1
|
Meng Q, Wang X, Guo D, Zhang G, Shi C, Novak A, Yang X, Luo J, Cooney RN. Sparstolonin B nano-formulation attenuates LPS-induced lung injury. Front Pharmacol 2025; 16:1532391. [PMID: 40264680 PMCID: PMC12011759 DOI: 10.3389/fphar.2025.1532391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 03/25/2025] [Indexed: 04/24/2025] Open
Abstract
Introduction Nanomedicines can improve drug delivery and efficacy while reducing side effects. Our study examines the impact of a nano-formulation of Sparstolonin B (nSsnB), a TLR-4 antagonist, on LPS-induced inflammation in RAW264.7 cells and lung injury in mice. Methods RAW264.7 cells were treated with LPS (1 μg/mL) ± nSsnB (2-64 μg/mL) for 24 h. Cell viability was assessed, cytokine levels in media were measured, and cell lysates were used to quantify NF-κB activation. C57BL/6 mice were treated with prophylactic intratracheal (IT) nSsnB (0.625 mg/kg) ± IT LPS (2.5 mg/kg). Blood and BALF were collected for cytokine, protein and cytological analysis. Lung histology was scored to evaluate lung injury. The relative abundance of MyD88 and phosphorylated NF-κB were measured in lung and HLL mice were used to measure NF-κB activation in vivo. Results nSsnB demonstrated reduced toxicity vs. free SsnB. nSsnB ameliorated the LPS-induced increase in TNF-α, IL-6 and NF-κB P65 phosphorylation in RAW264.7 cells. LPS-treated mice revealed histologic ALI, elevated BALF neutrophils/macrophages/total protein, and increased levels of TNF-α/IL-6 in both BALF and plasma. Prophylactic nSsnB attenuated all these parameters in the LPS/nSsnB group. The increased levels of MyD88 and P-NF-κB P65 in lung from LPS-treated mice were reduced in the LPS/nSsnB group and nSsnB attenuated the increase in NF-κB activation induced by IT LPS in HLL mice. Conclusion nSsnB demonstrates less toxicity than free SsnB and attenuates the effects of LPS on inflammation in RAW264.7 cells. Prophylactic nSsnB attenuates LPS-induced ALI by reducing inflammation via MyD88/NF-κB signaling pathways. Collectively these findings support the therapeutic potential of nano-formulated nSsnB for ALI treatment.
Collapse
Affiliation(s)
- Qinghe Meng
- Department of Surgery, State University of New York (SUNY), Upstate Medical University, Syracuse, NY, United States
- Sepsis Interdisciplinary Research Center (SIRC), State University of New York (SUNY), Upstate Medical University, Syracuse, NY, United States
| | - Xiaojing Wang
- Department of Pharmacology, State University of New York (SUNY), Upstate Medical University, Syracuse, NY, United States
| | - Dandan Guo
- Department of Pharmacology, State University of New York (SUNY), Upstate Medical University, Syracuse, NY, United States
| | - Gary Zhang
- Department of Surgery, State University of New York (SUNY), Upstate Medical University, Syracuse, NY, United States
| | - Changying Shi
- Department of Pharmacology, State University of New York (SUNY), Upstate Medical University, Syracuse, NY, United States
| | - Adam Novak
- Department of Surgery, State University of New York (SUNY), Upstate Medical University, Syracuse, NY, United States
| | - Xiguang Yang
- Department of Pharmacology, State University of New York (SUNY), Upstate Medical University, Syracuse, NY, United States
| | - Juntao Luo
- Department of Surgery, State University of New York (SUNY), Upstate Medical University, Syracuse, NY, United States
- Sepsis Interdisciplinary Research Center (SIRC), State University of New York (SUNY), Upstate Medical University, Syracuse, NY, United States
- Department of Pharmacology, State University of New York (SUNY), Upstate Medical University, Syracuse, NY, United States
| | - Robert N. Cooney
- Department of Surgery, State University of New York (SUNY), Upstate Medical University, Syracuse, NY, United States
- Sepsis Interdisciplinary Research Center (SIRC), State University of New York (SUNY), Upstate Medical University, Syracuse, NY, United States
| |
Collapse
|
2
|
Robert A, Honoré PM, Bulpa P, Michaux I. Managing Refractory Hypoxemia in Acute Respiratory Distress Syndrome Obese Patients with Veno-Venous Extra-Corporeal Membrane Oxygenation: A Narrative Review. J Clin Med 2025; 14:1653. [PMID: 40095653 PMCID: PMC11899983 DOI: 10.3390/jcm14051653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/20/2025] [Accepted: 02/26/2025] [Indexed: 03/19/2025] Open
Abstract
Veno-venous extracorporeal membrane oxygenation (vvECMO) is a life-saving intervention for severe respiratory failure unresponsive to conventional therapies. However, managing refractory hypoxemia in morbidly obese patients poses significant challenges due to the unique physiological characteristics of this population, including hyperdynamic circulation, elevated cardiac output, and increased oxygen consumption. These factors can limit the effectiveness of vvECMO by diluting arterial oxygen content and complicating oxygen delivery. Refractory hypoxemia in obese patients supported by vvECMO often stems from an imbalance between ECMO blood flow and cardiac output. Hyperdynamic circulation exacerbates the recirculation of oxygenated blood and impairs the efficiency of oxygen transfer. To address these challenges, a stepwise, individualized approach is essential. Strategies to reduce oxygen consumption include deep sedation, neuromuscular blockade, and temperature control. Cardiac output modulation can be achieved through beta-blockers and cautious therapeutic hypothermia. Optimizing oxygen delivery involves improving residual lung function; high positive end-expiratory pressure ventilation guided by esophageal pressure monitoring; prone positioning; and adjustments to the ECMO circuit, such as using dual oxygenators, larger membranes, or additional drainage cannulas. This review highlights the interplay of physiological adaptations and technical innovations required to overcome the challenges of managing refractory hypoxemia in obese patients during vvECMO. By addressing the complexities of high cardiac output and obesity, clinicians can enhance the effectiveness of vvECMO and improve outcomes for this high-risk population.
Collapse
Affiliation(s)
- Arnaud Robert
- Department of ICU, Centre Hospitalier Universitaire Université Catholique de Louvain, Mont-Godinne, 5530 Yvoir, Belgium
| | - Patrick M. Honoré
- Department of ICU, Centre Hospitalier Universitaire Université Catholique de Louvain, Mont-Godinne, 5530 Yvoir, Belgium
- The Faculty of Medicine, Experimental Research Laboratory Institute of the Catholic Louvain Medical School, 1200 Brussels, Belgium
| | - Pierre Bulpa
- Department of ICU, Centre Hospitalier Universitaire Université Catholique de Louvain, Mont-Godinne, 5530 Yvoir, Belgium
| | - Isabelle Michaux
- Department of ICU, Centre Hospitalier Universitaire Université Catholique de Louvain, Mont-Godinne, 5530 Yvoir, Belgium
| |
Collapse
|
3
|
Cave C, Samano D, Sharma AM, Dickinson J, Salomon J, Mahapatra S. Acute respiratory distress syndrome: A review of ARDS across the life course. J Investig Med 2024; 72:798-818. [PMID: 39092841 DOI: 10.1177/10815589241270612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Acute respiratory distress syndrome (ARDS) is a multifactorial, inflammatory lung disease with significant morbidity and mortality that predominantly requires supportive care in its management. Although initially described in adult patients, the diagnostic definitions for ARDS have evolved over time to accurately describe this disease process in pediatric and, more recently, neonatal patients. The management of ARDS in each age demographic has converged in the application of lung-protective ventilatory strategies to mitigate the primary disease process and prevent its exacerbation by limiting ventilator-induced lung injury. However, differences arise in the preferred ventilatory strategies or adjunctive pulmonary therapies used to mitigate each type of ARDS. In this review, we compare and contrast the epidemiology, common etiologies, pathophysiology, diagnostic criteria, and outcomes of ARDS across the lifespan. Additionally, we discuss in detail the different management strategies used for each subtype of ARDS and spotlight how these strategies were applied to mitigate poor outcomes during the COVID-19 pandemic. This review is geared toward both clinicians and clinician-scientists as it not only summarizes the latest information on disease pathogenesis and patient management in ARDS across the lifespan but also highlights knowledge gaps for further investigative efforts. We conclude by projecting how future studies can fill these gaps in research and what improvements may be envisioned in the management of NARDS and PARDS based on the current breadth of literature on adult ARDS treatment strategies.
Collapse
Affiliation(s)
- Caleb Cave
- Division of Neonatology, and Division of Pulmonology, Department of Pediatrics, Children's Hospital and Medical Center, Omaha, University of Nebraska Medical Center, Omaha, NE, USA
| | - Dannielle Samano
- Division of Pulmonary, Sleep, and Critical Care Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Abhineet M Sharma
- Division of Neonatology, and Division of Pulmonology, Department of Pediatrics, Children's Hospital and Medical Center, Omaha, University of Nebraska Medical Center, Omaha, NE, USA
| | - John Dickinson
- Division of Pulmonary, Sleep, and Critical Care Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jeffrey Salomon
- Division of Critical Care Medicine, Department of Pediatrics, Children's Hospital and Medical Center, Omaha, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sidharth Mahapatra
- Division of Critical Care Medicine, Department of Pediatrics, Children's Hospital and Medical Center, Omaha, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
4
|
Zhao Y, Li C, Zhang S, Cheng J, Liu Y, Han X, Wang Y, Wang Y. Inhaled nitric oxide: can it serve as a savior for COVID-19 and related respiratory and cardiovascular diseases? Front Microbiol 2023; 14:1277552. [PMID: 37849924 PMCID: PMC10577426 DOI: 10.3389/fmicb.2023.1277552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/18/2023] [Indexed: 10/19/2023] Open
Abstract
Nitric oxide (NO), as an important gaseous medium, plays a pivotal role in the human body, such as maintaining vascular homeostasis, regulating immune-inflammatory responses, inhibiting platelet aggregation, and inhibiting leukocyte adhesion. In recent years, the rapid prevalence of coronavirus disease 2019 (COVID-19) has greatly affected the daily lives and physical and mental health of people all over the world, and the therapeutic efficacy and resuscitation strategies for critically ill patients need to be further improved and perfected. Inhaled nitric oxide (iNO) is a selective pulmonary vasodilator, and some studies have demonstrated its potential therapeutic use for COVID-19, severe respiratory distress syndrome, pulmonary infections, and pulmonary hypertension. In this article, we describe the biochemistry and basic characteristics of NO and discuss whether iNO can act as a "savior" for COVID-19 and related respiratory and cardiovascular disorders to exert a potent clinical protective effect.
Collapse
Affiliation(s)
- Yifan Zhao
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, China
| | - Cheng Li
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, China
| | - Shuai Zhang
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, China
| | - Jiayu Cheng
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, China
| | - Yucheng Liu
- Department of Family and Community Medicine, Feinberg School of Medicine, McGaw Medical Center of Northwestern University, Chicago, IL, United States
| | - Xiaorong Han
- Department of Special Care Center, Fuwai Hospital, National Clinical Research Center for Cardiovascular Diseases, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yinghui Wang
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, China
| | - Yonggang Wang
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
5
|
Grotberg JC, Reynolds D, Kraft BD. Management of severe acute respiratory distress syndrome: a primer. Crit Care 2023; 27:289. [PMID: 37464381 DOI: 10.1186/s13054-023-04572-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/10/2023] [Indexed: 07/20/2023] Open
Abstract
This narrative review explores the physiology and evidence-based management of patients with severe acute respiratory distress syndrome (ARDS) and refractory hypoxemia, with a focus on mechanical ventilation, adjunctive therapies, and veno-venous extracorporeal membrane oxygenation (V-V ECMO). Severe ARDS cases increased dramatically worldwide during the Covid-19 pandemic and carry a high mortality. The mainstay of treatment to improve survival and ventilator-free days is proning, conservative fluid management, and lung protective ventilation. Ventilator settings should be individualized when possible to improve patient-ventilator synchrony and reduce ventilator-induced lung injury (VILI). Positive end-expiratory pressure can be individualized by titrating to best respiratory system compliance, or by using advanced methods, such as electrical impedance tomography or esophageal manometry. Adjustments to mitigate high driving pressure and mechanical power, two possible drivers of VILI, may be further beneficial. In patients with refractory hypoxemia, salvage modes of ventilation such as high frequency oscillatory ventilation and airway pressure release ventilation are additional options that may be appropriate in select patients. Adjunctive therapies also may be applied judiciously, such as recruitment maneuvers, inhaled pulmonary vasodilators, neuromuscular blockers, or glucocorticoids, and may improve oxygenation, but do not clearly reduce mortality. In select, refractory cases, the addition of V-V ECMO improves gas exchange and modestly improves survival by allowing for lung rest. In addition to VILI, patients with severe ARDS are at risk for complications including acute cor pulmonale, physical debility, and neurocognitive deficits. Even among the most severe cases, ARDS is a heterogeneous disease, and future studies are needed to identify ARDS subgroups to individualize therapies and advance care.
Collapse
Affiliation(s)
- John C Grotberg
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO, 63110, USA.
| | - Daniel Reynolds
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Bryan D Kraft
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| |
Collapse
|
6
|
Choi C, Lemmink G, Humanez J. Postoperative Respiratory Failure and Advanced Ventilator Settings. Anesthesiol Clin 2023; 41:141-159. [PMID: 36871996 DOI: 10.1016/j.anclin.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Postoperative respiratory failure has a multifactorial etiology, of which atelectasis is the most common mechanism. Its injurious effects are magnified by surgical inflammation, high driving pressures, and postoperative pain. Chest physiotherapy and noninvasive ventilation are good options to prevent progression of respiratory failure. Acute respiratory disease syndrome is a late and severe finding, which is associated with high morbidity and mortality. If present, proning is a safe, effective, and underutilized therapy. Extracorporeal membrane oxygenation is an option only when traditional supportive measures have failed.
Collapse
Affiliation(s)
- Christopher Choi
- Department of Anesthesiology and Pain Management, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9068, USA.
| | - Gretchen Lemmink
- Department of Anesthesiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0531, USA
| | - Jose Humanez
- Department of Anesthesiology, University of Florida College of Medicine - Jacksonville, 655 West 8th Street, C72, Jacksonville, FL 32209, USA
| |
Collapse
|
7
|
Oza PP, Kashfi K. Utility of NO and H 2S donating platforms in managing COVID-19: Rationale and promise. Nitric Oxide 2022; 128:72-102. [PMID: 36029975 PMCID: PMC9398942 DOI: 10.1016/j.niox.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/01/2022] [Accepted: 08/10/2022] [Indexed: 01/08/2023]
Abstract
Viral infections are a continuing global burden on the human population, underscored by the ramifications of the COVID-19 pandemic. Current treatment options and supportive therapies for many viral infections are relatively limited, indicating a need for alternative therapeutic approaches. Virus-induced damage occurs through direct infection of host cells and inflammation-related changes. Severe cases of certain viral infections, including COVID-19, can lead to a hyperinflammatory response termed cytokine storm, resulting in extensive endothelial damage, thrombosis, respiratory failure, and death. Therapies targeting these complications are crucial in addition to antiviral therapies. Nitric oxide and hydrogen sulfide are two endogenous gasotransmitters that have emerged as key signaling molecules with a broad range of antiviral actions in addition to having anti-inflammatory properties and protective functions in the vasculature and respiratory system. The enhancement of endogenous nitric oxide and hydrogen sulfide levels thus holds promise for managing both early-stage and later-stage viral infections, including SARS-CoV-2. Using SARS-CoV-2 as a model for similar viral infections, here we explore the current evidence regarding nitric oxide and hydrogen sulfide's use to limit viral infection, resolve inflammation, and reduce vascular and pulmonary damage.
Collapse
Affiliation(s)
- Palak P Oza
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, 10031, USA
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, 10031, USA; Graduate Program in Biology, City University of New York Graduate Center, New York, 10091, USA.
| |
Collapse
|
8
|
Pickerodt PA, Hofferberth MBT, Busch T, Russ M, Taher M, Boemke W, Weber-Carstens S, Köbrich R, Swenson E, Deja M, Francis RCE. In vitro validation and characterization of pulsed inhaled nitric oxide administration during early inspiration. J Clin Monit Comput 2022; 36:637-648. [PMID: 33735405 PMCID: PMC7970749 DOI: 10.1007/s10877-021-00689-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 03/04/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE Admixture of nitric oxide (NO) to the gas inspired with mechanical ventilation can be achieved through continuous, timed, or pulsed injection of NO into the inspiratory limb. The dose and timing of NO injection govern the inspired and intrapulmonary effect site concentrations achieved with different administration modes. Here we test the effectiveness and target reliability of a new mode injecting pulsed NO boluses exclusively during early inspiration. METHODS An in vitro lung model was operated under various ventilator settings. Admixture of NO through injection into the inspiratory limb was timed either (i) selectively during early inspiration ("pulsed delivery"), or as customary, (ii) during inspiratory time or (iii) the entire respiratory cycle. Set NO target concentrations of 5-40 parts per million (ppm) were tested for agreement with the yield NO concentrations measured at various sites in the inspiratory limb, to assess the effectiveness of these NO administration modes. RESULTS Pulsed delivery produced inspiratory NO concentrations comparable with those of customary modes of NO administration. At low (450 ml) and ultra-low (230 ml) tidal volumes, pulsed delivery yielded better agreement of the set target (up to 40 ppm) and inspiratory NO concentrations as compared to customary modes. Pulsed delivery with NO injection close to the artificial lung yielded higher intrapulmonary NO concentrations than with NO injection close to the ventilator. The maximum inspiratory NO concentration observed in the trachea (68 ± 30 ppm) occurred with pulsed delivery at a set target of 40 ppm. CONCLUSION Pulsed early inspiratory phase NO injection is as effective as continuous or non-selective admixture of NO to inspired gas and may confer improved target reliability, especially at low, lung protective tidal volumes.
Collapse
Affiliation(s)
- Philipp A Pickerodt
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM/CVK), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Moritz B T Hofferberth
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM/CVK), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Thilo Busch
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM/CVK), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Martin Russ
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM/CVK), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Mahdi Taher
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM/CVK), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Willehad Boemke
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM/CVK), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Steffen Weber-Carstens
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM/CVK), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | | | - Erik Swenson
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, WA, USA
- VA Puget Sound Health Care System, Seattle, WA, USA
| | - Maria Deja
- Department of Anesthesiology and Intensive Care Medicine, University of Schleswig-Holstein, Lübeck, Germany
| | - Roland C E Francis
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM/CVK), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| |
Collapse
|
9
|
Piecek J, Valentino T, Aust R, Harris L, Hancock J, Hardman C, van Poppel SF. The Use of Nitric Oxide as a Rescue Modality for Severe Adult ARDS Patients, Including COVID-19, in Critical Care Rotor Transport: A Retrospective Community Outcome Study. Air Med J 2022; 41:427-431. [PMID: 36153137 PMCID: PMC9189110 DOI: 10.1016/j.amj.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 05/24/2022] [Accepted: 06/07/2022] [Indexed: 11/29/2022]
Abstract
Objective Severe acute respiratory distress syndrome (ARDS) mortality increases in smaller outlying facilities, and patients (especially those diagnosed with coronavirus disease 2019 [COVID-19]) are often “stuck” at these facilities. These patients are on maximal ventilator settings and are often in the prone position. Our purpose was to show that with the use of inhaled nitric oxide (iNO), a “community-based” rotor wing critical care transport (CCT) team can safely, consistently, and effectively transport these extremely precarious patients to the tertiary care that is needed. Methods This was a retrospective database review of 50 patients (39 patients with COVID-19) transported between 2017 and 2021 in whom iNO was brought to the bedside and initiated by the rotor wing critical care transport team. The review included patient demographics, vital signs, and ventilator settings from the sending hospital, in-flight, and the receiving hospital. We reviewed the transition from transport to venovenous extracorporeal membrane oxygenation (if applicable), hospital disposition, and length of stay from the receiving hospital side. Concerning the actual transport, we reviewed the mode of transport, the sending facility size, and the distances covered. Results Upon arrival at the sending facilities, we found severely ill patients with almost half (46%) in the prone position or recently transitioned from a prone position within the last 2 hours. Eighty-six percent were pharmaceutically paralyzed, and 44% were in shock. There was a younger and heavier predominance with an average age of 44 years and an average weight of 103 kg. Thirty-nine patients were diagnosed with COVID-19. The other 11 had a mix of non–COVID-19 ARDS, pulmonary embolism, and pulmonary edema. The patients presented from 27 different community hospitals. Forty-four percent were from small referring hospitals that had less than 200 beds. Twenty-eight patients were transported by a Bell 407 helicopter, 18 with an Airbus H135 helicopter, and 4 by ground ambulance. Forty-one percent of patients were transported within 25 miles, and 4 patients were transferred from > 100 miles away. All 50 patients were safely transported without significant deterioration or significant pulmonary pressure increases. Thirty-seven patients were placed on venovenous extracorporeal membrane oxygenation (34 of those patients cannulated within 2 hours of arrival). The overall mortality rate was 27%, and the COVID-19 mortality rate was 24%. Conclusion iNO retrieval for severe ARDS can be safely and effectively completed within the COVID-19 population and the nonacademic community setting using helicopters prevalent in the global air medical industry (Bell 407 and Airbus H135).
Collapse
Affiliation(s)
| | | | | | - Lora Harris
- Medical City Plano, Medical City Health Care Respiratory Care Department, Plano, TX
| | - Jennifer Hancock
- Medical City Plano, Medical City Health Care Respiratory Care Department, Plano, TX
| | | | | |
Collapse
|
10
|
Niazi MRK, Chukkalore D, Jahangir A, Sahra S, Macdougall K, Rehan M, Odaimi M. Management of acute chest syndrome in patients with sickle cell disease: a systematic review of randomized clinical trials. Expert Rev Hematol 2022; 15:547-558. [PMID: 35666654 DOI: 10.1080/17474086.2022.2085089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Acute chest syndrome (ACS) accounts for the highest mortality in Sickle cell disease patients. Early diagnosis and timely management of ACS results in better outcomes. However, the effectiveness of most treatment modalities for ACS management has not been established. AREAS COVERED To review the treatment modalities management protocols and highlight the effectiveness of each option a literature search was done. Randomized controlled trials that assessed the efficacy of different treatment modalities in ACS management in SCD patients were chosen and reviewed. EXPERT OPINION 11 randomized controlled trials were found that evaluated the efficacy of incentive spirometry, positive expiratory pressure device, intravenous dexamethasone, oral vs. intravenous morphine, inhaled nitric oxide, unfractionated heparin, and blood transfusion in the prevention or treatment of ACS. Although there are guidelines for ACS treatment, the available evidence is very limited to delineating the effectiveness of various interventions in ACS management. More high-quality studies and trials with a larger patient population can benefit this area to support the recommendations with stronger evidence.
