1
|
Boccella S, De Filippis L, Giorgio C, Brandolini L, Jones M, Novelli R, Amorizzo E, Leoni MLG, Terranova G, Maione S, Luongo L, Leone M, Allegretti M, Minnella EM, Aramini A. Combination Drug Therapy for the Management of Chronic Neuropathic Pain. Biomolecules 2023; 13:1802. [PMID: 38136672 PMCID: PMC10741625 DOI: 10.3390/biom13121802] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/01/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Chronic neuropathic pain (NP) is an increasingly prevalent disease and leading cause of disability which is challenging to treat. Several distinct classes of drugs are currently used for the treatment of chronic NP, but each drug targets only narrow components of the underlying pathophysiological mechanisms, bears limited efficacy, and comes with dose-limiting side effects. Multimodal therapies have been increasingly proposed as potential therapeutic approaches to target the multiple mechanisms underlying nociceptive transmission and modulation. However, while preclinical studies with combination therapies showed promise to improve efficacy over monotherapy, clinical trial data on their efficacy in specific populations are lacking and increased risk for adverse effects should be carefully considered. Drug-drug co-crystallization has emerged as an innovative pharmacological approach which can combine two or more different active pharmaceutical ingredients in a single crystal, optimizing pharmacokinetic and physicochemical characteristics of the native molecules, thus potentially capitalizing on the synergistic efficacy between classes of drugs while simplifying adherence and minimizing the risk of side effects by reducing the doses. In this work, we review the current pharmacological options for the treatment of chronic NP, focusing on combination therapies and their ongoing developing programs and highlighting the potential of co-crystals as novel approaches to chronic NP management.
Collapse
Affiliation(s)
- Serena Boccella
- Research & Early Development (R&D), Dompé Farmaceutici S.p.A, Via De Amicis, 80131 Naples, Italy; (S.B.); (C.G.)
| | - Lidia De Filippis
- Research & Early Development (R&D), Dompé Farmaceutici S.p.A, Via S. Lucia, 20122 Milan, Italy; (L.D.F.); (R.N.); (M.L.); (E.M.M.)
| | - Cristina Giorgio
- Research & Early Development (R&D), Dompé Farmaceutici S.p.A, Via De Amicis, 80131 Naples, Italy; (S.B.); (C.G.)
| | - Laura Brandolini
- Research & Early Development (R&D), Dompé Farmaceutici S.p.A, Via Campo di Pile, 67100 L’Aquila, Italy; (L.B.); (M.A.)
| | - Meghan Jones
- Research & Early Development (R&D), Dompé US, 181 2nd Avenue, STE 600, San Mateo, CA 94401, USA;
| | - Rubina Novelli
- Research & Early Development (R&D), Dompé Farmaceutici S.p.A, Via S. Lucia, 20122 Milan, Italy; (L.D.F.); (R.N.); (M.L.); (E.M.M.)
| | - Ezio Amorizzo
- Pain Unit, San Paolo Hospital, 00053 Civitavecchia, Italy;
- Pain Clinic Roma, 00191 Rome, Italy
| | - Matteo Luigi Giuseppe Leoni
- Azienda USL di Piacenza, 29121 Piacenza, Italy;
- Department of Medical and Surgical Sciences and Translational Medicine, Sapienza University, 00185 Rome, Italy
| | | | - Sabatino Maione
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (S.M.); (L.L.)
| | - Livio Luongo
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (S.M.); (L.L.)
| | - Manuela Leone
- Research & Early Development (R&D), Dompé Farmaceutici S.p.A, Via S. Lucia, 20122 Milan, Italy; (L.D.F.); (R.N.); (M.L.); (E.M.M.)
| | - Marcello Allegretti
- Research & Early Development (R&D), Dompé Farmaceutici S.p.A, Via Campo di Pile, 67100 L’Aquila, Italy; (L.B.); (M.A.)
| | - Enrico Maria Minnella
- Research & Early Development (R&D), Dompé Farmaceutici S.p.A, Via S. Lucia, 20122 Milan, Italy; (L.D.F.); (R.N.); (M.L.); (E.M.M.)
| | - Andrea Aramini
- Research & Early Development (R&D), Dompé Farmaceutici S.p.A, Via Campo di Pile, 67100 L’Aquila, Italy; (L.B.); (M.A.)
