• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4773383)   Today's Articles (2494)
For:  [Subscribe] [Scholar Register]
Number Cited by Other Article(s)
1
Rosato C, Green PL, Harris J, Maskell S, Hope W, Gerada A, Howard A. Bayesian Calibration to Address the Challenge of Antimicrobial Resistance: A Review. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2024;12:100772-100791. [PMID: 39286062 PMCID: PMC7616450 DOI: 10.1109/access.2024.3427410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
2
Grazian C. Clustering minimal inhibitory concentration data through Bayesian mixture models: An application to detect Mycobacterium tuberculosis resistance mutations. Stat Methods Med Res 2023;32:2423-2439. [PMID: 37920984 PMCID: PMC10710010 DOI: 10.1177/09622802231211010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
3
Zhang M, Wang C, O'Connor AM. A Bayesian latent class mixture model with censoring for correlation analysis in antimicrobial resistance across populations. BMC Med Res Methodol 2021;21:186. [PMID: 34544374 PMCID: PMC8454148 DOI: 10.1186/s12874-021-01384-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 09/02/2021] [Indexed: 11/28/2022]  Open
4
Comparison of Phenotypical Antimicrobial Resistance between Clinical and Non-Clinical E. coli Isolates from Broilers, Turkeys and Calves in Four European Countries. Microorganisms 2021;9:microorganisms9040678. [PMID: 33805983 PMCID: PMC8064350 DOI: 10.3390/microorganisms9040678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 11/17/2022]  Open
5
Michael A, Kelman T, Pitesky M. Overview of Quantitative Methodologies to Understand Antimicrobial Resistance via Minimum Inhibitory Concentration. Animals (Basel) 2020;10:ani10081405. [PMID: 32806615 PMCID: PMC7459578 DOI: 10.3390/ani10081405] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 01/07/2023]  Open
6
Zhang M, Wang C, O’Connor A. A hierarchical Bayesian latent class mixture model with censorship for detection of linear temporal changes in antibiotic resistance. PLoS One 2020;15:e0220427. [PMID: 32004341 PMCID: PMC6993983 DOI: 10.1371/journal.pone.0220427] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 12/11/2019] [Indexed: 11/18/2022]  Open
7
Jaspers S, Komárek A, Aerts M. Bayesian estimation of multivariate normal mixtures with covariate-dependent mixing weights, with an application in antimicrobial resistance monitoring. Biom J 2018;60:7-19. [PMID: 28898442 DOI: 10.1002/bimj.201600253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 07/04/2017] [Accepted: 07/07/2017] [Indexed: 11/05/2022]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA