1
|
Rao SP, Xie W, Christopher Kwon YI, Juckel N, Xie J, Dronamraju VR, Vince R, Lee MK, More SS. Sulfanegen stimulates 3-mercaptopyruvate sulfurtransferase activity and ameliorates Alzheimer's disease pathology and oxidative stress in vivo. Redox Biol 2022; 57:102484. [PMID: 36183541 PMCID: PMC9530613 DOI: 10.1016/j.redox.2022.102484] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/31/2022] [Accepted: 09/19/2022] [Indexed: 02/08/2023] Open
Abstract
Increased oxidative stress and inflammation are implicated in the pathogenesis of Alzheimer's disease. Treatment with hydrogen sulfide (H2S) and H2S donors such as sodium hydrosulfide (NaSH) can reduce oxidative stress in preclinical studies, however clinical benefits of such treatments are rather ambiguous. This is partly due to poor stability and bioavailability of the H2S donors, requiring impractically large doses that are associated with dose-limiting toxicity. Herein, we identified a bioavailable 3-mercaptopyruvate prodrug, sulfanegen, which is able to pose as a sacrificial redox substrate for 3-mercaptopyruvate sulfurtransferase (3MST), one of the H2S biosynthetic enzymes in the brain. Sulfanegen is able to mitigate toxicity emanating from oxidative insults and the Aβ1-42 peptide by releasing H2S through the 3MST pathway. When administered to symptomatic transgenic mouse model of AD (APP/PS1; 7 and 12 months) and mice that were intracerebroventricularly administered with the Aβ1-42 peptide, sulfanegen was able to reverse oxidative and neuroinflammatory consequences of AD pathology by restoring 3MST function. Quantitative neuropathological analyses confirmed significant disease modifying effect of the compound on amyloid plaque burden and brain inflammatory markers. More importantly, sulfanegen treatment attenuated progressive neurodegeneration in these mice, as evident from the restoration of TH+ neurons in the locus coeruleus. This study demonstrates a previously unknown concept that supplementation of 3MST function in the brain may be a viable approach for the management of AD. Finally, brought into the spotlight is the potential of sulfanegen as a promising AD therapeutic for future drug development efforts.
Collapse
Affiliation(s)
- Swetha Pavani Rao
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Wei Xie
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | | | - Nicholas Juckel
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jiashu Xie
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | | | - Robert Vince
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Michael K Lee
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA; Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Swati S More
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
2
|
Hendry-Hofer TB, Severance CC, Bhadra S, Ng PC, Soules K, Lippner DS, Hildenberger DM, Rhoomes MO, Winborn JN, Logue BA, Rockwood GA, Bebarta VS. Evaluation of aqueous dimethyl trisulfide as an antidote to a highly lethal cyanide poisoning in a large swine model. Clin Toxicol (Phila) 2021; 60:95-101. [PMID: 34142637 DOI: 10.1080/15563650.2021.1935992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Cyanide is a rapid acting, lethal, metabolic poison and remains a significant threat. Current FDA-approved antidotes are not amenable or efficient enough for a mass casualty incident. OBJECTIVE The objective of this study is to evaluate short and long-term efficacy of intramuscular aqueous dimethyl trisulfide (DMTS) on survival and clinical outcomes in a swine model of cyanide exposure. METHODS Anesthetized swine were instrumented and acclimated until breathing spontaneously. Potassium cyanide infusion was initiated and continued until 5 min after the onset of apnea. Subsequently, animals were treated with intramuscular DMTS (n = 11) or saline control (n = 10). Laboratory values and DMTS blood concentrations were assessed at various time points and physiological parameters were monitored continuously until the end of the experiment unless death occurred. A subset of animals treated with DMTS (n = 5) were survived for 7 days to evaluate muscle integrity by repeat biopsy and neurobehavioral outcomes. RESULTS Physiological parameters and time to apnea were similar in both groups at baseline and at time of treatment. Survival in the DMTS-treated group was 90% and 30% in saline controls (p = 0.0034). DMTS-treated animals returned to breathing at 12.0 ± 10.4 min (mean ± SD) compared to 22.9 ± 7.0 min (mean ± SD) in the 3 surviving controls. Blood collected prior to euthanasia showed improved blood lactate concentrations in the DMTS treatment group; 5.47 ± 2.65 mmol/L vs. 9.39 ± 4.51 mmol/L (mean ± SD) in controls (p = 0.0310). Low concentrations of DMTS were detected in the blood, gradually increasing over time with no elimination phase observed. There was no mortality, histological evidence of muscle trauma, or observed adverse neurobehavioral outcomes, in DMTS-treated animals survived to 7 days. CONCLUSION Intramuscular administration of aqueous DMTS improves survival following cyanide poisoning with no observed long-term effects on muscle integrity at the injection site or adverse neurobehavioral outcomes.
Collapse
Affiliation(s)
- Tara B Hendry-Hofer
- Department of Emergency Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Carter C Severance
- Department of Emergency Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Subrata Bhadra
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD, USA
| | - Patrick C Ng
- Department of Emergency Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Brooke Army Medical Center, Ft Sam Houston, San Antonio, TX, USA
| | - Kirsten Soules
- Department of Emergency Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Dennean S Lippner
- Medical Toxicology Division, Biochemistry and Physiology Branch, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, USA
| | - Diane M Hildenberger
- Medical Toxicology Division, Biochemistry and Physiology Branch, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, USA
| | - Melissa O Rhoomes
- Medical Toxicology Division, Biochemistry and Physiology Branch, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, USA
| | - Jessica N Winborn
- Medical Toxicology Division, Biochemistry and Physiology Branch, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, USA
| | - Brian A Logue
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD, USA
| | - Gary A Rockwood
- Medical Toxicology Division, Biochemistry and Physiology Branch, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, USA
| | - Vikhyat S Bebarta
- Department of Emergency Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
3
|
Paulo M, Costa DEFR, Bonaventura D, Lunardi CN, Bendhack LM. Nitric Oxide Donors as Potential Drugs for the Treatment of Vascular Diseases Due to Endothelium Dysfunction. Curr Pharm Des 2021; 26:3748-3759. [PMID: 32427079 DOI: 10.2174/1381612826666200519114442] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/07/2020] [Indexed: 11/22/2022]
Abstract
Endothelial dysfunction and consequent vasoconstriction are a common condition in patients with hypertension and other cardiovascular diseases. Endothelial cells produce and release vasodilator substances that play a pivotal role in normal vascular tone. The mechanisms underlying endothelial dysfunction are multifactorial. However, enhanced reactive oxygen species (ROS) production and consequent vasoconstriction instead of endothelium-derived relaxant generation and consequent vasodilatation contribute to this dysfunction considerably. The main targets of the drugs that are currently used to treat vascular diseases concerning enzyme activities and protein functions that are impaired by endothelial nitric oxide synthase (eNOS) uncoupling and ROS production. Nitric oxide (NO) bioavailability can decrease due to deficient NO production by eNOS and/or NO release to vascular smooth muscle cells, which impairs endothelial function. Considering the NO cellular mechanisms, tackling the issue of eNOS uncoupling could avoid endothelial dysfunction: provision of the enzyme cofactor tetrahydrobiopterin (BH4) should elicit NO release from NO donors, to activate soluble guanylyl cyclase. This should increase cyclic guanosine-monophosphate (cGMP) generation and inhibit phosphodiesterases (especially PDE5) that selectively degrade cGMP. Consequently, protein kinase-G should be activated, and K+ channels should be phosphorylated and activated, which is crucial for cell membrane hyperpolarization and vasodilation and/or inhibition of ROS production. The present review summarizes the current concepts about the vascular cellular mechanisms that underlie endothelial dysfunction and which could be the target of drugs for the treatment of patients with cardiovascular disease.
Collapse
Affiliation(s)
- Michele Paulo
- Department Physics and Chemistry, Faculty of Pharmaceutical Sciences of Ribeirao Preto- University of Sao Paulo Av. Do Cafe SN, Brazil
| | - Daniela E F R Costa
- Department of Pharmacology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Daniella Bonaventura
- Department of Pharmacology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Claure N Lunardi
- Laboratory of Photochemistry and Nanobiotechnology, University of Brasilia, Brasilia, Brazil
| | - Lusiane M Bendhack
- Department Physics and Chemistry, Faculty of Pharmaceutical Sciences of Ribeirao Preto- University of Sao Paulo Av. Do Cafe SN, Brazil
| |
Collapse
|
4
|
Lavon O, Rockwood GA, Eisenkraft A. Can isosorbide dinitrate oral spray serve as an immediate bridging therapy for a mass cyanide poisoning? Clin Toxicol (Phila) 2020; 59:734-739. [PMID: 33274646 DOI: 10.1080/15563650.2020.1856382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVE In this proof-of-concept study, the aim was to evaluate the short-term clinical effectiveness of isosorbide dinitrate (ISDN) oral spray in non-anaesthetized cyanide-poisoned swine. METHODS A comparative study was conducted using domestic swine. Animals were intravenously poisoned with potassium cyanide (KCN), either 2 mg/kg or 4 mg/kg dose. Two control groups (one for each cyanide dose) were not further treated. Two other groups (one for each cyanide dose) were treated within 1 min after poisoning with ISDN oral spray: 3 spray actuations (averaging a total of 3.75 mg) after the lower cyanide dose and 4 spray actuations (averaging a total of 5.0 mg) after the higher dose. The study outcomes were clinical score, time to death, and blood tests including pH, lactate, and methemoglobin levels. RESULTS All the animals started to convulse within 20 to 30 sec after KCN poisoning, then became unresponsive and hemodynamically depressed after another 20 to 30 sec. After the KCN 2 mg/kg dose, 3 of 4 control animals survived, while all treated animals survived. Compared with control animals, ISDN-treated animals displayed significantly better clinical scores starting 5 min after KCN poisoning. Acidosis was significantly more pronounced in the untreated animals. After the KCN 4 mg/kg dose, similar survival rates were observed for control and ISDN-treated groups (1/4), but treated animals had longer time to death and better pH and lactate levels. CONCLUSION ISDN oral spray administration following KCN poisoning in this porcine model did not result in statistically significant increased survival. However, based on clinical scores and clinical laboratory values, ISDN may benefit as a bridging countermeasure until currently-available specific cyanide antidotes can be administered. Further research is warranted to better characterize this potential role of ISDN in cyanide poisoning.
Collapse
Affiliation(s)
- Ophir Lavon
- Clinical Pharmacology and Toxicology Unit, Carmel Medical Center, Haifa, Israel.,Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Gary A Rockwood
- US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, USA
| | - Arik Eisenkraft
- Institute for Research in Military Medicine, Faculty of Medicine, Hebrew University, Jerusalem, Israel
| |
Collapse
|
5
|
Thompson A, Dunn M, Jefferson RD, Dissanayake K, Reed F, Gregson R, Greenhalgh S, Clutton RE, Blain PG, Thomas SH, Eddleston M. Modest and variable efficacy of pre-exposure hydroxocobalamin and dicobalt edetate in a porcine model of acute cyanide salt poisoning. Clin Toxicol (Phila) 2019; 58:190-200. [PMID: 31389254 PMCID: PMC7034532 DOI: 10.1080/15563650.2019.1628969] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Background: Dicobalt edetate and hydroxocobalamin are widely used to treat hydrogen cyanide poisoning. However, comparative and quantitative efficacy data are lacking. Although post-exposure treatment is typical, it may be possible to administer these antidotes before exposure to first attenders entering a known site of cyanide release, as supplementary protection to their personal protective equipment.Methods: We established an anaesthetised Gottingen minipig model of lethal bolus potassium cyanide (KCN) injection to simulate high dose hydrogen cyanide inhalation. Doses were similar to human lethal doses of KCN. Dicobalt edetate and hydroxocobalamin were administered shortly before KCN and their effect on metabolic and cardiovascular variables and survival time were measured.Results: Increases in arterial lactate were similar after 0.08 and 0.12 mmol/kg KCN. KCN 0.08 mmol/kg was survived by 4/4 animals with moderate cardiovascular effects, while the 0.12 mmol/kg dose was lethal in 4/4 animals, with a mean time to euthanasia of 28.3 (SEM: 13.9) min. Administration of dicobalt edetate (0.021 mmol/kg, 8.6 mg/kg) or hydroxocobalamin (0.054 mmol/kg, 75 mg/kg) at clinically licenced doses had modest effect on lactate concentrations but increased survival after administration of KCN 0.12 mmol/kg (survival: dicobalt edetate 4/4, hydroxocobalamin 2/4) but not 0.15 mmol/kg (0/4 and 0/4, respectively). In a subsequent larger study, doubling the dose of hydroxocobalamin (0.108 mmol/kg, 150 mg/kg) was associated with a modest but inconsistent increased survival after 0.15 mmol/kg KCN (survival: control 0/8, 75 mg/kg 1/10, 150 mg/kg 3/10) likely due to variable pharmacokinetics.Conclusions: In this porcine study of cyanide exposure, with pre-exposure antidote administration, licenced doses of dicobalt edetate and hydroxocobalamin were effective at just lethal doses but ineffective at less than twice the estimated LD50. The efficacy of a rapidly-administered double-dose of hydroxocobalamin was limited by variable pharmacokinetics. In clinical poisoning scenarios, with delayed administration, the antidotes are likely to be even less effective. New antidotes are required for treatment of cyanide exposures appreciably above the minimum lethal dose.
Collapse
Affiliation(s)
- Adrian Thompson
- Department of Pharmacology, Toxicology, & Therapeutics, University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Michael Dunn
- Medical Toxicology Centre, University of Newcastle, Newcastle upon Tyne, UK
| | - Robert D Jefferson
- Medical Toxicology Centre, University of Newcastle, Newcastle upon Tyne, UK
| | - Kosala Dissanayake
- Department of Pharmacology, Toxicology, & Therapeutics, University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Frances Reed
- Wellcome Critical Care Laboratory for Large Animals, Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Rachael Gregson
- Wellcome Critical Care Laboratory for Large Animals, Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Stephen Greenhalgh
- Wellcome Critical Care Laboratory for Large Animals, Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - R Eddie Clutton
- Wellcome Critical Care Laboratory for Large Animals, Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Peter G Blain
- Medical Toxicology Centre, University of Newcastle, Newcastle upon Tyne, UK
| | - Simon Hl Thomas
- Medical Toxicology Centre, University of Newcastle, Newcastle upon Tyne, UK
| | - Michael Eddleston
- Department of Pharmacology, Toxicology, & Therapeutics, University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
6
|
Divakaran S, Loscalzo J. The Role of Nitroglycerin and Other Nitrogen Oxides in Cardiovascular Therapeutics. J Am Coll Cardiol 2017; 70:2393-2410. [PMID: 29096811 DOI: 10.1016/j.jacc.2017.09.1064] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 09/19/2017] [Indexed: 11/19/2022]
Abstract
The use of nitroglycerin in the treatment of angina pectoris began not long after its original synthesis in 1847. Since then, the discovery of nitric oxide as a biological effector and better understanding of its roles in vasodilation, cell permeability, platelet function, inflammation, and other vascular processes have advanced our knowledge of the hemodynamic (mostly mediated through vasodilation of capacitance and conductance arteries) and nonhemodynamic effects of organic nitrate therapy, via both nitric oxide-dependent and -independent mechanisms. Nitrates are rapidly absorbed from mucous membranes, the gastrointestinal tract, and the skin; thus, nitroglycerin is available in a number of preparations for delivery via several routes: oral tablets, sublingual tablets, buccal tablets, sublingual spray, transdermal ointment, and transdermal patch, as well as intravenous formulations. Organic nitrates are commonly used in the treatment of cardiovascular disease, but clinical data limit their use mostly to the treatment of angina. They are also used in the treatment of subsets of patients with heart failure and pulmonary hypertension. One major limitation of the use of nitrates is the development of tolerance. Although several agents have been studied for use in the prevention of nitrate tolerance, none are currently recommended owing to a paucity of supportive clinical data. Only 1 method of preventing nitrate tolerance remains widely accepted: the use of a dosing strategy that provides an interval of no or low nitrate exposure during each 24-h period. Nitric oxide's important role in several cardiovascular disease mechanisms continues to drive research toward finding novel ways to affect both endogenous and exogenous sources of this key molecular mediator.
Collapse
Affiliation(s)
- Sanjay Divakaran
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Joseph Loscalzo
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
7
|
Summerhill EM, Hoyle GW, Jordt SE, Jugg BJ, Martin JG, Matalon S, Patterson SE, Prezant DJ, Sciuto AM, Svendsen ER, White CW, Veress LA. An Official American Thoracic Society Workshop Report: Chemical Inhalational Disasters. Biology of Lung Injury, Development of Novel Therapeutics, and Medical Preparedness. Ann Am Thorac Soc 2017; 14:1060-1072. [PMID: 28418689 PMCID: PMC5529138 DOI: 10.1513/annalsats.201704-297ws] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This report is based on the proceedings from the Inhalational Lung Injury Workshop jointly sponsored by the American Thoracic Society (ATS) and the National Institutes of Health (NIH) Countermeasures Against Chemical Threats (CounterACT) program on May 21, 2013, in Philadelphia, Pennsylvania. The CounterACT program facilitates research leading to the development of new and improved medical countermeasures for chemical threat agents. The workshop was initiated by the Terrorism and Inhalational Disasters Section of the Environmental, Occupational, and Population Health Assembly of the ATS. Participants included both domestic and international experts in the field, as well as representatives from U.S. governmental funding agencies. The meeting objectives were to (1) provide a forum to review the evidence supporting current standard medical therapies, (2) present updates on our understanding of the epidemiology and underlying pathophysiology of inhalational lung injuries, (3) discuss innovative investigative approaches to further delineating mechanisms of lung injury and identifying new specific therapeutic targets, (4) present promising novel medical countermeasures, (5) facilitate collaborative research efforts, and (6) identify challenges and future directions in the ongoing development, manufacture, and distribution of effective and specific medical countermeasures. Specific inhalational toxins discussed included irritants/pulmonary toxicants (chlorine gas, bromine, and phosgene), vesicants (sulfur mustard), chemical asphyxiants (cyanide), particulates (World Trade Center dust), and respirable nerve agents.
