and Cell Biology (H.R.W., H.S.) and Department of Anesthesiology (J.G., X.L., S.B., O.Z.C.), Rutgers Robert Wood Johnson Medical School, Piscataway, NJ
| | - Harsh Shah
- From the Department of Neuroscience and Cell Biology (H.R.W., H.S.) and Department of Anesthesiology (J.G., X.L., S.B., O.Z.C.), Rutgers Robert Wood Johnson Medical School, Piscataway, NJ
| | - Oak Z. Chi
- From the Department of Neuroscience and Cell Biology (H.R.W., H.S.) and Department of Anesthesiology (J.G., X.L., S.B., O.Z.C.), Rutgers Robert Wood Johnson Medical School, Piscataway, NJ
| |
Collapse
|
13
|
Villa F, Iacca C, Molinari AF, Giussani C, Aletti G, Pesenti A, Citerio G. Inhalation versus endovenous sedation in subarachnoid hemorrhage patients: effects on regional cerebral blood flow. Crit Care Med 2012; 40:2797-804. [PMID: 22824929 DOI: 10.1097/ccm.0b013e31825b8bc6] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Isoflurane is a volatile anesthetic that has a vasodilating effect on cerebral vessels producing a cerebral blood flow increase. Furthermore, it has been shown in animal studies that isoflurane, when used as a preconditioning agent, has neuroprotective properties, inducing tolerance to ischemia. However, it is not routinely used in neurointensive care because of the potential increase in intracranial pressure caused by the rise in cerebral blood flow. Nevertheless, subarachnoid hemorrhage patients who are at risk for vasospasm may benefit from an increase in cerebral blood flow. We measured regional cerebral blood flow during intravenous sedation with propofol and during sedation with isoflurane in patients with severe subarachnoid hemorrhage not having intracranial hypertension. DESIGN The study is a crossover, open clinical trial (NCT00830843). SETTING Neurointensive care unit of an academic hospital. PATIENTS Thirteen patients with severe subarachnoid hemorrhage, (median Fisher scale 4), monitored on clinical indication with intracranial pressure device and a thermal diffusion probe for the assessment of regional cerebral blood flow. An intracranial pressure>18 mm Hg was an exclusion criterion. INTERVENTIONS Cerebral and hemodynamic variables were assessed at three steps. Step 1: sedation with propofol 3-4 mg/kg/hr; step 2: after 1 hr of propofol discontinuation and isoflurane 0.8%; step 3: after 1 hr of propofol at the same previous infusion rate. Cerebral perfusion pressure and arterial PCO2 were maintained constant. Mean cerebral artery flow velocity and jugular vein oxygen saturation were measured at the end of each step. MEASUREMENTS AND MAIN RESULTS Regional cerebral blood flow increased significantly during step 2 (39.3±29 mL/100 hg/min) compared to step 1 (20.8±10.7) and step 3 (24.7±8). There was no difference in regional cerebral blood flow comparing step 1 vs. step 3. No significant difference in intracranial pressure, mean cerebral artery transcranial Doppler velocity, PaCO2, cerebral perfusion pressure between the different steps. CONCLUSIONS Isoflurane increases regional cerebral blood flow in comparison to propofol. Intracranial pressure did not change significantly in the population not affected by intracranial hypertension.
Collapse
Affiliation(s)
- Federico Villa
- Division of NeuroIntensive Care, Department of Anesthesia and Critical Care, Ospedale San Gerardo, Monza, Italy.
| | | | | | | | | | | | | |
Collapse
|
14
|
Villa F, Citerio G. Surpassing boundaries: volatile sedation in the NeuroICU. Intensive Care Med 2012; 38:1914-6. [PMID: 23052955 DOI: 10.1007/s00134-012-2711-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 09/04/2012] [Indexed: 11/27/2022]
|
15
|
Dittmar MS, Petermichl W, Schlachetzki F, Graf BM, Gruber M. Isoflurane induces endothelial apoptosis of the post-hypoxic blood-brain barrier in a transdifferentiated human umbilical vein endothelial cell model. PLoS One 2012; 7:e38260. [PMID: 22723852 PMCID: PMC3377664 DOI: 10.1371/journal.pone.0038260] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Accepted: 05/06/2012] [Indexed: 11/18/2022] Open
Abstract
Isoflurane is a popular volatile anesthetic agent used in humans as well as in experimental animal research. In previous animal studies of the blood-brain barrier (BBB), observations towards an increased permeability after exposure to isoflurane are reported. In this study we investigated the effect of a 2-hour isoflurane exposure on apoptosis of the cerebral endothelium following 24 hours of hypoxia in an in vitro BBB model using astrocyte-conditioned human umbilical vein endothelial cells (AC-HUVECs). Apoptosis of AC-HUVECs was investigated using light microscopy of the native culture for morphological changes, Western blot (WB) analysis of Bax and Bcl-2, and a TUNEL assay. Treatment of AC-HUVECs with isoflurane resulted in severe cellular morphological changes and a significant dose-dependent increase in DNA fragmentation, which was observed during the TUNEL assay analysis. WB analysis confirmed increases in pro-apoptotic Bax levels at 4 hours and 24 hours and decreases in anti-apoptotic Bcl-2 in a dose-dependent manner compared with the control group. These negative effects of isoflurane on the BBB after a hypoxic challenge need to be taken into account not only in experimental stroke research, but possibly also in clinical practice.