Collapse
Affiliation(s)
- Muhammad Rafay Khan Niazi
- Department of Internal Medicine, Staten Island University Hospital/Northwell Health, New York, NY, USA
| | - Divya Chukkalore
- Department of Internal Medicine, Staten Island University Hospital/Northwell Health, New York, NY, USA
| | - Abdullah Jahangir
- Department of Internal Medicine, Staten Island University Hospital/Northwell Health, New York, NY, USA
| | - Syeda Sahra
- Department of Internal Medicine, Staten Island University Hospital/Northwell Health, New York, NY, USA
| | - Kira Macdougall
- Department of Hematology and Medical Oncology, Oklahoma University of Health and Science, Oklahoma, OK, USA
| | - Maryam Rehan
- Department of Hematology and Medical Oncology, Staten Island University Hospital/Northwell Health, New York, NY, USA
| | - Marcel Odaimi
- Department of Hematology and Medical Oncology, Staten Island University Hospital/Northwell Health, New York, NY, USA
| |
Collapse
|
11
|
Sanfilippo F, Palumbo GJ, Bignami E, Pavesi M, Ranucci M, Scolletta S, Pelosi P, Astuto M. Acute Respiratory Distress Syndrome in the Perioperative Period of Cardiac Surgery: Predictors, Diagnosis, Prognosis, Management Options, and Future Directions. J Cardiothorac Vasc Anesth 2022; 36:1169-1179. [PMID: 34030957 PMCID: PMC8141368 DOI: 10.1053/j.jvca.2021.04.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/08/2021] [Accepted: 04/16/2021] [Indexed: 12/13/2022]
Abstract
Acute respiratory distress syndrome (ARDS) after cardiac surgery is reported with a widely variable incidence (from 0.4%-8.1%). Cardiac surgery patients usually are affected by several comorbidities, and the development of ARDS significantly affects their prognosis. Herein, evidence regarding the current knowledge in the field of ARDS in cardiac surgery is summarized and is followed by a discussion on therapeutic strategies, with consideration of the peculiar aspects of ARDS after cardiac surgery. Prevention of lung injury during and after cardiac surgery remains pivotal. Blood product transfusions should be limited to minimize the risk, among others, of lung injury. Open lung ventilation strategy (ventilation during cardiopulmonary bypass, recruitment maneuvers, and the use of moderate positive end-expiratory pressure) has not shown clear benefits on clinical outcomes. Clinicians in the intraoperative and postoperative ventilatory settings carefully should consider the effect of mechanical ventilation on cardiac function (in particular the right ventricle). Driving pressure should be kept as low as possible, with low tidal volumes (on predicted body weight) and optimal positive end-expiratory pressure. Regarding the therapeutic options, management of ARDS after cardiac surgery challenges the common approach. For instance, prone positioning may not be easily applicable after cardiac surgery. In patients who develop ARDS after cardiac surgery, extracorporeal techniques may be a valid choice in experienced hands. The use of neuromuscular blockade and inhaled nitric oxide can be considered on a case-by-case basis, whereas the use of aggressive lung recruitment and oscillatory ventilation should be discouraged.
Collapse
Affiliation(s)
- Filippo Sanfilippo
- Department of Anaesthesia and Intensive Care, A.O.U. "Policlinico-San Marco", Catania, Italy.
| | | | - Elena Bignami
- Unit of Anesthesiology, Division of Critical Care and Pain Medicine, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Marco Pavesi
- Department of Cardiovascular Anesthesia and Intensive Care, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Marco Ranucci
- Department of Cardiovascular Anesthesia and Intensive Care, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Sabino Scolletta
- Department of Urgency and Emergency, of Organ Transplantation, Anesthesia and Intensive Care, Siena University Hospital, Siena, Italy
| | - Paolo Pelosi
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy; Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Marinella Astuto
- Department of Anaesthesia and Intensive Care, A.O.U. "Policlinico-San Marco", Catania, Italy; Department of General Surgery and Medical-Surgical Specialties, Section of Anesthesia and Intensive Care, University of Catania, Catania, Italy
| |
Collapse
|
12
|
Implications of microvascular dysfunction and nitric oxide mediated inflammation in severe COVID-19 infection. Am J Med Sci 2022; 364:251-256. [PMID: 35469768 PMCID: PMC9027037 DOI: 10.1016/j.amjms.2022.04.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/01/2022] [Accepted: 04/14/2022] [Indexed: 12/12/2022]
Abstract
Infection with COVID-19 has resulted in over 276,000 deaths in the United States and over 1.5 million deaths globally, with upwards of 15% of patients requiring hospitalization. Severe COVID-19 infection is, in essence, a microvascular disease. This contention has been emphasized throughout the course of the pandemic, particularly due to the clinical manifestation of severe infection. In fact, it has been hypothesized and shown in particular instances that microvascular function is a significant prognosticator for morbidity and mortality. Initially thought to be isolated to the pulmonary system and resulting in ARDS, patients with COVID-19 have been observed to have acute cardiac, renal, and thrombolytic complications. Therefore, severe COVID-19 is a vascular disease that has systemic implications. The objective of this review is to provide a mechanistic background for the microvascular nature of severe COVID-19 infection, with a particular emphasis on dysfunction of the endothelial glycocalyx and nitric oxide mediated pathogenesis.
Collapse
|
13
|
Redaelli S, Magliocca A, Malhotra R, Ristagno G, Citerio G, Bellani G, Berra L, Rezoagli E. Nitric oxide: Clinical applications in critically ill patients. Nitric Oxide 2022; 121:20-33. [PMID: 35123061 PMCID: PMC10189363 DOI: 10.1016/j.niox.2022.01.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/19/2022] [Accepted: 01/31/2022] [Indexed: 12/19/2022]
Abstract
Inhaled nitric oxide (iNO) acts as a selective pulmonary vasodilator and it is currently approved by the FDA for the treatment of persistent pulmonary hypertension of the newborn. iNO has been demonstrated to effectively decrease pulmonary artery pressure and improve oxygenation, while decreasing extracorporeal life support use in hypoxic newborns affected by persistent pulmonary hypertension. Also, iNO seems a safe treatment with limited side effects. Despite the promising beneficial effects of NO in the preclinical literature, there is still a lack of high quality evidence for the use of iNO in clinical settings. A variety of clinical applications have been suggested in and out of the critical care environment, aiming to use iNO in respiratory failure and pulmonary hypertension of adults or as a preventative measure of hemolysis-induced vasoconstriction, ischemia/reperfusion injury and as a potential treatment of renal failure associated with cardiopulmonary bypass. In this narrative review we aim to present a comprehensive summary of the potential use of iNO in several clinical conditions with its suggested benefits, including its recent application in the scenario of the COVID-19 pandemic. Randomized controlled trials, meta-analyses, guidelines, observational studies and case-series were reported and the main findings summarized. Furthermore, we will describe the toxicity profile of NO and discuss an innovative proposed strategy to produce iNO. Overall, iNO exhibits a wide range of potential clinical benefits, that certainly warrants further efforts with randomized clinical trials to determine specific therapeutic roles of iNO.
Collapse
Affiliation(s)
- Simone Redaelli
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Aurora Magliocca
- Department of Medical Physiopathology and Transplants, University of Milan, Milano, Italy
| | - Rajeev Malhotra
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Giuseppe Ristagno
- Department of Medical Physiopathology and Transplants, University of Milan, Milano, Italy; Department of Anesthesiology, Intensive Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giuseppe Citerio
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy; Neuroscience Department, NeuroIntensive Care Unit, San Gerardo Hospital, ASST Monza, Monza, Italy
| | - Giacomo Bellani
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy; Department of Emergency and Intensive Care, ECMO Center, San Gerardo University Hospital, Monza, Italy
| | - Lorenzo Berra
- Harvard Medical School, Boston, MA, USA; Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA; Respiratory Care Department, Massachusetts General Hospital, Boston, MA, USA
| | - Emanuele Rezoagli
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy; Department of Emergency and Intensive Care, ECMO Center, San Gerardo University Hospital, Monza, Italy.
| |
Collapse
|
14
|
Matera MG, Imperatore F, Annibale R, Cazzola M. Advances in the Pharmacological Management of Pediatric Acute Respiratory Distress Syndrome. Expert Opin Pharmacother 2022; 23:349-360. [PMID: 34781794 DOI: 10.1080/14656566.2021.2006632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/10/2021] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Noninvasive mechanical ventilation is the main supportive measure used in patients with pediatric ARDS (PARDS), but adjunctive pharmacological therapies (corticosteroids, inhaled nitric oxide [iNO], surfactant replacement therapy and neuromuscular blocking drugs) are also used, although limited data exists to inform of this practice. AREAS COVERED The authors review the current challenges in the pharmacological management of PARDS and highlight the few certainties currently available. EXPERT OPINION Children with PARDS must not be treated as young adults with ARDS, essentially because children's lungs differ substantially from those of adults and PARDS occurs in children differently than ARDS in adults. Pharmacological treatments available for PARDS are relatively few and, since there is great uncertainty about their effectiveness also because of the extreme heterogeneity of this syndrome, it is necessary to conduct large clinical trials using currently available definitions and considering recent pathobiological knowledge. The aim is to identify homogeneous subgroups or phenotypes of children with PARDS that may benefit from the specific pharmaceutical approach examined. It will be then necessary to link endotypes and outcomes to appropriately target therapies in future trials, but this will be possible only after it will be possible to identify the different PARDS endotypes.
Collapse
Affiliation(s)
- Maria Gabriella Matera
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Francesco Imperatore
- Unit of Anesthesia and Intensive Care, "San Giovanni Di Dio" Hospital, Naples, Italy
| | - Rosa Annibale
- Pharmacy Unit, "Luigi Vanvitelli" University Hospital, Naples, Italy
| | - Mario Cazzola
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
15
|
Oh SB, Aguilan A, Tan HL, Ma YJ, Sultana R, Lee JH, Wong JJM. The Association Between Alveolar Dead Space Fraction and Mortality in Pediatric Acute Respiratory Distress Syndrome: A Prospective Cohort Study. Front Pediatr 2022; 10:814484. [PMID: 35295701 PMCID: PMC8918668 DOI: 10.3389/fped.2022.814484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Alveolar dead-space fraction (AVDSF), the volume of alveolar gas that does not participate in gas exchange, has been reported to predict mortality and morbidity in adults with acute respiratory distress syndrome (ARDS). This study aims to characterize AVDSF in patients with pediatric ARDS (PARDS), to determine its association with clinical outcomes and examine the validity of a previously studied cutoff (AVDSF > 0.25). METHODS This was a prospective cohort study performed in the setting of a lung protective mechanical ventilation protocol. AVDSF was calculated by the equation: AVDSF = [partial pressure of arterial carbon dioxide (PaCO2) - end tidal carbon dioxide (etCO2)]/PaCO2. Receiver operating curve and Youden index were used to identify an AVDSF cutoff associated with mortality, which characterized "high or low AVDSF" groups. Correlation between AVDSF and clinical indices of severity were determined [including daily oxygenation index (OI), admission Pediatric Index of Mortality 2 (PIM 2) and Pediatric Logistic Organ Dysfunction (PELOD) scores]. The primary outcome, mortality in PARDS patients, was compared between the high and low AVDSF groups and analyzed in a multivariable logistic regression adjusting for inotrope use and PIM 2 score. Secondary outcomes included 28-day ventilator-free (VFD) and intensive care unit-free (IFD) days. RESULTS Sixty-nine PARDS patients with a median (interquartile range) age of 4.5 (0.8, 10.6) years were included in this analysis. Daily AVDSF correlated with daily OI (R 2 = 0.10; p < 0.001). Mean AVDSF over the first 7 days of PARDS correlated with PIM 2 (R 2 = 0.10; p = 0.010) and PELOD (R 2 = 0.12; p = 0.004) scores. The greatest area under the curve identified an AVDSF cutoff of 0.22, which was close to the previously suggested 0.25. The high AVDSF group had higher mortality [7/19 (36.8%) vs. 5/50 (10.0%); p = 0.009] and lower VFD [2 (0, 18) vs. 21 (15, 24); p = 0.007] and IFD [0 (0, 16) vs. 16 (5, 21); p = 0.013]. In the multivariable model, being in the high AVDSF group [adjusted odds ratio 4.67 (95% CI: 1.12, 19.39)] was significantly associated with mortality. CONCLUSIONS High AVDSF was independently associated with increased mortality and decreased VFD and IFD. AVDSF may be complementary to oxygenation indices in risk stratifying PARDS and warrant further study.