Collapse
|
8
|
Moeller BM, Crankshaw DL, Briggs J, Nagasawa HT, Patterson SE. In-vitro mercaptopyruvate sulfurtransferase species comparison in humans and common laboratory animals. Toxicol Lett 2017; 274:64-68. [PMID: 28412453 DOI: 10.1016/j.toxlet.2017.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/13/2017] [Accepted: 04/10/2017] [Indexed: 01/18/2023]
Abstract
Cyanide is a metabolic poison that inhibits cytochrome c oxidase. Its broad applications in manufacturing and history as an agent of warfare/terror highlight the limitations in approved cyanide antidotes for mass casualties. Sulfanegen, a pre-clinical antidote for cyanide poisoning, exploits an endogenous detoxification pathway and should be amenable to mass-casualty scenarios. Because human studies are unethical, determination of appropriate animal species as models in translational studies for FDA approval under the "Animal Rule" are critical. Here, we compared the specific activities of mercaptopyruvate sulfurtransferase (MST, required for sulfanegen's activity), across common laboratory models of cyanide intoxication, and humans. Human MST activities in erythrocytes (measured as micromole pyruvate/min/106 rbc) were closest to those of Swiss-Webster mice and NZW rabbits. Similar species were selected for a more detailed tissue-specific comparison of MST activities. NZW Rabbits were closest to humans in the liver and kidney mitochondrial fractions, the Swiss-Webster mouse was closest to humans in the liver cytosolic fraction, while C57BL/6 mouse was closest in the kidney cytosolic fraction. These data comparing MST activities in animal models will help justify the use of those specific animals per the animal rule. Interestingly, statistically significant differences were found in MST activities of liver mitochondria between human smokers and non-smokers (p=0.0030).
Collapse
Affiliation(s)
- Bryant M Moeller
- Department of Pharmacology, University of Minnesota, 312 Church St SE, Minneapolis, MN 55455, United States; Center for Drug Design, University of Minnesota, 516 Delaware St SE, Minneapolis, MN 55455, United States
| | - Daune L Crankshaw
- Center for Drug Design, University of Minnesota, 516 Delaware St SE, Minneapolis, MN 55455, United States
| | - Jacquie Briggs
- Center for Drug Design, University of Minnesota, 516 Delaware St SE, Minneapolis, MN 55455, United States
| | - Herbert T Nagasawa
- Center for Drug Design, University of Minnesota, 516 Delaware St SE, Minneapolis, MN 55455, United States
| | - Steven E Patterson
- Center for Drug Design, University of Minnesota, 516 Delaware St SE, Minneapolis, MN 55455, United States.
| |
Collapse
|
9
|
Park JM, Trevor Sewell B, Benedik MJ. Cyanide bioremediation: the potential of engineered nitrilases. Appl Microbiol Biotechnol 2017; 101:3029-3042. [PMID: 28265723 DOI: 10.1007/s00253-017-8204-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/13/2017] [Accepted: 02/15/2017] [Indexed: 11/29/2022]
Abstract
The cyanide-degrading nitrilases are of notable interest for their potential to remediate cyanide contaminated waste streams, especially as generated in the gold mining, pharmaceutical, and electroplating industries. This review provides a brief overview of cyanide remediation in general but with a particular focus on the cyanide-degrading nitrilases. These are of special interest as the hydrolysis reaction does not require secondary substrates or cofactors, making these enzymes particularly good candidates for industrial remediation processes. The genetic approaches that have been used to date for engineering improved enzymes are described; however, recent structural insights provide a promising new approach.