Collapse
Affiliation(s)
- Michael S Dittmar
- Department of Anesthesiology, Regensburg University Medical Center, Regensburg, Germany.
| | | | | | | | | |
Collapse
|
16
|
Isoflurane protects against human endothelial cell apoptosis by inducing sphingosine kinase-1 via ERK MAPK. Int J Mol Sci 2012; 13:977-993. [PMID: 22312298 PMCID: PMC3269732 DOI: 10.3390/ijms13010977] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 01/11/2012] [Accepted: 01/12/2012] [Indexed: 12/13/2022] Open
Abstract
Endothelial dysfunction is a major clinical problem affecting virtually every patient requiring critical care. Volatile anesthetics are frequently used during the perioperative period and protect the heart and kidney against ischemia and reperfusion injury. We aimed to determine whether isoflurane, the most commonly used volatile anesthetic in the USA, protects against endothelial apoptosis and necrosis and the mechanisms involved in this protection. Human endothelial EA.hy926 cells were pretreated with isoflurane or carrier gas (95% room air + 5% CO2) then subjected to apoptosis with tumor necrosis factor-α or to necrosis with hydrogen peroxide. DNA laddering and in situ Terminal Deoxynucleotidyl Transferase Biotin-dUTP Nick-End Labeling (TUNEL) staining determined EA.hy926 cell apoptosis and percent LDH released determined necrosis. We also determined whether isoflurane modulates the expression and activity of sphingosine kinase-1 (SK1) and induces the phosphorylation of extracellular signal regulated kinase (ERK MAPK) as both enzymes are known to protect against cell death. Isoflurane pretreatment significantly decreased apoptosis in EA.hy926 cells as evidenced by reduced TUNEL staining and DNA laddering without affecting necrosis. Mechanistically, isoflurane induces the phosphorylation of ERK MAPK and increased SK1 expression and activity in EA.hy926 cells. Finally, selective blockade of SK1 (with SKI-II) or S1P1 receptor (with W146) abolished the anti-apoptotic effects of isoflurane. Taken together, we demonstrate that isoflurane, in addition to its potent analgesic and anesthetic properties, protects against endothelial apoptosis most likely via SK1 and ERK MAPK activation. Our findings have significant clinical implication for protection of endothelial cells during the perioperative period and patients requiring critical care.
Collapse
|
17
|
|
18
|
Tang JX, Mardini F, Caltagarone BM, Garrity ST, Li RQ, Bianchi SL, Gomes O, Laferla FM, Eckenhoff RG, Eckenhoff MF. Anesthesia in presymptomatic Alzheimer's disease: a study using the triple-transgenic mouse model. Alzheimers Dement 2011; 7:521-531.e1. [PMID: 21745760 PMCID: PMC3167023 DOI: 10.1016/j.jalz.2010.10.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 10/04/2010] [Accepted: 10/25/2010] [Indexed: 11/30/2022]
Abstract
BACKGROUND Experimental evidence suggests that anesthetics accelerate symptomatic neurodegenerative disorders such as Alzheimer's disease (AD). Because AD pathology precedes symptoms, we asked ourselves whether anesthetic exposure in the presymptomatic interval accelerated neuropathology and appearance of symptoms. METHODS Triple-transgenic AD mice were exposed to general aesthetics, either halothane or isoflurane, at 2, 4, and 6 months of age, they then underwent water maze cognitive testing 2 months later, and subsequently their brains were analyzed using enzyme-linked immunosorbent assay, immunoblots, and immunohistochemistry for amyloid and tau pathology and biomarkers. RESULTS Learning and memory improved after halothane exposure in the 2-month-old group relative to controls, but no changes were noted in the isoflurane group. When gender was examined in all age groups, females exposed to halothane performed better as compared with those exposed to isoflurane or controls. Therefore, improvement in the 2-month exposure group is most likely because of a gender effect. Level of phospho-tau in the hippocampus was significantly increased 2 months after anesthesia, especially in the 6-month exposure group, but changes in amyloid, caspase, microglia, or synaptophysin levels were not detected. CONCLUSIONS These results indicate that exposure to two different inhalation-type anesthetics during the presymptomatic phase of AD does not accelerate cognitive decline, after 2 months, and may cause a stress response, marked by hippocampal phosphorylated tau, resulting in preconditioning against the ongoing neuropathology, primarily in female mice.