Collapse
Affiliation(s)
- Sheow Boon Oh
- Lee Kong Chian School of Medicine, Singapore, Singapore
| | - Apollo Aguilan
- Children's Intensive Care Unit, Department of Pediatric Subspecialties, KK Women's and Children's Hospital, Singapore, Singapore
| | - Herng Lee Tan
- Children's Intensive Care Unit, Department of Pediatric Subspecialties, KK Women's and Children's Hospital, Singapore, Singapore
| | - Yi-Jyun Ma
- Children's Intensive Care Unit, Department of Pediatric Subspecialties, KK Women's and Children's Hospital, Singapore, Singapore
| | - Rehena Sultana
- Center for Quantitative Medicine, Duke-NUS Medical School, Singapore, Singapore
| | - Jan Hau Lee
- Children's Intensive Care Unit, Department of Pediatric Subspecialties, KK Women's and Children's Hospital, Singapore, Singapore.,Duke-NUS Medical School, Singapore, Singapore
| | - Judith Ju Ming Wong
- Lee Kong Chian School of Medicine, Singapore, Singapore.,Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
16
|
Abstract
Coronavirus disease 2019 (COVID-19) is a primary respiratory infectious disease, which can result in pulmonary and cardiovascular complications. From its first appearance in the city of Wuhan (China), the infection spread worldwide, leading to its declaration as a pandemic on March 11, 2020. Clinical research on SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) suggests that the virus may determine changes in the pulmonary hemodynamics through mechanisms of endothelial dysfunction, vascular leak, thrombotic microangiopathy, and venous thromboembolism that are similar to those leading to pulmonary hypertension (PH). Current available studies report echocardiographic signs of PH in approximately 12 to 13% of hospitalized patients with COVID-19. Those with chronic pulmonary obstructive disease, congestive heart failure, pulmonary embolism, and prior PH are at increased risk to develop or worsen PH. Evidence of PH seems to be associated with increased disease severity and poor outcome. Because of the importance of the pulmonary hemodynamics in the pathophysiology of COVID-19, there is growing interest in exploring the potential therapeutical benefits of inhaled vasodilators in patients with COVID-19. Treatment with inhaled nitric oxide and prostacyclin has shown encouraging results through improvement of systemic oxygenation, reduction of systolic pulmonary arterial pressure, and prevention of right ventricular failure; however, data from randomized control trials are still required.
Collapse
Affiliation(s)
- Laura Castiglione
- Department of Cardiology and Angiology, University Hospital Tübingen, Tübingen, Germany
| | - Michal Droppa
- Department of Cardiology and Angiology, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
17
|
Qian Y, Kumar R, Chug MK, Massoumi H, Brisbois EJ. Therapeutic Delivery of Nitric Oxide Utilizing Saccharide-Based Materials. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52250-52273. [PMID: 34714640 PMCID: PMC9050970 DOI: 10.1021/acsami.1c10964] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
As a gasotransmitter, nitric oxide (NO) regulates physiological pathways and demonstrates therapeutic effects such as vascular relaxation, anti-inflammation, antiplatelet, antithrombosis, antibacterial, and antiviral properties. However, gaseous NO has high reactivity and a short half-life, so NO delivery and storage are critical questions to be solved. One way is to develop stable NO donors and the other way is to enhance the delivery and storage of NO donors from biomaterials. Most of the researchers studying NO delivery and applications are using synthetic polymeric materials, and they have demonstrated significant therapeutic effects of these NO-releasing polymeric materials on cardiovascular diseases, respiratory disease, bacterial infections, etc. However, some researchers are exploring saccharide-based materials to fulfill the same tasks as their synthetic counterparts while avoiding the concerns of biocompatibility, biodegradability, and sustainability. Saccharide-based materials are abundant in nature and are biocompatible and biodegradable, with wide applications in bioengineering, drug delivery, and therapeutic disease treatments. Saccharide-based materials have been implemented with various NO donors (like S-nitrosothiols and N-diazeniumdiolates) via both chemical and physical methods to deliver NO. These NO-releasing saccharide-based materials have exhibited controlled and sustained NO release and demonstrated biomedical applications in various diseases (respiratory, Crohn's, cardiovascular, etc.), skin or wound applications, antimicrobial treatment, bone regeneration, anticoagulation, as well as agricultural and food packaging. This review aims to highlight the studies in methods and progress in developing saccharide-based NO-releasing materials and investigating their potential applications in biomedical, bioengineering, and disease treatment.
Collapse
Affiliation(s)
- Yun Qian
- School of Chemical, Materials & Biomedical Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Rajnish Kumar
- School of Chemical, Materials & Biomedical Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Manjyot Kaur Chug
- School of Chemical, Materials & Biomedical Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Hamed Massoumi
- School of Chemical, Materials & Biomedical Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Elizabeth J Brisbois
- School of Chemical, Materials & Biomedical Engineering, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
18
|
Serrano R, Corbella X, Rello J. Management of hypoxemia in SARS-CoV-2 infection: Lessons learned from one year of experience, with a special focus on silent hypoxemia. JOURNAL OF INTENSIVE MEDICINE 2021; 1:26-30. [PMID: 36943810 PMCID: PMC7939974 DOI: 10.1016/j.jointm.2021.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/29/2021] [Accepted: 02/18/2021] [Indexed: 12/21/2022]
Abstract
Silent hypoxemia is common in patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In this article, the possible pathophysiological mechanisms underlying respiratory symptoms have been reviewed, and the presence of hypoxemia without hypoxia is also discussed. The experience we have gained since the start of the Coronavirus disease 19 (COVID-19) pandemic has changed our point of view about which patients with respiratory involvement should be admitted to the intensive care unit/high-dependency unit for mechanical ventilation and monitoring. In patients with clinically well-tolerated mild to moderate hypoxemia (silent hypoxemia), regardless of the extent of pulmonary opacities found in radiological studies, the administration of supplemental oxygen therapy may increase the risk of endothelial damage. The risk of sudden respiratory arrest during emergency intubation, which could expose healthcare workers to infection, should be considered along with the risks of premature intubation. Criteria for intubation need to be revisited based on updated evidence showing that many patients with severe hypoxemia do not show increased work of breathing. This has implications in patient management and may explain in part reports of broad differences in outcomes among intubated patients.
Collapse
Affiliation(s)
- Ricardo Serrano
- Critical Care Department. Hospital de Hellín. Gerencia Atención Integrada de Hellín, Albacete 02400, Spain
| | - Xavier Corbella
- Interna Medicine Department, Hospital Universitari de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Barcelona 08907, Spain
- School of Medicine, Universitat Internacional de Catalunya, Barcelona 08017, Spain
| | - Jordi Rello
- Vall d'Hebron Institute of Research, Barcelona 08035, Spain
- Research in Critical Care, CHU Caremeau, Nîmes 30900, France
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid 28029, Spain
- Corresponding author: Jordi Rello, Vall d'Hebron Institute of Research, P. Vall d'Hebron 129. AMI-14, Barcelona 08035, Spain.
| |
Collapse
|
19
|
Franco V, Bradley EA, Badagliacca R, Sabanayagam A, Rajpal S, Lastinger LT, Daniels CJ, Smith JS, Benza RL. Pulmonary vasodilators: beyond the bounds of pulmonary arterial hypertension therapy in COVID-19. Pulm Circ 2020; 10:2045894020970369. [PMID: 33282201 PMCID: PMC7686637 DOI: 10.1177/2045894020970369] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/10/2020] [Indexed: 01/03/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) and novel coronavirus (SARS-CoV-2) disease COVID-19
are characterized by extensive endothelial dysfunction and inflammation leading to
vascular remodeling and severe microthrombi and microvascular obliterative disease. It is
hypothesized that those patients with underlying lung disease, like PAH, represent a
high-risk cohort in this pandemic. However, reports of COVID-19 in this cohort of patient
have been scaring and an observational survey showed that the disease was relatively well
tolerated. We postulate that specific PAH vasodilator may offer some protection and/or
advantage in the case of concomitant COVID-19. Here we review the literature describing
mechanisms of action for each of the broad categories of PAH therapy, and offer potential
hypothesis about why this therapy may impact outcomes in COVID-19.
Collapse
Affiliation(s)
- Veronica Franco
- Division of Cardiovascular Disease, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Elisa A Bradley
- Division of Cardiovascular Disease, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Roberto Badagliacca
- Department of Cardiovascular and Respiratory Science, Sapienza University of Rome, Rome, Italy
| | - Aarthi Sabanayagam
- Division of Cardiovascular Disease, University of California San Francisco, USA
| | - Saurabh Rajpal
- Division of Cardiovascular Disease, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Lauren T Lastinger
- Division of Cardiovascular Disease, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Curt J Daniels
- Division of Cardiovascular Disease, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - J Shaun Smith
- Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Raymond L Benza
- Division of Cardiovascular Disease, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
20
|
Adusumilli NC, Zhang D, Friedman JM, Friedman AJ. Harnessing nitric oxide for preventing, limiting and treating the severe pulmonary consequences of COVID-19. Nitric Oxide 2020; 103:4-8. [PMID: 32681986 PMCID: PMC7362842 DOI: 10.1016/j.niox.2020.07.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/22/2020] [Accepted: 07/13/2020] [Indexed: 01/30/2023]
Abstract
The ongoing outbreak of COVID-19 has quickly become a daunting challenge to global health. In the absence of targeted therapy and a reported 5.5% case fatality rate in the United States, treatments preventing rapid cardiopulmonary failure are urgently needed. Clinical features, pathology and homology to better understood pathogens suggest that uncontrolled inflammation and a cytokine storm likely drive COVID-19's unrelenting disease process. Interventions that are protective against acute lung injury and ARDS can play a critical role for patients and health systems during this pandemic. Nitric oxide is an antimicrobial and anti-inflammatory molecule with key roles in pulmonary vascular function in the context of viral infections and other pulmonary disease states. This article reviews the rationale for exogenous nitric oxide use for the pathogenesis of COVID-19 and highlights its potential for contributing to better clinical outcomes and alleviating the rapidly rising strain on healthcare capacity.
Collapse
Affiliation(s)
- Nagasai C Adusumilli
- Department of Dermatology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - David Zhang
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Joel M Friedman
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Adam J Friedman
- Department of Dermatology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
| |
Collapse
|
21
|
Rowan CM, Klein MJ, Hsing DD, Dahmer MK, Spinella PC, Emeriaud G, Hassinger AB, Piñeres-Olave BE, Flori HR, Haileselassie B, Lopez-Fernandez YM, Chima RS, Shein SL, Maddux AB, Lillie J, Izquierdo L, Kneyber MCJ, Smith LS, Khemani RG, Thomas NJ, Yehya N. Early Use of Adjunctive Therapies for Pediatric Acute Respiratory Distress Syndrome: A PARDIE Study. Am J Respir Crit Care Med 2020; 201:1389-1397. [PMID: 32130867 DOI: 10.1164/rccm.201909-1807oc] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Rationale: Few data exist to guide early adjunctive therapy use in pediatric acute respiratory distress syndrome (PARDS).Objectives: To describe contemporary use of adjunctive therapies for early PARDS as a framework for future investigations.Methods: This was a preplanned substudy of a prospective, international, cross-sectional observational study of children with PARDS from 100 centers over 10 study weeks.Measurements and Main Results: We investigated six adjunctive therapies for PARDS: continuous neuromuscular blockade, corticosteroids, inhaled nitric oxide (iNO), prone positioning, high-frequency oscillatory ventilation (HFOV), and extracorporeal membrane oxygenation. Almost half (45%) of children with PARDS received at least one therapy. Variability was noted in the median starting oxygenation index of each therapy; corticosteroids started at the lowest oxygenation index (13.0; interquartile range, 7.6-22.0) and HFOV at the highest (25.7; interquartile range, 16.7-37.3). Continuous neuromuscular blockade was the most common, used in 31%, followed by iNO (13%), corticosteroids (10%), prone positioning (10%), HFOV (9%), and extracorporeal membrane oxygenation (3%). Steroids, iNO, and HFOV were associated with comorbidities. Prone positioning and HFOV were more common in middle-income countries and less frequently used in North America. The use of multiple ancillary therapies increased over the first 3 days of PARDS, but there was not an easily identifiable pattern of combination or order of use.Conclusions: The contemporary description of prevalence, combinations of therapies, and oxygenation threshold for which the therapies are applied is important for design of future studies. Region of the world, income, and comorbidities influence adjunctive therapy use and are important variables to include in PARDS investigations.