| |
Collapse
|
2
|
Karaaslan A, Gok S, Basaran R. The Preoperative Use of Gabapentinoids for the Treatment of Acute Postoperative Pain Following Lumbar Spine Fixation Surgery. World Neurosurg 2023; 178:e57-e64. [PMID: 37406797 DOI: 10.1016/j.wneu.2023.06.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/26/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND Postoperative pain following posterior fixation is caused not only by tissue injury during surgery and is related to inflammatory, neuropathic, and visceral pain. This study aims to answer the question, "Is there a role for gabapentinoids in reducing postoperative pain?" In addition, it demonstrates which gabapentinoids may be used, for how long, and at what dose. METHODS The study was planned as a prospective, randomized, double-blind study. Lumbar posterior fixation was included and patients were divided into 9 groups. Gabapentinoids and a placebo were administered. Postoperative pain at hours 1, 6, 12, and 24 was evaluated by visual analog scale (VAS). RESULTS This study included 252 patients (141 women, 111 men). The median age was 51.62 years. A statistically significant difference was found when VAS-1, VAS-6, VAS-12, and VAS-24 scores were compared between all groups (P ˂ 0.001). Single and low doses of gabapentinoids were found to be ineffective (P > 0.05). Long-term and high-dose gabapentinoids had complications (P ˂ 0.001). Single and high doses of gabapentinoids were effective and safe (P ˂ 0.001). CONCLUSIONS Postoperative use of gabapentin for controlling early and late-stage pain is safe and effective. Single and high-dose gabapentin was the first choice. A single and high dose of pregabalin is the second choice.
Collapse
Affiliation(s)
- Alp Karaaslan
- Department of Neurosurgery, Sancaktepe Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Sevki Gok
- Department of Neurosurgery, Sancaktepe Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Recep Basaran
- Department of Neurosurgery, Sancaktepe Training and Research Hospital, University of Health Sciences, Istanbul, Turkey.
| |
Collapse
|
3
|
Aramini A, Bianchini G, Lillini S, Tomassetti M, Pacchiarotti N, Canestrari D, Cocchiaro P, Novelli R, Dragani MC, Palmerio F, Mattioli S, Bordignon S, d'Angelo M, Castelli V, d'Egidio F, Maione S, Luongo L, Boccella S, Cimini A, Brandolini L, Chierotti MR, Allegretti M. Ketoprofen, lysine and gabapentin co-crystal magnifies synergistic efficacy and tolerability of the constituent drugs: Pre-clinical evidences towards an innovative therapeutic approach for neuroinflammatory pain. Biomed Pharmacother 2023; 163:114845. [PMID: 37167730 DOI: 10.1016/j.biopha.2023.114845] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/29/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023] Open
Abstract
Chronic pain is an enormous public health concern, and its treatment is still an unmet medical need. Starting from data highlighting the promising effects of some nonsteroidal anti-inflammatory drugs in combination with gabapentin in pain treatment, we sought to combine ketoprofen lysine salt (KLS) and gabapentin to obtain an effective multimodal therapeutic approach for chronic pain. Using relevant in vitro models, we first demonstrated that KLS and gabapentin have supra-additive effects in modulating key pathways in neuropathic pain and gastric mucosal damage. To leverage these supra-additive effects, we then chemically combined the two drugs via co-crystallization to yield a new compound, a ternary drug-drug co-crystal of ketoprofen, lysine and gabapentin (KLS-GABA co-crystal). Physicochemical, biodistribution and pharmacokinetic studies showed that within the co-crystal, ketoprofen reaches an increased gastrointestinal solubility and permeability, as well as a higher systemic exposure in vivo compared to KLS alone or in combination with gabapentin, while both the constituent drugs have increased central nervous system permeation. These unique characteristics led to striking, synergistic anti-nociceptive and anti-inflammatory effects of KLS-GABA co-crystal, as well as significantly reduced spinal neuroinflammation, in translational inflammatory and neuropathic pain rat models, suggesting that the synergistic therapeutic effects of the constituent drugs are further boosted by the co-crystallization. Notably, while strengthening the therapeutic effects of ketoprofen, KLS-GABA co-crystal showed remarkable gastrointestinal tolerability in both inflammatory and chronic neuropathic pain rat models. In conclusion, these results allow us to propose KLS-GABA co-crystal as a new drug candidate with high potential clinical benefit-to-risk ratio for chronic pain treatment.
Collapse
Affiliation(s)
- Andrea Aramini
- R&D, Dompé Farmaceutici S.p.A, Via Campo di Pilel, 67100 L'Aquila, Italy.
| | - Gianluca Bianchini
- R&D, Dompé Farmaceutici S.p.A, Via Campo di Pilel, 67100 L'Aquila, Italy
| | - Samuele Lillini
- R&D, Dompé Farmaceutici S.p.A, Via De Amicis, 80131 Naples, Italy
| | - Mara Tomassetti
- R&D, Dompé Farmaceutici S.p.A, Via De Amicis, 80131 Naples, Italy
| | | | - Daniele Canestrari
- R&D, Dompé Farmaceutici S.p.A, Via Campo di Pilel, 67100 L'Aquila, Italy
| | | | - Rubina Novelli
- R&D, Dompé Farmaceutici S.p.A, Via S. Lucia, 20122 Milan, Italy
| | | | | | - Simone Mattioli
- R&D, Dompé Farmaceutici S.p.A, Via De Amicis, 80131 Naples, Italy
| | - Simone Bordignon
- Department of Chemistry and NIS Centre, University of Torino, 10124 Torino, Italy
| | - Michele d'Angelo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Francesco d'Egidio
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Sabatino Maione
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Livio Luongo
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Serena Boccella
- R&D, Dompé Farmaceutici S.p.A, Via De Amicis, 80131 Naples, Italy
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy; Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, Philadelphia, PA 19122, USA
| | - Laura Brandolini
- R&D, Dompé Farmaceutici S.p.A, Via Campo di Pilel, 67100 L'Aquila, Italy
| | | | | |
Collapse
|
4
|
Ma Y, Liu W, Liang L, Ye J, Huang C, Zhuang T, Zhang G. Synergistic Antinociceptive Effects of Indomethacin-Pregabalin and Meloxicam-Pregabalin in Paclitaxel-Induced Neuropathic Pain. Biomedicines 2022; 10:biomedicines10061413. [PMID: 35740434 PMCID: PMC9219661 DOI: 10.3390/biomedicines10061413] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 01/05/2023] Open
Abstract
Neuropathic pain is often closely associated with nerve injury or inflammation, and the role of traditional nonsteroidal anti-inflammatory drugs as adjuvants for treating chemotherapy-induced peripheral neuropathic pain remains unclear. In this study, the potential synergistic antinociceptive effects of indomethacin–pregabalin and meloxicam–pregabalin were evaluated in paclitaxel-induced neuropathic pain and carrageenan-induced inflammatory pain in rodents. Although indomethacin and meloxicam alone only slightly relieved mechanical allodynia in the above two models, isobolographic analysis showed that the combination of indomethacin or meloxicam with pregabalin produced significant synergistic antinociceptive effects for paclitaxel-induced neuropathic pain (IN-PGB, experimental ED25 = [4.41 (3.13–5.82)] mg/kg, theoretical ED25 = [8.50 (6.62–10.32)] mg/kg; MEL-PGB, experimental ED25 = [3.96 (2.62–5.46)] mg/kg, theoretical ED25 = [7.52 (5.73–9.39)] mg/kg). In addition, MEL-PGB dosed via intraplantar injection into the left paw, intragastric injection, or intraperitoneal injection reversed paclitaxel-induced allodynia, indicating that they may act at multiple sites in the neuroaxis and periphery. However, indomethacin–pregabalin and meloxicam–pregabalin exerted antagonistic antiallodynic interactions in carrageenan-induced inflammatory pain in rats. Taken together, coadministration of indomethacin or meloxicam with pregabalin may possess potential therapeutic advantages for treating chemotherapy-induced neuropathic pain.
Collapse
Affiliation(s)
- Yurong Ma
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China; (Y.M.); (W.L.); (L.L.); (J.Y.); (C.H.)
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Wenwen Liu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China; (Y.M.); (W.L.); (L.L.); (J.Y.); (C.H.)
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Lingzhi Liang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China; (Y.M.); (W.L.); (L.L.); (J.Y.); (C.H.)
| | - Jiaqi Ye
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China; (Y.M.); (W.L.); (L.L.); (J.Y.); (C.H.)
| | - Chaonan Huang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China; (Y.M.); (W.L.); (L.L.); (J.Y.); (C.H.)
| | - Tao Zhuang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China; (Y.M.); (W.L.); (L.L.); (J.Y.); (C.H.)