Collapse
Affiliation(s)
- Junxia X. Tang
- Department of Anesthesiology and Critical Care, University of Pennsylvania School of Medicine, 305 John Morgan, 3620 Hamilton Walk, Philadelphia, PA 19104 USA
| | - Feras Mardini
- Department of Anesthesiology and Critical Care, University of Pennsylvania School of Medicine, 305 John Morgan, 3620 Hamilton Walk, Philadelphia, PA 19104 USA
| | - Breanna M. Caltagarone
- Department of Anesthesiology and Critical Care, University of Pennsylvania School of Medicine, 305 John Morgan, 3620 Hamilton Walk, Philadelphia, PA 19104 USA
| | - Sean T. Garrity
- Department of Anesthesiology and Critical Care, University of Pennsylvania School of Medicine, 305 John Morgan, 3620 Hamilton Walk, Philadelphia, PA 19104 USA
| | - Rosie Q. Li
- Department of Anesthesiology and Critical Care, University of Pennsylvania School of Medicine, 305 John Morgan, 3620 Hamilton Walk, Philadelphia, PA 19104 USA
| | - Shannon L. Bianchi
- Department of Anesthesiology and Critical Care, University of Pennsylvania School of Medicine, 305 John Morgan, 3620 Hamilton Walk, Philadelphia, PA 19104 USA
| | - Olubusola Gomes
- Department of Anesthesiology and Critical Care, University of Pennsylvania School of Medicine, 305 John Morgan, 3620 Hamilton Walk, Philadelphia, PA 19104 USA
| | - Frank M. Laferla
- Department of Neurobiology & Behavior, University of California, 1109 Gillespie Neuroscience Facility, Irvine, CA 92697 USA
| | - Roderic G. Eckenhoff
- Department of Anesthesiology and Critical Care, University of Pennsylvania School of Medicine, 305 John Morgan, 3620 Hamilton Walk, Philadelphia, PA 19104 USA
| | - Maryellen F. Eckenhoff
- Department of Anesthesiology and Critical Care, University of Pennsylvania School of Medicine, 305 John Morgan, 3620 Hamilton Walk, Philadelphia, PA 19104 USA
| |
Collapse
|
19
|
Iadecola C, Kahles T, Gallo EF, Anrather J. Neurovascular protection by ischaemic tolerance: role of nitric oxide. J Physiol 2011; 589:4137-45. [PMID: 21746790 DOI: 10.1113/jphysiol.2011.210831] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Nitric oxide (NO) has emerged as a key mediator in the mechanisms of ischaemic tolerance induced by a wide variety of preconditioning stimuli. NO is involved in the brain protection that develops either early (minutes-hours) or late (days-weeks) after the preconditioning stimulus. However, the sources of NO and the mechanisms underlying the protective effects differ substantially. While in early preconditioning NO is produced by the endothelial and neuronal isoform of NO synthase, in delayed preconditioning NO is synthesized by the inducible or 'immunological' isoform of NO synthase. Furthermore, in early preconditioning, NO acts through the canonical cGMP pathway, possibly through protein kinase G and opening of mitochondrial K(ATP) channels. In late preconditioning, the protection is mediated by peroxynitrite formed by the reaction of NO with superoxide derived from the enzyme NADPH oxidase. The mechanisms by which peroxynitrite exerts its protective effect may include improvement of post-ischaemic cerebrovascular function, leading to enhancement of blood flow to the ischaemic territory, and expression of prosurvival genes resulting in cytoprotection. The evidence suggests that NO can engage highly effective and multifunctional prosurvival pathways, which could be exploited for the prevention and treatment of cerebrovascular pathologies.
Collapse
Affiliation(s)
- Costantino Iadecola
- Division of Neurobiology, 407 East 61st Street, Room 304, New York, NY, USA.
| | | | | | | |
Collapse
|
20
|
Wang S, Guo SX, Dai ZG, Dong XW, Liu Y, Jiang S, Wang ZP. Dual Isoflurane-induced Preconditioning Improves Neuroprotection in Rat Brain In Vitro and the Role of Extracellular Signal-regulated Protein Kinase. ACTA ACUST UNITED AC 2011; 26:36-42. [DOI: 10.1016/s1001-9294(11)60017-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|