Collapse
Affiliation(s)
- Courtney M Rowan
- Division of Critical Care, Department of Pediatrics, Indiana University School of Medicine and Riley Hospital for Children at IU Health, Indianapolis, Indiana
| | - Margaret J Klein
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Los Angeles and University of Southern California, Los Angeles, California
| | - Deyin Doreen Hsing
- Department of Pediatrics, New York Presbyterian Hospital and Weill Cornell Medical College, New York, New York
| | - Mary K Dahmer
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Mott Children's Hospital and University of Michigan, Ann Arbor, Michigan
| | - Philip C Spinella
- Division of Critical Care, Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri
| | - Guillaume Emeriaud
- Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine and Université de Montréal, Montreal, Quebec, Canada
| | - Amanda B Hassinger
- Division of Pediatric Critical Care, Department of Pediatrics, Oishei Children's Hospital and University of Buffalo, Buffalo, New York
| | | | - Heidi R Flori
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Mott Children's Hospital and University of Michigan, Ann Arbor, Michigan
| | - Bereketeab Haileselassie
- Division of Pediatric Critical Care, Department of Pediatrics, Stanford University, Palo Alto, California
| | | | - Ranjit S Chima
- Division of Critical Care Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, Ohio
| | - Steven L Shein
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Rainbow Babies and Children's Hospital and Case Western Reserve University, Cleveland, Ohio
| | - Aline B Maddux
- Department of Pediatrics, Children's Hospital Colorado and University of Colorado, Aurora, Colorado
| | - Jon Lillie
- Evelina London Children's Hospital, London, United Kingdom
| | - Ledys Izquierdo
- Department of Pediatrics, Hospital Militar Central, Bogotá, Colombia
| | - Martin C J Kneyber
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Beatrix Children's Hospital and University of Groningen, Groningen, the Netherlands
| | - Lincoln S Smith
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Seattle Children's Hospital and University of Washington, Seattle, Washington
| | - Robinder G Khemani
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Los Angeles and University of Southern California, Los Angeles, California
| | - Neal J Thomas
- Division of Pediatric Critical Care Medicine, Department of Pediatrics and Public Health Science, Penn State Hershey Children's Hospital, Hershey, Pennsylvania and
| | - Nadir Yehya
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
22
|
|
23
|
Abstract
OBJECTIVES To characterize contemporary use of inhaled nitric oxide in pediatric acute respiratory failure and to assess relationships between clinical variables and outcomes. We sought to study the relationship of inhaled nitric oxide response to patient characteristics including right ventricular dysfunction and clinician responsiveness to improved oxygenation. We hypothesize that prompt clinician responsiveness to minimize hyperoxia would be associated with improved outcomes. DESIGN An observational cohort study. SETTING Eight sites of the Collaborative Pediatric Critical Care Research Network. PATIENTS One hundred fifty-one patients who received inhaled nitric oxide for a primary respiratory indication. MEASUREMENTS AND MAIN RESULTS Clinical data were abstracted from the medical record beginning at inhaled nitric oxide initiation and continuing until the earliest of 28 days, ICU discharge, or death. Ventilator-free days, oxygenation index, and Functional Status Scale were calculated. Echocardiographic reports were abstracted assessing for pulmonary hypertension, right ventricular dysfunction, and other cardiovascular parameters. Clinician responsiveness to improved oxygenation was determined. One hundred thirty patients (86%) who received inhaled nitric oxide had improved oxygenation by 24 hours. PICU mortality was 29.8%, while a new morbidity was identified in 19.8% of survivors. Among patients who had echocardiograms, 27.9% had evidence of pulmonary hypertension, 23.1% had right ventricular systolic dysfunction, and 22.1% had an atrial communication. Moderate or severe right ventricular dysfunction was associated with higher mortality. Clinicians responded to an improvement in oxygenation by decreasing FIO2 to less than 0.6 within 24 hours in 71% of patients. Timely clinician responsiveness to improved oxygenation with inhaled nitric oxide was associated with more ventilator-free days but not less cardiac arrests, mortality, or additional morbidity. CONCLUSIONS Clinician responsiveness to improved oxygenation was associated with less ventilator days. Algorithms to standardize ventilator management may improve signal to noise ratios in future trials enabling better assessment of the effect of inhaled nitric oxide on patient outcomes. Additionally, confining studies to more selective patient populations such as those with right ventricular dysfunction may be required.
Collapse
|
24
|
Birkner DR, Halvachizadeh S, Pape HC, Pfeifer R. Mortality of Adult Respiratory Distress Syndrome in Trauma Patients: A Systematic Review over a Period of Four Decades. World J Surg 2020; 44:2243-2254. [DOI: 10.1007/s00268-020-05483-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
25
|
Lam NN, Hung TD, Hung DK. Impact of “opening the lung” ventilatory strategy on burn patients with acute respiratory distress syndrome. Burns 2019; 45:1841-1847. [DOI: 10.1016/j.burns.2019.05.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 02/07/2023]
|
26
|
Allareddy V, Cheifetz IM. Clinical trials and future directions in pediatric acute respiratory distress syndrome. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:514. [PMID: 31728367 PMCID: PMC6828784 DOI: 10.21037/atm.2019.09.14] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 08/30/2019] [Indexed: 01/08/2023]
Abstract
The pediatric acute respiratory distress syndrome (PARDS), a description specific for children with acute respiratory distress syndrome (ARDS), was proposed in the recent Pediatric Acute Lung Injury Consensus Conference (PALICC, 2015). This recent standardization of PARDS diagnosis is expected to aid in uniform earlier recognition of the entity, enable use of consistent management strategies and potentially increase the ease of enrollment in future PARDS clinical trials-all of which are expected to optimize outcomes in PARDS. Clinical trials in PARDS are few but ongoing studies are expected to lay the foundation for future clinical studies. The Randomized Evaluation of Sedation Titration for Respiratory Failure trial (RESTORE) trial has revealed that a goal directed sedation protocol does not reduce the duration of invasive ventilation in critically ill children. PROSpect trial is a large multi-institute clinical trial that is expected to reveal optimal ventilation strategies and patient positioning (supine vs. prone) in patients with severe PARDS. The PARDS neuromuscular blockade (NMB) study is expected to yield important information about the impact of active NMB on PARDS outcomes. Information from these studies could be used to design future clinical trials in PARDS and to lessen the anecdotal or extrapolated experiences from adult clinical studies that often guide clinical practices in PARDS management. Finally, it is expected that these definitions and management strategies will be revised periodically as our understanding of PARDS evolves. Emerging data on PARDS subtypes suggest that patient heterogeneity is an important factor in designing these clinical trials.
Collapse
Affiliation(s)
- Veerajalandhar Allareddy
- Section Chief Pediatric Cardiac ICU, Duke Children's Hospital, Duke University Medical Center, Durham, NC, USA
| | - Ira M Cheifetz
- Section Chief Pediatric Cardiac ICU, Duke Children's Hospital, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
27
|
Orloff KE, Turner DA, Rehder KJ. The Current State of Pediatric Acute Respiratory Distress Syndrome. PEDIATRIC ALLERGY IMMUNOLOGY AND PULMONOLOGY 2019; 32:35-44. [PMID: 31236307 PMCID: PMC6589490 DOI: 10.1089/ped.2019.0999] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 03/24/2019] [Indexed: 12/16/2022]
Abstract
Pediatric acute respiratory distress syndrome (PARDS) is a significant cause of morbidity and mortality in children. Children with PARDS often require intensive care admission and mechanical ventilation. Unfortunately, beyond lung protective ventilation, there are limited data to support our management strategies in PARDS. The Pediatric Acute Lung Injury Consensus Conference (PALICC) offered a new definition of PARDS in 2015 that has improved our understanding of the true epidemiology and heterogeneity of the disease as well as risk stratification. Further studies will be crucial to determine optimal management for varying disease severity. This review will present the physiologic basis of PARDS, describe the unique pediatric definition and risk stratification, and summarize the current evidence for current standards of care as well as adjunctive therapies.
Collapse
Affiliation(s)
- Kirsten E Orloff
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Duke Children's Hospital, Durham, North Carolina
| | - David A Turner
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Duke Children's Hospital, Durham, North Carolina
| | - Kyle J Rehder
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Duke Children's Hospital, Durham, North Carolina
| |
Collapse
|
28
|
Gaudard P, Barbanti C, Rozec B, Mauriat P, M'rini M, Cambonie G, Liet JM, Girard C, Leger PL, Assaf Z, Damas P, Loron G, Lecourt L, Amour J, Pouard P. New Modalities for the Administration of Inhaled Nitric Oxide in Intensive Care Units After Cardiac Surgery or for Neonatal Indications: A Prospective Observational Study. Anesth Analg 2019; 126:1234-1240. [PMID: 29341967 DOI: 10.1213/ane.0000000000002813] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Nitric oxide (NO) has a well-known efficacy in pulmonary hypertension (PH), with wide use for 20 years in many countries. The objective of this study was to describe the current use of NO in real life and the gap with the guidelines. METHODS This is a multicenter, prospective, observational study on inhaled NO administered through an integrated delivery and monitoring device and indicated for PH according to the market authorizations. The characteristics of NO therapy and ventilation modes were observed. Concomitant pulmonary vasodilator treatments, safety data, and outcome were also collected. Quantitative data are expressed as median (25th, 75th percentile). RESULTS Over 1 year, 236 patients were included from 14 equipped and trained centers: 117 adults and 81 children with PH associated with cardiac surgery and 38 neonates with persistent PH of the newborn. Inhaled NO was initiated before intensive care unit (ICU) admission in 57%, 12.7%, and 38.9% with an initial dose of 10 (10, 15) ppm, 20 (18, 20) ppm, and 17 (11, 20) ppm, and a median duration of administration of 3.9 (1.9, 6.1) days, 3.8 (1.8, 6.8) days, and 3.1 (1.0, 5.7) days, respectively, for the adult population, pediatric cardiac group, and newborns. The treatment was performed using administration synchronized to the mechanical ventilation. The dose was gradually decreased before withdrawal in 86% of the cases according to the usual procedure of each center. Adverse events included rebound effect for 3.4% (95% confidence interval [CI], 0.9%-8.5%) of adults, 1.2% (95% CI, 0.0%-6.7%) of children, and 2.6% (95% CI, 0.1%-13.8%) of neonates and methemoglobinemia exceeded 2.5% for 5 of 62 monitored patients. Other pulmonary vasodilators were associated with NO in 23% of adults, 95% of children, and 23.7% of neonates. ICU stay was respectively 10 (6, 22) days, 7.5 (5.5, 15) days, and 9 (8, 15) days and ICU mortality was 22.2%, 6.2%, and 7.9% for adults, children, and neonates, respectively. CONCLUSIONS This study confirms the safety of NO therapy in the 3 populations with a low rate of rebound effect. Gradual withdrawal of NO combined with pulmonary vasodilators are current practices in this population. The use of last-generation NO devices allowed good compliance with recommendations.