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
- Correspondence: (T.Z.); (G.Z.); Tel.: +86-27-87792235 (G.Z.)
| | - Guisen Zhang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China; (Y.M.); (W.L.); (L.L.); (J.Y.); (C.H.)
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
- Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Correspondence: (T.Z.); (G.Z.); Tel.: +86-27-87792235 (G.Z.)
| |
Collapse
|
5
|
A Single Preoperative Administration of Dexamethasone, Low-dose Pregabalin, or a Combination of the 2, in Spinal Surgery, Does Not Provide a Better Analgesia Than a Multimodal Analgesic Protocol Alone. Clin J Pain 2020; 35:594-601. [PMID: 31021886 DOI: 10.1097/ajp.0000000000000719] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVES A single perioperative dose of glucocorticoid or gabapentinoid, or a combination of the 2, may improve postoperative analgesia, but data are still insufficient to be conclusive. In this single-center, randomized, double-blind, and double-dummy trial, we aimed to test whether the analgesic effect of adding preoperative pregabalin, at a dose unlikely to induce side effects, to preoperative dexamethasone improves early mobilization after spinal surgery. MATERIALS AND METHODS A total of 160 patients undergoing scheduled lumbar disk surgery (145 analyzed) comprised the study cohort. The patients received either 0.2 mg/kg intravenous dexamethasone before incision, or 150 mg oral pregabalin 1 hour before surgery, or a combination of the 2, or none of the above (control). Analgesia was supplemented by acetaminophen and ketoprofen, plus oxycodone ad libitum. The primary outcome was pain intensity during the first attempt to sit up, assessed the morning of the first postoperative day on an 11-point Numerical Rating Scale. Pain at rest and when standing up, opioid consumption, and tolerance were also assessed. RESULTS None of the treatments tested differed from the control group in terms of efficacy or tolerance, even 6 months after surgery. The overall quality of analgesia was good, with only 10% and 30% of pain scores exceeding 3/10 for pain at rest and during movement, respectively. DISCUSSION In this surgical model with the given anesthetic and analgesic environment, there was no advantage gained by adding low-dose pregabalin or dexamethasone. The multimodal analgesic protocol applied to all patients may have reduced the size of the effect.
Collapse
|
6
|
Vicente-Baz J, Rivera-Arconada I. Spinal Actions of the NSAID Diclofenac on Nociceptive Transmission in Comparison to the K v7 Channel Opener Flupirtine. Neuroscience 2020; 440:186-195. [PMID: 32505744 DOI: 10.1016/j.neuroscience.2020.05.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 10/24/2022]
Abstract
NSAIDs are the drugs most commonly used to alleviate pain. Despite being a heterogeneous group of compounds, all of them share a mechanism of action based on blockade of COXs enzymes, which confers them anti-inflammatory and analgesic properties. Diclofenac is a NSAID with preferred activity on COX-2 isozymes, but additionally, other targets may be implicated in its analgesic activity. Among them, diclofenac may facilitate the activity of Kv7 channels, that have been previously recognized as potential therapeutic targets in analgesia. In this study, the antinociceptive actions of diclofenac acting at the spinal level and the role of Kv7 channels in its effects were evaluated. Electrophysiological recordings of spinal reflexes and responses of dorsal horn neurons were obtained using in vitro spinal cord preparations from neonatal mice. Diclofenac, applied at clinically relevant concentrations to the entire preparation, depressed wind-up of spinal reflexes with a pattern similar to that of flupirtine, an analgesic with activity as Kv7 channel opener. Depressant actions of both compounds were strongly reduced after Kv7 channel blockade with XE-991, indicating the implication of these channels in the observed effects. Flupirtine, but not diclofenac, also reduced action potential firing of dorsal horn neurons in response to electrical activation of nociceptive afferents, suggesting differences in the actions of both compounds on Kv7 channel configurations present in sensory areas of the cord. Results demonstrate previously unknown central actions of diclofenac on Kv7 channels located in spinal circuits, expanding the knowledge about its pharmacological actions.