Collapse
Affiliation(s)
- Jason M Park
- Department of Biology, Texas A&M University, College Station, TX, 77843-3258, USA
| | - B Trevor Sewell
- Structural Biology Research Unit, Institute for Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, 7925, South Africa
| | - Michael J Benedik
- Department of Biology, Texas A&M University, College Station, TX, 77843-3258, USA.
| |
Collapse
|
10
|
Patterson SE, Moeller B, Nagasawa HT, Vince R, Crankshaw DL, Briggs J, Stutelberg MW, Vinnakota CV, Logue BA. Development of sulfanegen for mass cyanide casualties. Ann N Y Acad Sci 2016; 1374:202-9. [PMID: 27308865 DOI: 10.1111/nyas.13114] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 05/02/2016] [Accepted: 05/04/2016] [Indexed: 01/28/2023]
Abstract
Cyanide is a metabolic poison that inhibits the utilization of oxygen to form ATP. The consequences of acute cyanide exposure are severe; exposure results in loss of consciousness, cardiac and respiratory failure, hypoxic brain injury, and dose-dependent death within minutes to hours. In a mass-casualty scenario, such as an industrial accident or terrorist attack, currently available cyanide antidotes would leave many victims untreated in the short time available for successful administration of a medical countermeasure. This restricted therapeutic window reflects the rate-limiting step of intravenous administration, which requires both time and trained medical personnel. Therefore, there is a need for rapidly acting antidotes that can be quickly administered to large numbers of people. To meet this need, our laboratory is developing sulfanegen, a potential antidote for cyanide poisoning with a novel mechanism based on 3-mercaptopyruvate sulfurtransferase (3-MST) for the detoxification of cyanide. Additionally, sulfanegen can be rapidly administered by intramuscular injection and has shown efficacy in many species of animal models. This article summarizes the journey from concept to clinical leads for this promising cyanide antidote.
Collapse
Affiliation(s)
- Steven E Patterson
- Center for Drug Design, Academic Health Center, the University of Minnesota, Minneapolis, Minnesota
| | - Bryant Moeller
- Center for Drug Design, Academic Health Center, the University of Minnesota, Minneapolis, Minnesota
| | - Herbert T Nagasawa
- Center for Drug Design, Academic Health Center, the University of Minnesota, Minneapolis, Minnesota
| | - Robert Vince
- Center for Drug Design, Academic Health Center, the University of Minnesota, Minneapolis, Minnesota
| | - Daune L Crankshaw
- Center for Drug Design, Academic Health Center, the University of Minnesota, Minneapolis, Minnesota
| | - Jacquie Briggs
- Center for Drug Design, Academic Health Center, the University of Minnesota, Minneapolis, Minnesota
| | - Michael W Stutelberg
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota
| | - Chakravarthy V Vinnakota
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota
| | - Brian A Logue
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota
| |
Collapse
|
11
|
Kovacs K, Duke AC, Shifflet M, Winner B, Lee SA, Rockwood GA, Petrikovics I. Parenteral dosage form development and testing of dimethyl trisulfide, as an antidote candidate to combat cyanide intoxication. Pharm Dev Technol 2016; 22:958-963. [PMID: 26740339 DOI: 10.3109/10837450.2015.1125923] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This study focused on the solubility enhancement and the in vivo antidotal efficacy testing of a new potential cyanide (CN) countermeasure, dimethyl trisulfide (DMTS). Various FDA approved cyclodextrins (HPβCD, RMβCD, HPγCD), cosolvents (ethanol, polyethylene glycols, propylene glycol), surfactants (cremophor EL, cremophor RH 40, sodium cholate, sodium deoxycholate, polysorbate 80) and their combinations were applied. Based on the solubility enhancing potential of the tested systems, polysorbate 80 was chosen for further in vivo efficacy studies. A composition comprising 15% polysorbate 80 and 50 mg/ml DMTS with the applied DMTS dose of 100 mg/kg provided a therapeutic antidotal protection of 3.4 × LD50. For comparison, the present therapy of sodium thiosulfate (TS) with the dose of 100 mg/kg provided only 1.1 × LD50 protection, and at the dose of 200 mg/kg, the LD50 was enhanced by 1.3 times. No difference in the therapeutic protection by DMTS was detected when the concentration of polysorbate 80 was increased to 20% (3.2 × LD50 protection). These data demonstrate the potential importance of DMTS as a CN countermeasure, and the formulation comprising polysorbate 80 provides the base of an injectable intramuscular dosage form that can later serve as a CN antidotal kit suitable for mass scenario.
Collapse
Affiliation(s)
- Kristof Kovacs
- a Department of Chemistry , Sam Houston State University , Huntsville , TX , USA and
| | - Anna C Duke
- a Department of Chemistry , Sam Houston State University , Huntsville , TX , USA and
| | - Marla Shifflet
- a Department of Chemistry , Sam Houston State University , Huntsville , TX , USA and
| | - Brittany Winner
- a Department of Chemistry , Sam Houston State University , Huntsville , TX , USA and
| | - Stephen A Lee
- a Department of Chemistry , Sam Houston State University , Huntsville , TX , USA and
| | - Gary A Rockwood
- b U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground , Aberdeen , MD , USA
| | - Ilona Petrikovics
- a Department of Chemistry , Sam Houston State University , Huntsville , TX , USA and
| |
Collapse
|
12
|
Simultaneous determination of 3-mercaptopyruvate and cobinamide in plasma by liquid chromatography–tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1008:181-188. [DOI: 10.1016/j.jchromb.2015.11.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 11/16/2015] [Accepted: 11/17/2015] [Indexed: 11/22/2022]
|
13
|
Hottinger DG, Beebe DS, Kozhimannil T, Prielipp RC, Belani KG. Sodium nitroprusside in 2014: A clinical concepts review. J Anaesthesiol Clin Pharmacol 2014; 30:462-71. [PMID: 25425768 PMCID: PMC4234779 DOI: 10.4103/0970-9185.142799] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Sodium nitroprusside has been used in clinical practice as an arterial and venous vasodilator for 40 years. This prodrug reacts with physiologic sulfhydryl groups to release nitric oxide, causing rapid vasodilation, and acutely lowering blood pressure. It is used clinically in cardiac surgery, hypertensive crises, heart failure, vascular surgery, pediatric surgery, and other acute hemodynamic applications. In some practices, newer agents have replaced nitroprusside, either because they are more effective or because they have a more favorable side-effect profile. However, valid and adequately-powered efficacy studies are sparse and do not identify a superior agent for all indications. The cyanide anion release concurrent with nitroprusside administration is associated with potential cyanide accumulation and severe toxicity. Agents to ameliorate the untoward effects of cyanide are limited by various problems in their practicality and effectiveness. A new orally bioavailable antidote is sodium sulfanegen, which shows promise in reversing this toxicity. The unique effectiveness of nitroprusside as a titratable agent capable of rapid blood pressure control will likely maintain its utilization in clinical practice for the foreseeable future. Additional research will refine and perhaps expand indications for nitroprusside, while parallel investigation continues to develop effective antidotes for cyanide poisoning.
Collapse
Affiliation(s)
- Daniel G Hottinger
- Department of Anesthesiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - David S Beebe
- Department of Anesthesiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Thomas Kozhimannil
- Department of Anesthesiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Richard C Prielipp
- Department of Anesthesiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kumar G Belani
- Department of Anesthesiology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
14
|
|
15
|
Stutelberg MW, Vinnakota CV, Mitchell BL, Monteil AR, Patterson SE, Logue BA. Determination of 3-mercaptopyruvate in rabbit plasma by high performance liquid chromatography tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 949-950:94-8. [PMID: 24480329 PMCID: PMC3989840 DOI: 10.1016/j.jchromb.2014.01.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 01/02/2014] [Accepted: 01/05/2014] [Indexed: 01/01/2023]
Abstract
Accidental or intentional cyanide poisoning is a serious health risk. The current suite of FDA approved antidotes, including hydroxocobalamin, sodium nitrite, and sodium thiosulfate is effective, but each antidote has specific major limitations, such as large effective dosage or delayed onset of action. Therefore, next generation cyanide antidotes are being investigated to mitigate these limitations. One such antidote, 3-mercaptopyruvate (3-MP), detoxifies cyanide by acting as a sulfur donor to convert cyanide into thiocyanate, a relatively nontoxic cyanide metabolite. An analytical method capable of detecting 3-MP in biological fluids is essential for the development of 3-MP as a potential antidote. Therefore, a high performance liquid chromatography tandem mass spectrometry (HPLC-MS-MS) method was established to analyze 3-MP from rabbit plasma. Sample preparation consisted of spiking the plasma with an internal standard ((13)C3-3-MP), precipitation of plasma proteins, and reaction with monobromobimane to inhibit the characteristic dimerization of 3-MP. The method produced a limit of detection of 0.1μM, a linear dynamic range of 0.5-100μM, along with excellent linearity (R(2)≥0.999), accuracy (±9% of the nominal concentration) and precision (<7% relative standard deviation). The optimized HPLC-MS-MS method was capable of detecting 3-MP in rabbits that were administered sulfanegen, a prodrug of 3-MP, following cyanide exposure. Considering the excellent performance of this method, it will be utilized for further investigations of this promising cyanide antidote.