Collapse
Affiliation(s)
- Philippe Gaudard
- From the Cardiothoracic Intensive Care Unit, Centre Hospitalier Universitaire de Montpellier, and PhyMedExp, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Claudio Barbanti
- Pediatric Cardiac Intensive Care, Anesthesia and Perfusion Unit, Reference Centre for Complex Congenital Cardiac Disease, Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Bertrand Rozec
- Department of Anesthesia and Intensive Care, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Philippe Mauriat
- Congenital Cardiac Surgery Unit, Department of Anesthesia and Intensive Care II, Maison du Haut Lévêque - Groupe Hospitalier Sud, Pessac, France
| | | | - Gilles Cambonie
- Neonatal and pediatric Intensive Care Unit, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Jean Michel Liet
- Pediatric Intensive Care Unit, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Claude Girard
- Cardiovascular Intensive Care Unit, Centre Hospitalier Universitaire Bocage Central, Dijon, France
| | | | - Ziad Assaf
- Pediatric Cardiac Intensive Care, Anesthesia and Perfusion Unit, Reference Centre for Complex Congenital Cardiac Disease, Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Pierre Damas
- Intensive Care Unit, Centre Hospitalier Universitaire de Liège, Liège, Belgique
| | - Gauthier Loron
- Neonatal Intensive Care Unit, Centre Hospitalier Universitaire de Reims, Reims, France
| | | | - Julien Amour
- Sorbonne Universités, UPMC Univ Paris 06, UMR INSERM 1166, IHU ICAN, and Department of Anesthesiology and Critical Care Medicine, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Philippe Pouard
- Pediatric Cardiac Intensive Care, Anesthesia and Perfusion Unit, Reference Centre for Complex Congenital Cardiac Disease, Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
29
|
|
30
|
Nazarenko MB, Kruglyakov NM, Semenov MS, Zabelin MV, Udalov YD, Samoylov AS, Popugaev KA. [Topical respiratory strategies in neurocritical care]. ZHURNAL VOPROSY NEĬROKHIRURGII IMENI N. N. BURDENKO 2018; 81:104-116. [PMID: 29076474 DOI: 10.17116/neiro2017815104-114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Management of the respiratory tract and maintenance of adequate gas exchange are the basic goals of critical care. Injury to the nervous system is often accompanied by development of respiratory disorders. On the other hand, changes in the gas composition of arterial blood can cause brain damage. In addition, approaches to the patient with respiratory failure, which are used in general critical care and neurocritical care, may differ. The presented literature review is devoted to modern respiratory strategies used in neurocritical care.
Collapse
Affiliation(s)
| | - N M Kruglyakov
- Burnazyan Federal Medical and Biophysical Center, Moscow, Russia
| | - M S Semenov
- Burnazyan Federal Medical and Biophysical Center, Moscow, Russia
| | - M V Zabelin
- Burnazyan Federal Medical and Biophysical Center, Moscow, Russia
| | - Yu D Udalov
- Burnazyan Federal Medical and Biophysical Center, Moscow, Russia
| | - A S Samoylov
- Burnazyan Federal Medical and Biophysical Center, Moscow, Russia
| | - K A Popugaev
- Burnazyan Federal Medical and Biophysical Center, Moscow, Russia
| |
Collapse
|
31
|
Abstract
Even after many years of intensive research acute respiratory distress syndrome (ARDS) is still associated with a high mortality. Epidemiologically, ARDS represents a central challenge for modern intensive care treatment. The multifactorial etiology of ARDS complicates the clear identification and evaluation of new therapeutic interventions. Lung protective mechanical ventilation and adjuvant therapies, such as the prone position and targeted extracorporeal lung support are of particular importance in the treatment of ARDS, depending on the severity of the disease. In order to guarantee an individualized and needs-adapted treatment, ARDS patients benefit from treatment in specialized centers.
Collapse
|
32
|
Abstract
Ferritin subunits of heavy and light polypeptide chains self-assemble into a spherical nanocage that serves as a natural transport vehicle for metals but can include diverse cargoes. Ferritin nanoparticles are characterized by remarkable stability, small and uniform size. Chemical modifications and molecular re-engineering of ferritin yield a versatile platform of nanocarriers capable of delivering a broad range of therapeutic and imaging agents. Targeting moieties conjugated to the ferritin external surface provide multivalent anchoring of biological targets. Here, we highlight some of the current work on ferritin as well as examine potential strategies that could be used to functionalize ferritin via chemical and genetic means to enable its utility in vascular drug delivery.
Collapse
|
33
|
Bunge JJH, Caliskan K, Gommers D, Reis Miranda D. Right ventricular dysfunction during acute respiratory distress syndrome and veno-venous extracorporeal membrane oxygenation. J Thorac Dis 2018; 10:S674-S682. [PMID: 29732186 DOI: 10.21037/jtd.2017.10.75] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Severe ARDS can be complicated by right ventricular (RV) failure. The etiology of RV failure in ARDS is multifactorial. Vascular alterations, hypoxia, hypercapnia and effects of mechanical ventilation may play a role. Echocardiography has an important role in diagnosing RV failure in ARDS patients. Once extracorporeal membrane oxygenation (ECMO) is indicated in these patients, the right ECMO modus needs to be chosen. In this review, the etiology, diagnosis and management of RV failure in ARDS will be briefly outlined. The beneficial effect of veno-venous (VV) ECMO on RV function in these patients will be illustrated. Based on this, we will give recommendations regarding choice of ECMO modus and provide an algorithm for management of RV failure in VV ECMO supported patients.
Collapse
Affiliation(s)
- Jeroen J H Bunge
- Department of Intensive Care, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Kadir Caliskan
- Department of Cardiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Diederik Gommers
- Department of Intensive Care, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Dinis Reis Miranda
- Department of Intensive Care, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
34
|
Rao V, Ghadimi K, Keeyapaj W, Parsons CA, Cheung AT. Inhaled Nitric Oxide (iNO) and Inhaled Epoprostenol (iPGI 2) Use in Cardiothoracic Surgical Patients: Is there Sufficient Evidence for Evidence-Based Recommendations? J Cardiothorac Vasc Anesth 2017; 32:1452-1457. [PMID: 29336971 DOI: 10.1053/j.jvca.2017.12.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Vidya Rao
- Department of Anesthesiology, Stanford University, Stanford, CA
| | - Kamrouz Ghadimi
- Department of Anesthesiology, Duke University Medical Center, Durham, NC
| | | | | | - Albert T Cheung
- Department of Anesthesiology, Stanford University, Stanford, CA.
| |
Collapse
|
35
|
Association of Response to Inhaled Nitric Oxide and Duration of Mechanical Ventilation in Pediatric Acute Respiratory Distress Syndrome. Pediatr Crit Care Med 2017; 18:1019-1026. [PMID: 29099443 PMCID: PMC5679068 DOI: 10.1097/pcc.0000000000001305] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Literature regarding appropriate use of inhaled nitric oxide for pediatric acute respiratory distress syndrome is sparse. This study aims to determine if positive response to inhaled nitric oxide is associated with decreased mortality and duration of mechanical ventilation in pediatric acute respiratory distress syndrome. DESIGN Retrospective cohort study. SETTING Large pediatric academic medical center. PATIENTS OR SUBJECTS One hundred sixty-one children with pediatric acute respiratory distress syndrome and inhaled nitric oxide exposure for greater than or equal to 1 hour within 3 days of pediatric acute respiratory distress syndrome onset. INTERVENTIONS Patients with greater than or equal to 20% improvement in oxygenation index or oxygen saturation index by 6 hours after inhaled nitric oxide initiation were classified as "responders." MEASUREMENTS AND MAIN RESULTS Oxygenation index, oxygen saturation index, and ventilator settings were evaluated prior to inhaled nitric oxide initiation and 1, 6, 12, and 24 hours following inhaled nitric oxide initiation. Primary outcomes were mortality and duration of mechanical ventilation. Baseline characteristics, including severity of illness, were similar between responders and nonresponders. Univariate analysis showed no difference in mortality between responders and nonresponders (21% vs 21%; p = 0.999). Ventilator days were significantly lower in responders (10 vs 16; p < 0.001). Competing risk regression (competing risk of death) confirmed association between inhaled nitric oxide response and successful extubation (subdistribution hazard ratio = 2.11; 95% CI, 1.41-3.17; p < 0.001). Response to inhaled nitric oxide was associated with decreased utilization of high-frequency oscillatory ventilation and extracorporeal membrane oxygenation and lower hospital charges (difference in medians of $424,000). CONCLUSIONS Positive response to inhaled nitric oxide was associated with fewer ventilator days, without change in mortality, potentially via reduced use of high-frequency oscillatory ventilation and extracorporeal membrane oxygenation. Future studies of inhaled nitric oxide for pediatric acute respiratory distress syndrome should stratify based on oxygenation response, given the association with favorable outcomes.
Collapse
|
36
|
Heidemann SM, Nair A, Bulut Y, Sapru A. Pathophysiology and Management of Acute Respiratory Distress Syndrome in Children. Pediatr Clin North Am 2017; 64:1017-1037. [PMID: 28941533 PMCID: PMC9683071 DOI: 10.1016/j.pcl.2017.06.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is a syndrome of noncardiogenic pulmonary edema and hypoxia that accompanies up to 30% of deaths in pediatric intensive care units. Pediatric ARDS (PARDS) is diagnosed by the presence of hypoxia, defined by oxygenation index or Pao2/Fio2 ratio cutoffs, and new chest infiltrate occurring within 7 days of a known insult. Hallmarks of ARDS include hypoxemia and decreased lung compliance, increased work of breathing, and impaired gas exchange. Mortality is often accompanied by multiple organ failure. Although many modalities to treat PARDS have been investigated, supportive therapies and lung protective ventilator support remain the mainstay.
Collapse
Affiliation(s)
| | - Alison Nair
- Department of Pediatrics, University of California, San Francisco, CA
| | - Yonca Bulut
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, CA
| | - Anil Sapru
- Department of Pediatrics, University of California, San Francisco, 550 16th Street, Box 0110 San Francisco, CA 94143, USA; Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
37
|
Zhao DH, Wu YJ, Liu ST, Liu RY. Salvianolic acid B attenuates lipopolysaccharide-induced acute lung injury in rats through inhibition of apoptosis, oxidative stress and inflammation. Exp Ther Med 2017; 14:759-764. [PMID: 28672996 DOI: 10.3892/etm.2017.4534] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 01/06/2017] [Indexed: 01/16/2023] Open
Abstract
The present study was performed to assess the protective effect of salvianolic acid B on lipopolysaccharide (LPS)-induced acute lung injury (ALI). Sprague Dawley rats were injected with 100 µg/kg LPS through a 24-gauge catheter. One group of rats was pre-treated with salvianolic acid B (1 mg/ml; 20 ml/kg body weight) 1 h prior to LPS challenge, then 20 ml/kg salvianolic acid B every 2 days for 4 weeks thereafter. Salvianolic acid B attenuated LPS-induced increases in the lung wet/dry weight rate and lung tissue injury in ALI model rats. LPS-induced changes in the content of caspase-3, malondialdehyde, superoxide dismutase, catalase, glutathione peroxidase, tumor necrosis factor-α and interleukin-6 in ALI model rats were attenuated by treatment with salvianolic acid B. Furthermore, treatment with salvianolic acid B inhibited the protein expression of type I collagen I, endogenous transforming growth factor-β1 production and α-smooth muscle actin in ALI model rats. These findings indicated that salvianolic acid B attenuates LPS-induced ALI through inhibition of apoptosis, oxidative stress and inflammation in rats and therefore exertsa protective effect against ALI.