Collapse
Affiliation(s)
- Jorge Vicente-Baz
- Department of Systems Biology (Physiology), Universidad de Alcala, Alcala de Henares, Madrid, Spain
| | - Ivan Rivera-Arconada
- Department of Systems Biology (Physiology), Universidad de Alcala, Alcala de Henares, Madrid, Spain.
| |
Collapse
|
7
|
The Impact of Preventative Multimodal Analgesia on Postoperative Opioid Requirement and Pain Control in Patients Undergoing Lumbar Fusions. Clin Spine Surg 2020; 33:E135-E140. [PMID: 31693519 DOI: 10.1097/bsd.0000000000000913] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
STUDY DESIGN A prospective observational study with a historical reference group. OBJECTIVES The main objectives of this study were to determine the impact of preventative multimodal analgesia (PMA) on postoperative opioid requirements and analgesic effectiveness in patients undergoing lumbar fusion surgery. SUMMARY OF BACKGROUND DATA PMA addresses the multiple pathways of acute and chronic pain by interfering with peripheral and central sensitization and should provide a way to achieve safer and more effective pain management with reduced opioid medication use. MATERIALS AND METHODS This study compared postoperative opioid requirement and analgesic effect in a total of 101 patients undergoing elective, 1-level or 2-level transforaminal lumbar interbody fusion surgeries for symptomatic lumbar degenerative disk disease. The PMA patient group included 51 consecutive patients who received 1000 mg of acetaminophen, 300-900 mg of gabapentin, and 200-400 mg of celecoxib 1 hour before their index procedure. The reference group included 50 patients who received 15 mg of morphine-equivalent dose (MED) preoperatively.Multiple linear regression was used to evaluate the effect of PMA on postoperative pain and MED over 4 postoperative days, while controlling for all variables likely to influence these outcomes, including age, sex, baseline opioid use, duration of surgery, postoperative intrathecal morphine use and the administration of muscle relaxants and anticonvulsants. RESULTS The differences in opioid requirement and postoperative pain scores were statistically significant on all 4 postoperative days. The effect size varied from -0.54 to -0.99 (34.8%-54.2% MED reduction) for the postoperative opioid requirement and from -0.59 to -1.16 (28.9%-37.3% visual analog scale reduction) for postoperative pain indicating that these measures were reduced by about ½ to 1 SD in the PMA patient group. CONCLUSIONS PMA is a highly effective and safe method for postoperative pain management in patients undergoing elective lumbar fusion surgeries by improving pain control and reducing opioid requirement. LEVEL OF EVIDENCE Level III.
Collapse
|
8
|
Lin WY, Cheng YT, Huang YH, Lin FS, Sun WZ, Yen CT. Synergistic symptom-specific effects of ketorolac-tramadol and ketorolac-pregabalin in a rat model of peripheral neuropathy. J Chin Med Assoc 2019; 82:457-463. [PMID: 31180945 DOI: 10.1097/jcma.0000000000000115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Although current neuropathic pain treatment guidelines do not recommend the use of nonsteroidal anti-inflammatory drugs (NSAIDs), whether NSAIDs can serve as a useful adjuvant to conventional multimodal therapy remains unclear. METHODS The spared nerve injury (SNI) rats rapidly developed profound and long-lasting spontaneous and evoked pain behaviors, including mechanical and cold allodynia of the ipsilateral hind paw. At day 5, we first characterized the nociceptive responses to ketorolac, tramadol, pregabalin, and their combinations. RESULTS We found that tramadol and pregabalin exerted dose-dependent analgesic effects on both spontaneous and evoked behaviors. However, ketorolac alone did not suppress any behaviors regardless of the dose. Ketorolac-tramadol and ketorolac-pregabalin produced variable degrees of additive suppression of spontaneous and evoked behavioral responses. Cold allodynia was profoundly diminished after ketorolac was added to ineffective pregabalin or tramadol. Mechanical allodynia was markedly attenuated by ketorolac-pregabalin but less so by ketorolac-tramadol mixtures. CONCLUSION Our data demonstrated that an NSAID alone failed to relieve spontaneous or evoked pain behaviors in the rat SNI model, but when combined with a weak opioid and α-2-δ-ligand produced a profound synergistic analgesic effect on cold allodynia and discrepant efficacy for mechanical allodynia and spontaneous pain.