Collapse
Affiliation(s)
- Michael W Stutelberg
- Department of Chemistry and Biochemistry, South Dakota State University, Avera Health and Science Center 131, Box 2202, Brookings, SD, 57007, USA
| | - Chakravarthy V Vinnakota
- Department of Chemistry and Biochemistry, South Dakota State University, Avera Health and Science Center 131, Box 2202, Brookings, SD, 57007, USA
| | - Brendan L Mitchell
- Department of Chemistry and Biochemistry, South Dakota State University, Avera Health and Science Center 131, Box 2202, Brookings, SD, 57007, USA
| | - Alexandre R Monteil
- Center for Drug Design, University of Minnesota, 516 Delaware Street SE, Minneapolis 55455, MN, USA
| | - Steven E Patterson
- Center for Drug Design, University of Minnesota, 516 Delaware Street SE, Minneapolis 55455, MN, USA
| | - Brian A Logue
- Department of Chemistry and Biochemistry, South Dakota State University, Avera Health and Science Center 131, Box 2202, Brookings, SD, 57007, USA.
| |
Collapse
|
16
|
Nitric oxide donors as neuroprotective agents after an ischemic stroke-related inflammatory reaction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:297357. [PMID: 23691263 PMCID: PMC3649699 DOI: 10.1155/2013/297357] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 02/26/2013] [Accepted: 02/27/2013] [Indexed: 12/17/2022]
Abstract
Cerebral ischemia initiates a cascade of detrimental events including glutamate-associated excitotoxicity, intracellular calcium accumulation, formation of Reactive oxygen species (ROS), membrane lipid degradation, and DNA damage, which lead to the disruption of cellular homeostasis and structural damage of ischemic brain tissue. Cerebral ischemia also triggers acute inflammation, which exacerbates primary brain damage. Therefore, reducing oxidative stress (OS) and downregulating the inflammatory response are options that merit consideration as potential therapeutic targets for ischemic stroke. Consequently, agents capable of modulating both elements will constitute promising therapeutic solutions because clinically effective neuroprotectants have not yet been discovered and no specific therapy for stroke is available to date. Because of their ability to modulate both oxidative stress and the inflammatory response, much attention has been focused on the role of nitric oxide donors (NOD) as neuroprotective agents in the pathophysiology of cerebral ischemia-reperfusion injury. Given their short therapeutic window, NOD appears to be appropriate for use during neurosurgical procedures involving transient arterial occlusions, or in very early treatment of acute ischemic stroke, and also possibly as complementary treatment for neurodegenerative diseases such as Parkinson or Alzheimer, where oxidative stress is an important promoter of damage. In the present paper, we focus on the role of NOD as possible neuroprotective therapeutic agents for ischemia/reperfusion treatment.
Collapse
|
17
|
Patterson SE, Monteil AR, Cohen JF, Crankshaw DL, Vince R, Nagasawa HT. Cyanide antidotes for mass casualties: water-soluble salts of the dithiane (sulfanegen) from 3-mercaptopyruvate for intramuscular administration. J Med Chem 2013; 56:1346-9. [PMID: 23301495 DOI: 10.1021/jm301633x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Current cyanide antidotes are administered by IV infusion, which is suboptimal for mass casualties. Therefore, in a cyanide disaster, intramuscular (IM) injectable antidotes would be more appropriate. We report the discovery of the highly water-soluble sulfanegen triethanolamine as a promising lead for development as an IM injectable cyanide antidote.
Collapse
Affiliation(s)
- Steven E Patterson
- Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Jett DA. Chemical toxins that cause seizures. Neurotoxicology 2012; 33:1473-1475. [PMID: 23085523 DOI: 10.1016/j.neuro.2012.10.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 10/09/2012] [Accepted: 10/09/2012] [Indexed: 10/27/2022]
Abstract
Seizurogenic chemicals include a variety of toxic agents, including chemical warfare agents, toxic industrial chemicals, and natural toxins. Chemical weapons such as sarin and VX, and pesticides such as parathion and carbaryl cause hyperstimulation of cholinergic receptors and an increase in excitatory neurotransmission. Glutamatergic hyperstimulation can occur after exposure to excitatory amino acid toxins such as the marine toxin domoic acid. Other pesticides such as lindane and strychnine do not affect excitatory neurotransmission directly, but rather, they block the inhibitory regulation of neurotransmission by antagonism of inhibitory GABA and glycine synapses. In this paper, chemicals that cause seizures by a variety of molecular mechanisms and pathways are discussed.
Collapse
Affiliation(s)
- David A Jett
- National Institutes of Health, NINDS, 6001 Executive Blvd. NSC, Room 2177, MSC 9527, Bethesda, MD 20892-9527, United States.
| |
Collapse
|