Collapse
Affiliation(s)
- Da-Hai Zhao
- Department of Respiratory Medicine, The Second Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China.,Department of Pulmonary Medicine, Anhui Geriatric Institute, The First Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Yu-Jie Wu
- Department of Respiratory Medicine, The Second Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Shu-Ting Liu
- Department of Respiratory Medicine, The Second Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Rong-Yu Liu
- Department of Pulmonary Medicine, Anhui Geriatric Institute, The First Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| |
Collapse
|
38
|
Effect of Inhaled Nitric Oxide on Outcomes in Children With Acute Lung Injury: Propensity Matched Analysis From a Linked Database. Crit Care Med 2017; 44:1901-9. [PMID: 27163193 DOI: 10.1097/ccm.0000000000001837] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To evaluate the effect of inhaled nitric oxide on outcomes in children with acute lung injury. DESIGN Retrospective study with a secondary data analysis of linked data from two national databases. Propensity score matching was performed to adjust for potential confounding variables between patients who received at least 24 hours of inhaled nitric oxide (inhaled nitric oxide group) and those who did not receive inhaled nitric oxide (no inhaled nitric oxide group). SETTING Linked data from Virtual Pediatric Systems (LLC) database and Pediatric Health Information System. PATIENTS Patients less than 18 years old receiving mechanical ventilation for acute lung injury at nine participating hospitals were included (2009-2014). INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS A total of 20,106 patients from nine hospitals were included. Of these, 859 patients (4.3%) received inhaled nitric oxide for at least 24 hours during their hospital stay. Prior to matching, patients in the inhaled nitric oxide group were younger, with more comorbidities, greater severity of illness scores, higher prevalence of cardiopulmonary resuscitation, and greater resource utilization. Before matching, unadjusted outcomes, including mortality, were worse in the inhaled nitric oxide group (inhaled nitric oxide vs no inhaled nitric oxide; 25.7% vs 7.9%; p < 0.001; standardized mortality ratio, 2.6 [2.3-3.1] vs 1.1 [1.0-1.2]; p < 0.001). Propensity score matching of 521 patient pairs revealed no difference in mortality in the two groups (22.3% vs 20.2%; p = 0.40; standardized mortality ratio, 2.5 [2.1-3.0] vs 2.3 [1.9-2.8]; p = 0.53). However, the other outcomes such as ventilation free days (10.1 vs 13.6 d; p < 0.001), duration of mechanical ventilation (13.8 vs 10.1 d; p < 0.001), duration of ICU and hospital stay (15.5 vs 12.2 d; p < 0.001 and 28.0 vs 24.1 d; p < 0.001), and hospital costs ($150,569 vs $102,823; p < 0.001) were significantly worse in the inhaled nitric oxide group. CONCLUSIONS This large observational study demonstrated that inhaled nitric oxide administration in children with acute lung injury was not associated with improved mortality. Rather, it was associated with increased hospital utilization and hospital costs.
Collapse
|
39
|
Albert M, Corsilli D, Williamson DR, Brosseau M, Bellemare P, Delisle S, Nguyen AQN, Varin F. Comparison of inhaled milrinone, nitric oxide and prostacyclin in acute respiratory distress syndrome. World J Crit Care Med 2017; 6:74-78. [PMID: 28224110 PMCID: PMC5295172 DOI: 10.5492/wjccm.v6.i1.74] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/03/2016] [Accepted: 12/19/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To evaluate the safety and efficacy of inhaled milrinone in acute respiratory distress syndrome (ARDS).
METHODS Open-label prospective cross-over pilot study where fifteen adult patients with hypoxemic failure meeting standard ARDS criteria and monitored with a pulmonary artery catheter were recruited in an academic 24-bed medico-surgical intensive care unit. Random sequential administration of iNO (20 ppm) or nebulized epoprostenol (10 μg/mL) was done in all patients. Thereafter, inhaled milrinone (1 mg/mL) alone followed by inhaled milrinone in association with inhaled nitric oxide (iNO) was administered. A jet nebulization device synchronized with the mechanical ventilation was use to administrate the epoprostenol and the milrinone. Hemodynamic measurements and partial pressure of arterial oxygen (PaO2) were recorded before and after each inhaled therapy administration.
RESULTS The majority of ARDS were of pulmonary cause (n = 13) and pneumonia (n = 7) was the leading underlying initial disease. Other pulmonary causes of ARDS were: Post cardiopulmonary bypass (n = 2), smoke inhalation injury (n = 1), thoracic trauma and pulmonary contusions (n = 2) and aspiration (n = 1). Two patients had an extra pulmonary cause of ARDS: A polytrauma patient and an intra-abdominal abscess Inhaled nitric oxide, epoprostenol, inhaled milrinone and the combination of inhaled milrinone and iNO had no impact on systemic hemodynamics. No significant adverse events related to study medications were observed. The median increase of PaO2 from baseline was 8.8 mmHg [interquartile range (IQR) = 16.3], 6.0 mmHg (IQR = 18.4), 6 mmHg (IQR = 15.8) and 9.2 mmHg (IQR = 20.2) respectively with iNO, epoprostenol, inhaled milrinone, and iNO added to milrinone. Only iNO and the combination of inhaled milrinone and iNO had a statistically significant effect on PaO2.
CONCLUSION When comparing the effects of inhaled NO, milrinone and epoprostenol, only NO significantly improved oxygenation. Inhaled milrinone appeared safe but failed to improve oxygenation in ARDS.
Collapse
|
40
|
Sepsis: frontiers in supportive care, organisation and research. Intensive Care Med 2017; 43:496-508. [DOI: 10.1007/s00134-017-4677-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/03/2017] [Indexed: 01/05/2023]
|
41
|
Cho YJ, Moon JY, Shin ES, Kim JH, Jung H, Park SY, Kim HC, Sim YS, Rhee CK, Lim J, Lee SJ, Lee WY, Lee HJ, Kwak SH, Kang EK, Chung KS, Choi WI, The Korean Society of Critical Care Medicine, The Korean Academy of Tuberculosis and Respiratory Diseases Consensus Group. Clinical Practice Guideline of Acute Respiratory Distress Syndrome. Tuberc Respir Dis (Seoul) 2016; 79:214-233. [PMID: 27790273 PMCID: PMC5077725 DOI: 10.4046/trd.2016.79.4.214] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 06/27/2016] [Accepted: 08/16/2016] [Indexed: 12/29/2022] Open
Abstract
There is no well-stated practical guideline for mechanically ventilated patients with or without acute respiratory distress syndrome (ARDS). We generate strong (1) and weak (2) grade of recommendations based on high (A), moderate (B) and low (C) grade in the quality of evidence. In patients with ARDS, we recommend low tidal volume ventilation (1A) and prone position if it is not contraindicated (1B) to reduce their mortality. However, we did not support high-frequency oscillatory ventilation (1B) and inhaled nitric oxide (1A) as a standard treatment. We also suggest high positive end-expiratory pressure (2B), extracorporeal membrane oxygenation as a rescue therapy (2C), and neuromuscular blockage for 48 hours after starting mechanical ventilation (2B). The application of recruitment maneuver may reduce mortality (2B), however, the use of systemic steroids cannot reduce mortality (2B). In mechanically ventilated patients, we recommend light sedation (1B) and low tidal volume even without ARDS (1B) and suggest lung protective ventilation strategy during the operation to lower the incidence of lung complications including ARDS (2B). Early tracheostomy in mechanically ventilated patients can be performed only in limited patients (2A). In conclusion, of 12 recommendations, nine were in the management of ARDS, and three for mechanically ventilated patients.
Collapse
Affiliation(s)
- Young-Jae Cho
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Jae Young Moon
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Korea
| | - Ein-Soon Shin
- Research Agency for Clinical Practice Guidelines, Korean Academy of Medical Sciences Research Center, Seoul, Korea
| | - Je Hyeong Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Korea
| | - Hoon Jung
- Department of Pulmonary and Critical Care Medicine, Inje University Ilsan Paik Hospital, Goyang, Korea
| | - So Young Park
- Department of Pulmonary and Critical Care Medicine, Kyung Hee University Medical Center, Seoul, Korea
| | - Ho Cheol Kim
- Department of Internal Medicine, Gyeongsang National University Changwon Hospital, Gyeongsang National University School of Medicine, Changwon, Korea
| | - Yun Su Sim
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Hallym University Kangnam Sacred Heart Hospital, Seoul, Korea
| | - Chin Kook Rhee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jaemin Lim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung, Korea
| | - Seok Jeong Lee
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Won-Yeon Lee
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Hyun Jeong Lee
- Department of Anesthesiology and Pain Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Sang Hyun Kwak
- Department of Anesthesiology and Pain Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Eun Kyeong Kang
- Department of Pediatrics, Dongguk University Ilsan Hospital, Goyang, Korea
| | - Kyung Soo Chung
- Division of Pulmonology, Department of Internal Medicine, Severance Hospital, Institute of Chest Diseases, Yonsei University College of Medicine, Seoul, Korea
| | - Won-Il Choi
- Department of Internal Medicine, Keimyung University Dongsan Hospital, Daegu, Korea
| | | | | |
Collapse
|
42
|
Schili J, Tilney PVR, Gutsche JT, Cohen J. A 63-Year-Old Male Interfacility Transfer for Extracorporeal Membrane Oxygenation Evaluation. Air Med J 2016; 35:261-4. [PMID: 27637433 DOI: 10.1016/j.amj.2016.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 06/10/2016] [Indexed: 11/24/2022]
|
43
|
Refractory Hypoxemia and Use of Rescue Strategies. A U.S. National Survey of Adult Intensivists. Ann Am Thorac Soc 2016; 13:1105-14. [DOI: 10.1513/annalsats.201508-560oc] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
44
|
Akter F, Coghlan G, de Mel A. Nitric oxide in paediatric respiratory disorders: novel interventions to address associated vascular phenomena? Ther Adv Cardiovasc Dis 2016; 10:256-70. [PMID: 27215618 DOI: 10.1177/1753944716649893] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Nitric oxide (NO) has a significant role in modulating the respiratory system and is being exploited therapeutically. Neonatal respiratory failure can affect around 2% of all live births and is responsible for over one third of all neonatal mortality. Current treatment method with inhaled NO (iNO) has demonstrated great benefits to patients with persistent pulmonary hypertension, bronchopulmonary dysplasia and neonatal respiratory distress syndrome. However, it is not without its drawbacks, which include the need for patients to be attached to mechanical ventilators. Notably, there is also a lack of identification of subgroups amongst abovementioned patients, and homogeneity in powered studies associated with iNO, which is one of the limitations. There are significant developments in drug delivery methods and there is a need to look at alternative or supplementary methods of NO delivery that could reduce current concerns. The addition of NO-independent activators and stimulators, or drugs such as prostaglandins to work in synergy with NO donors might be beneficial. It is of interest to consider such delivery methods within the respiratory system, where controlled release of NO can be introduced whilst minimizing the production of harmful byproducts. This article reviews current therapeutic application of iNO and the state-of-the-art technology methods for sustained delivery of NO that may be adapted and developed to address respiratory disorders. We envisage this perspective would prompt active investigation of such systems for their potential clinical benefit.
Collapse
Affiliation(s)
- Farhana Akter
- UCL Centre for Nanotechnology and Regenerative Medicine; Division of Surgery and Interventional Science, UCL, UK
| | - Gerry Coghlan
- Pulmonary Hypertension Unit, Royal Free London NHS Foundation Trust, UK
| | - Achala de Mel
- Lecturer in Regenerative Medicine, UCL Centre for Nanotechnology and Regenerative Medicine, Division of Surgery and Interventional Science, University College London, Royal Free NHS Trust Hospital, 9th Floor, Room 355, Pond Street, London NW3 2QG, UK
| |
Collapse
|
45
|
Levy SD, Alladina JW, Hibbert KA, Harris RS, Bajwa EK, Hess DR. High-flow oxygen therapy and other inhaled therapies in intensive care units. Lancet 2016; 387:1867-78. [PMID: 27203510 DOI: 10.1016/s0140-6736(16)30245-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this Series paper, we review the current evidence for the use of high-flow oxygen therapy, inhaled gases, and aerosols in the care of critically ill patients. The available evidence supports the use of high-flow nasal cannulae for selected patients with acute hypoxaemic respiratory failure. Heliox might prevent intubation or improve gas flow in mechanically ventilated patients with severe asthma. Additionally, it might improve the delivery of aerosolised bronchodilators in obstructive lung disease in general. Inhaled nitric oxide might improve outcomes in a subset of patients with postoperative pulmonary hypertension who had cardiac surgery; however, it has not been shown to provide long-term benefit in patients with acute respiratory distress syndrome (ARDS). Inhaled prostacyclins, similar to inhaled nitric oxide, are not recommended for routine use in patients with ARDS, but can be used to improve oxygenation in patients who are not adequately stabilised with traditional therapies. Aerosolised bronchodilators are useful in mechanically ventilated patients with asthma and chronic obstructive pulmonary disease, but are not recommended for those with ARDS. Use of aerosolised antibiotics for ventilator-associated pneumonia and ventilator-associated tracheobronchitis shows promise, but the delivered dose can be highly variable if proper attention is not paid to the delivery method.