Collapse
Affiliation(s)
- Wen-Ying Lin
- Department of Life Science, National Taiwan University, Taipei, Taiwan, ROC
- Department of Anesthesiology, National Taiwan University Hospital, Taipei, Taiwan, ROC
- National Taiwan University Cancer Center, National Taiwan University College of Medicine, Taipei, Taiwan, ROC
| | - Yu-Ting Cheng
- Department of Life Science, National Taiwan University, Taipei, Taiwan, ROC
| | - Yu-Hsin Huang
- Department of Life Science, National Taiwan University, Taipei, Taiwan, ROC
| | - Feng-Sheng Lin
- Department of Anesthesiology, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Wei-Zen Sun
- Department of Anesthesiology, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Chen-Tung Yen
- Department of Life Science, National Taiwan University, Taipei, Taiwan, ROC
| |
Collapse
|
9
|
Tamaddonfard E, Tamaddonfard S, Cheraghiyan S. Effects of intracerebroventricular injection of vitamin B 12 on formalin-induced muscle pain in rats: Role of cyclooxygenase pathway and opioid receptors. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2018; 9:329-335. [PMID: 30713611 PMCID: PMC6346495 DOI: 10.30466/vrf.2018.33104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 01/09/2018] [Indexed: 01/14/2023]
Abstract
Vitamin B12 modulates pain at the local and peripheral levels. This study has investigated the effects of intracerebroventricular (ICV) injection of vitamin B12 on themuscle pain. We used diclofenac (cyclooxygenase inhibitor) and naloxone (opioid receptors antagonist) to clarify the possible mechanisms. For ICV injections, a guide cannula was implanted in the left lateral ventricle of the brain. Muscle pain was induced by intramuscular injection of formalin (2.50%; 50 µl) in the right gastrocnemius muscle and the number of paw flinching was recorded at 5-min blocks for 60 min. Locomotor activity was performed using an open-field test. Formalin induced a biphasic pain. Vitamin B12 (1.25, 2.50, 5.00 and 10.00 µg per rat) and diclofenac (12.50 and 25.00 µg per rat) significantly reduced both phases pain intensity. Significant antinociceptive effects were observed after combined treatments of diclofenac (6.25 and 12.50 µg per rat) with vitamin B12 (0.63 and 2.50 µg per rat), respectively. Prior ICV injection of naloxone (10.00 µg per rat) prevented vitamin B12 (10.00 µg per rat) and diclofenac (25.00 µg per rat) induced antinociceptive effects. All the above-mentioned chemicals did not alter locomotor behavior in an open-field test. The present results showed that the cyclooxygenase pathway and opioid receptors may be involved in the central antinociceptive effect of vitamin B12. In addition, opioid receptors might be involved in diclofenac-induced antinociception.
Collapse
Affiliation(s)
- Esmaeal Tamaddonfard
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Sina Tamaddonfard
- DVM Student, Faculty of Veterinary Medicine, Urmia Branch of Islamic Azad University, Urmia, Iran
| | - Siamak Cheraghiyan
- Faculty of Veterinary Medicine, Urmia Branch of Islamic Azad University, Urmia, Iran
| |
Collapse
|
10
|
Antiepileptic drugs as analgesics/adjuvants in inflammatory pain: current preclinical evidence. Pharmacol Ther 2018; 192:42-64. [PMID: 29909236 DOI: 10.1016/j.pharmthera.2018.06.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 06/04/2018] [Indexed: 12/20/2022]
Abstract
Inflammatory pain is the most common type of pain that is treated clinically. The use of currently available treatments (classic analgesics - NSAIDs, paracetamol and opioids) is limited by insufficient efficacy and/or side effects/tolerance development. Antiepileptic drugs (AEDs) are widely used in neuropathic pain treatment, but there is substantial preclinical evidence on their efficacy against inflammatory pain, too. In this review we focus on gabapentinoids (gabapentin and pregabalin) and dibenzazepine AEDs (carbamazepine, oxcarbazepine, and recently introduced eslicarbazepine acetate) and their potential for relieving inflammatory pain. In models of somatic, visceral and trigeminal inflammatory pain, that have a translational value for inflammatory conditions in locomotor system, viscera and head/face, AEDs have demonstrated analgesic activity. This activity was mostly consistent, dependent on the dose and largely independent on the site of inflammation and method of its induction, nociceptive stimuli, species, specific drug used, its route of administration and dosing schedule. AEDs exerted comparable efficacy with classic analgesics. Effective doses of AEDs are lower than toxic doses in animals and, when expressed as equivalent human doses, they are largely overlapping with AEDs doses already used in humans for treating epilepsy/neuropathic pain. The main mechanism of antinociceptive/antihyperalgesic action of gabapentinoids in inflammatory pain models seems to be α2δ-dependent suppression of voltage-gated calcium channels in primary sensory neurons that leads to reduced release of neurotransmitters in the spinal/medullar dorsal horn. The suppression of NMDA receptors via co-agonist binding site primarily at spinal sites, activation of various types of K+ channels at spinal and peripheral sites, and activation of noradrenergic and serotonergic descending pain modulatory pathways may also contribute. Inhibition of voltage-gated sodium channels along the pain pathway is probably the main mechanism of antinociceptive/antihyperalgesic effects of dibenzazepines. The recruitment of peripheral adrenergic and purinergic mechanisms and central GABAergic mechanisms may also contribute. When co-administered with classic/other alternative analgesics, AEDs exerted synergistic/additive interactions. Reviewed data could serve as a basis for clinical studies on the efficacy/safety of AEDs as analgesics/adjuvants in patients with inflammatory pain, and contribute to the improvement of the treatment of various inflammatory pain states.
Collapse
|
11
|
Chincholkar M. Analgesic mechanisms of gabapentinoids and effects in experimental pain models: a narrative review. Br J Anaesth 2018; 120:1315-1334. [DOI: 10.1016/j.bja.2018.02.066] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 02/07/2018] [Accepted: 03/14/2018] [Indexed: 12/17/2022] Open
|
12
|
Neuropathic pain-induced enhancement of spontaneous and pain-evoked neuronal activity in the periaqueductal gray that is attenuated by gabapentin. Pain 2018; 158:1241-1253. [PMID: 28328571 DOI: 10.1097/j.pain.0000000000000905] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Neuropathic pain is a debilitating pathological condition that is poorly understood. Recent evidence suggests that abnormal central processing occurs during the development of neuropathic pain induced by the cancer chemotherapeutic agent, paclitaxel. Yet, it is unclear what role neurons in supraspinal pain network sites, such as the periaqueductal gray, play in altered behavioral sensitivity seen during chronic pain conditions. To elucidate these mechanisms, we studied the spontaneous and thermally evoked firing patterns of ventrolateral periaqueductal gray (vlPAG) neurons in awake-behaving rats treated with paclitaxel to induce neuropathic pain. In the present study, vlPAG neurons in naive rats exhibited either excitatory, inhibitory, or neutral responses to noxious thermal stimuli, as previously observed. However, after development of behavioral hypersensitivity induced by the chemotherapeutic agent, paclitaxel, vlPAG neurons displayed increased neuronal activity and changes in thermal pain-evoked neuronal activity. This involved elevated levels of spontaneous firing and heightened responsiveness to nonnoxious stimuli (allodynia) as well as noxious thermal stimuli (hyperalgesia) as compared with controls. Furthermore, after paclitaxel treatment, only excitatory neuronal responses were observed for both nonnoxious and noxious thermal stimuli. Systemic administration of gabapentin, a nonopioid analgesic, induced significant dose-dependent decreases in the elevated spontaneous and thermally evoked vlPAG neuronal firing to both nonnoxious and noxious thermal stimuli in rats exhibiting neuropathic pain, but not in naive rats. Thus, these results show a strong correlation between behavioral hypersensitivity to thermal stimuli and increased firing of vlPAG neurons in allodynia and hyperalgesia that occur in this neuropathic pain model.
Collapse
|
13
|
Abstract
Supplemental Digital Content is Available in the Text. This descriptive case series among adults documents that pain can return temporarily at healed, previously pain-free injury sites during acute opioid withdrawal. Withdrawal pain can be a barrier to opioid cessation. Yet, little is known about old injury site pain in this context. We conducted an exploratory mixed-methods descriptive case series using a web-based survey and in-person interviews with adults recruited from pain and addiction treatment and research settings. We included individuals who self-reported a past significant injury that was healed and pain-free before the initiation of opioids, which then became temporarily painful upon opioid cessation—a phenomenon we have named withdrawal-associated injury site pain (WISP). Screening identified WISP in 47 people, of whom 34 (72%) completed the descriptive survey, including 21 who completed qualitative interviews. Recalled pain severity scores for WISP were typically high (median: 8/10; interquartile range [IQR]: 2), emotionally and physically aversive, and took approximately 2 weeks to resolve (median: 14; IQR: 24 days). Withdrawal-associated injury site pain intensity was typically slightly less than participants' original injury pain (median: 10/10; IQR: 3), and more painful than other generalized withdrawal symptoms which also lasted approximately 2 weeks (median: 13; IQR: 25 days). Fifteen surveyed participants (44%) reported returning to opioid use because of WISP in the past. Participants developed theories about the etiology of WISP, including that the pain is the brain's way of communicating a desire for opioids. This research represents the first known documentation that previously healed, and pain-free injury sites can temporarily become painful again during opioid withdrawal, an experience which may be a barrier to opioid cessation, and a contributor to opioid reinitiation.