Collapse
Affiliation(s)
- Sean D Levy
- Division of Pulmonary, Critical Care, and Sleep Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jehan W Alladina
- Division of Pulmonary, Critical Care, and Sleep Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kathryn A Hibbert
- Division of Pulmonary, Critical Care, and Sleep Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - R Scott Harris
- Division of Pulmonary, Critical Care, and Sleep Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ednan K Bajwa
- Division of Pulmonary, Critical Care, and Sleep Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Dean R Hess
- Respiratory Care, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
46
|
Combination therapy with nitric oxide and molecular hydrogen in a murine model of acute lung injury. Shock 2016; 43:504-11. [PMID: 25643010 DOI: 10.1097/shk.0000000000000316] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Acute lung injury (ALI) is still a leading cause of morbidity and mortality in critically ill patients. Inhaled nitric oxide (NO) has been reported to ameliorate ALI. However, reactive nitrogen species produced by NO can cause lung injury. Because hydrogen gas (H2) is reported to eliminate peroxynitrite, it is expected to reduce the adverse effects of NO. Moreover, we have found that H2 inhalation can attenuate lung injury. Therefore, we hypothesized that combination therapy with NO and H2 might afford more potent therapeutic strategies for ALI. In the present study, a mouse model of ALI was induced by intratracheal administration of lipopolysaccharide (LPS). The animals were treated with inhaled NO (20 ppm), H2 (2%), or NO + H2, starting 5 min after LPS administration for 3 h. We found that LPS-challenged mice exhibited significant lung injury characterized by the deterioration of histopathology and histologic scores, wet-to-dry weight ratio, and oxygenation index (ratio of oxygen tension to inspired oxygen fraction [Pao2/Fio2]), as well as total protein in the bronchoalveolar lavage fluid (BALF), which was attenuated by NO or H2 treatment alone. Combination therapy with NO and H2 had a more beneficial effect with significant interaction between the two. While the nitrotyrosine level in lung tissue was prominent after NO inhalation alone, it was significantly eliminated after breathing a mixture of NO with H2. Furthermore, NO or H2 treatment alone markedly attenuated LPS-induced lung neutrophil recruitment and inflammation, as evidenced by downregulation of lung myeloperoxidase activity, total cells, and polymorphonuclear neutrophils in BALF, as well as proinflammatory cytokines (tumor necrosis factor α, interleukins 1β and 6, and high-mobility group box 1) and chemokines (keratinocyte-derived chemokine, macrophage inflammatory proteins 1α and 2, and monocyte chemoattractant protein 1) in BALF. Combination therapy with NO and H2 had a more beneficial effect against lung inflammatory response. Moreover, combination therapy with NO and H2 could more effectively inhibit LPS-induced pulmonary early and late nuclear factor κB activation as well as pulmonary cell apoptosis. In addition, combination treatment with inhaled NO and H2 could also significantly attenuate lung injury in polymicrobial sepsis. Combination therapy with subthreshold concentrations of NO and H2 still had a significantly beneficial effect against lung injury induced by LPS and polymicrobial sepsis. Collectively, these results demonstrate that combination therapy with NO and H2 provides enhanced therapeutic efficacy for ALI.
Collapse
|
47
|
Goldenberg NM, Kuebler WM. Endothelial cell regulation of pulmonary vascular tone, inflammation, and coagulation. Compr Physiol 2016; 5:531-59. [PMID: 25880504 DOI: 10.1002/cphy.c140024] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The pulmonary endothelium represents a heterogeneous cell monolayer covering the luminal surface of the entire lung vasculature. As such, this cell layer lies at a critical interface between the blood, airways, and lung parenchyma, and must act as a selective barrier between these diverse compartments. Lung endothelial cells are able to produce and secrete mediators, display surface receptor, and cellular adhesion molecules, and metabolize circulating hormones to influence vasomotor tone, both local and systemic inflammation, and coagulation functions. In this review, we will explore the role of the pulmonary endothelium in each of these systems, highlighting key regulatory functions of the pulmonary endothelial cell, as well as novel aspects of the pulmonary endothelium in contrast to the systemic cell type. The interactions between pulmonary endothelial cells and both leukocytes and platelets will be discussed in detail, and wherever possible, elements of endothelial control over physiological and pathophysiological processes will be examined.
Collapse
Affiliation(s)
- Neil M Goldenberg
- The Keenan Research Centre for Biomedical Science of St. Michael's, Toronto, Ontario, Canada; Department of Anesthesia, University of Toronto, Ontario, Canada
| | - Wolfgang M Kuebler
- The Keenan Research Centre for Biomedical Science of St. Michael's, Toronto, Ontario, Canada; German Heart Institute Berlin, Germany; Institute of Physiology, Charité-Universitätsmedizin Berlin, Germany; Department of Surgery, University of Toronto, Ontario, Canada; Department of Physiology, University of Toronto, Ontario,Canada
| |
Collapse
|
48
|
Cho YJ, Moon JY, Shin ES, Kim JH, Jung H, Park SY, Kim HC, Sim YS, Rhee CK, Lim J, Lee SJ, Lee WY, Lee HJ, Kwak SH, Kang EK, Chung KS, Choi WI. Clinical Practice Guideline of Acute Respiratory Distress Syndrome. Korean J Crit Care Med 2016. [DOI: 10.4266/kjccm.2016.31.2.76] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Young-Jae Cho
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jae Young Moon
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Korea
| | - Ein-Soon Shin
- Research Agency for Clinical Practice Guidelines, Korean Academy of Medical Sciences Research Center, Seoul, Korea
| | - Je Hyeong Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Korea University Ansan Hospital, Ansan, Korea University College of Medicine, Korea
| | - Hoon Jung
- Department of Pulmonary and Critical Care Medicine, Inje University Ilsan Paik Hospital, Goyang, Korea
| | - So Young Park
- Department of Pulmonary and Critical Care Medicine, Kyung Hee University Medical Center, Seoul, Korea
| | - Ho Cheol Kim
- Department of Internal Medicine, Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon, Korea
| | - Yun Su Sim
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Hallym University Kangnam Sacred Heart Hospital, Seoul, Korea
| | - Chin Kook Rhee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Seoul St. Mary's Hospital, Catholic University of Korea, Seoul, Korea
| | - Jaemin Lim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Gangneung Asan Hospital, University of Ulsan Medical College of Medicine, Gangneung, Korea
| | - Seok Jeong Lee
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Won-Yeon Lee
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Hyun Jeong Lee
- Department of Anesthesiology and Pain Medicine, Chonnam National University Medical School and Hospital, Gwangju, Korea
| | - Sang Hyun Kwak
- Department of Anesthesiology and Pain Medicine, Chonnam National University Medical School and Hospital, Gwangju, Korea
| | - Eun Kyeong Kang
- Department of Pediatrics, Dongguk University Ilsan Hospital, Goyang, Korea
| | - Kyung Soo Chung
- Division of Pulmonology, Department of Internal Medicine, Severance Hospital, Institute of Chest Diseases, Yonsei University College of Medicine, Seoul, Korea
| | - Won-Il Choi
- Department of Internal Medicine, Keimyung University Dongsan Hospital, Daegu, Korea
| | | |
Collapse
|
49
|
Hunt JL, Bronicki RA, Anas N. Role of Inhaled Nitric Oxide in the Management of Severe Acute Respiratory Distress Syndrome. Front Pediatr 2016; 4:74. [PMID: 27532031 PMCID: PMC4970488 DOI: 10.3389/fped.2016.00074] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/05/2016] [Indexed: 01/18/2023] Open
Abstract
To date, there have been several systematic reviews with meta-analysis that have shown no reduction in mortality with the use of inhaled nitric oxide (iNO) in patients with acute respiratory distress syndrome (ARDS). Importantly, these reports fail to make a distinction between the pediatric and adult patient. The number of adult patients in these reviews are far greater than the number of pediatric patients, which makes it difficult to interpret the data regarding the role of iNO on the pediatric population. Extrapolating data from the adult population to the pediatric population is complicated as we know that physiology and the body's response to disease can be different between adult and pediatric patients. iNO has been demonstrated to improve outcomes in term and near-term infants with hypoxic respiratory failure associated with pulmonary hypertension. Recently, Bronicki et al. published a prospective randomized control trial investigating the impact of iNO on the pediatric patient population with acute respiratory failure. In this study, a benefit of decreased duration of mechanical ventilation and an increased rate of ECMO-free survival was demonstrated in patients who were randomized to receiving iNO, suggesting that there may be benefit to the use of iNO in pediatric ARDS (PARDS) that has not been demonstrated in adults. iNO has repeatedly been shown to transiently improve oxygenation in all age groups, and yet neonates and pediatric patients have shown improvement in other outcomes that have not been seen in adults. The mechanism that explains improvement with the use of iNO in these patient populations are not well understood but does not appear to be solely a result of sustained improvement in oxygenation. There are physiologic studies that suggest alternative mechanisms for explaining the positive effects of iNO, such as platelet aggregation inhibition and reduction in systemic inflammation. Hence, the role of iNO by various mechanisms and in various age groups warrants further investigation.
Collapse
Affiliation(s)
| | | | - Nick Anas
- CHOC Children's Hospital , Orange, CA , USA
| |
Collapse
|
50
|
Torbic H, Szumita PM, Anger KE, Nuccio P, Lagambina S, Weinhouse G. Clinical and Economic Impact of Formulary Conversion From Inhaled Flolan to Inhaled Veletri for Refractory Hypoxemia in Critically Ill Patients. Ann Pharmacother 2015; 50:106-12. [PMID: 26668204 DOI: 10.1177/1060028015621308] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Flolan (iFLO) and Veletri (iVEL) are 2 inhaled epoprostenol formulations. There is no published literature comparing these formulations in critically ill patients with refractory hypoxemia. OBJECTIVE To compare efficacy, safety, and cost outcomes in patients who received either iFLO or iVEL for hypoxic respiratory failure. METHODS This was a retrospective, single-center analysis of adult, mechanically ventilated patients receiving iFLO or iVEL for improvement in oxygenation. The primary end point was the change in the PaO2/FiO2 ratio after 1 hour of pulmonary vasodilator therapy. Secondary end points assessed were intensive care unit (ICU) length of stay (LOS), hospital LOS, duration of study therapy, duration of mechanical ventilation, mortality, incidence of adverse events, and cost. RESULTS A total of 104 patients were included (iFLO = 52; iVEL = 52). More iFLO patients had acute respiratory distress syndrome compared with the iVEL group (61.5 vs 34.6%; P = 0.01). There was no difference in the change in the PaO2/FiO2 ratio after 1 hour of therapy (33.04 ± 36.9 vs 31.47 ± 19.92; P = 0.54) in the iFLO and iVEL groups, respectively. Patients who received iVEL had a shorter duration of mechanical ventilation (P < 0.001) and ICU LOS (P < 0.001) but not hospital LOS (P = 0.86) and duration of therapy (P = 0.36). No adverse events were attributed to pulmonary vasodilator therapy, and there was no difference in cost. CONCLUSIONS We found no difference between iFLO and iVEL when comparing the change in the PaO2/FiO2 ratio, safety, and cost in hypoxic, critically ill patients. There were differences in secondary outcomes, likely a result of differences in underlying indication for inhaled epoprostenol.
Collapse
Affiliation(s)
| | | | | | - Paul Nuccio
- Brigham and Women's Hospital, Boston, MA, USA
| | | | | |
Collapse
|