Collapse
|
14
|
Khuvtsagaan B, Lundeg G. Perioperative gabapentin as a component of multimodal analgesia for postoperative pain after total knee arthroplasty. Anesth Pain Med (Seoul) 2017. [DOI: 10.17085/apm.2017.12.2.169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
| | - Ganbold Lundeg
- Department of Critical Care and Anesthesiology, School of Medicine, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| |
Collapse
|
15
|
Pogatzki-Zahn EM, Segelcke D, Schug SA. Postoperative pain-from mechanisms to treatment. Pain Rep 2017; 2:e588. [PMID: 29392204 PMCID: PMC5770176 DOI: 10.1097/pr9.0000000000000588] [Citation(s) in RCA: 204] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/04/2017] [Accepted: 02/06/2017] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Pain management after surgery continues to be suboptimal; there are several reasons including lack of translation of results from basic science studies and scientific clinical evidence into clinical praxis. OBJECTIVES This review presents and discusses basic science findings and scientific evidence generated within the last 2 decades in the field of acute postoperative pain. METHODS In the first part of the review, we give an overview about studies that have investigated the pathophysiology of postoperative pain by using rodent models of incisional pain up to July 2016. The second focus of the review lies on treatment recommendations based on guidelines and clinical evidence, eg, by using the fourth edition of the "Acute Pain Management: Scientific Evidence" of the Australian and New Zealand College of Anaesthetists and Faculty of Pain Medicine. RESULTS Preclinical studies in rodent models characterized responses of primary afferent nociceptors and dorsal horn neurons as one neural basis for pain behavior including resting pain, hyperalgesia, movement-evoked pain or anxiety- and depression-like behaviors after surgery. Furthermore, the role of certain receptors, mediators, and neurotransmitters involved in peripheral and central sensitization after incision were identified; many of these are very specific, relate to some modalities only, and are unique for incisional pain. Future treatment should focus on these targets to develop therapeutic agents that are effective for the treatment of postoperative pain as well as have few side effects. Furthermore, basic science findings translate well into results from clinical studies. Scientific evidence is able to point towards useful (and less useful) elements of multimodal analgesia able to reduce opioid consumption, improve pain management, and enhance recovery. CONCLUSION Understanding basic mechanisms of postoperative pain to identify effective treatment strategies may improve patients' outcome after surgery.
Collapse
Affiliation(s)
- Esther M. Pogatzki-Zahn
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital of Muenster, Muenster, Germany
| | - Daniel Segelcke
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital of Muenster, Muenster, Germany
| | - Stephan A. Schug
- Pharmacology, Pharmacy and Anaesthesiology Unit, School of Medicine and Pharmacology, University of Western Australia, Perth, Western Australia, Australia
- Department of Anaesthesia and Pain Medicine, Royal Perth Hospital, Perth, Western Australia, Australia
| |
Collapse
|
16
|
Kotsovolis G, Karakoulas K, Grosomanidis V, Tziris N. Comparison between the Combination of Gabapentin, Ketamine, Lornoxicam, and Local Ropivacaine and Each of these Drugs Alone for Pain after Laparoscopic Cholecystectomy: A Randomized Trial. Pain Pract 2014; 15:355-63. [DOI: 10.1111/papr.12183] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Accepted: 12/29/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Georgios Kotsovolis
- Department of Anesthesia and Intensive Care; 424 Military Hospital of Thessaloniki; Thessaloniki Greece
| | | | - Vasileios Grosomanidis
- Department of Anesthesia and Intensive Care; AHEPA University Hospital; Thessaloniki Greece
| | - Nikolaos Tziris
- 3rd Department of Surgery; AHEPA University Hospital; Thessaloniki Greece
| |
Collapse
|