• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4698278)   Today's Articles (2652)
For:  [Subscribe] [Scholar Register]
Number Cited by Other Article(s)
1
Invariant Galton–Watson trees: metric properties and attraction with respect to generalized dynamical pruning. ADV APPL PROBAB 2023. [DOI: 10.1017/apr.2022.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
2
Kovchegov Y, Zaliapin I, Foufoula-Georgiou E. Critical Tokunaga model for river networks. Phys Rev E 2022;105:014301. [PMID: 35193248 DOI: 10.1103/physreve.105.014301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 12/09/2021] [Indexed: 11/07/2022]
3
Kovchegov Y, Zaliapin I. Invariance and attraction properties of Galton–Watson trees. BERNOULLI 2021. [DOI: 10.3150/20-bej1292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
4
Brandenberger A, Devroye L, Reddad T. The Horton–Strahler number of conditioned Galton–Watson trees. ELECTRON J PROBAB 2021. [DOI: 10.1214/21-ejp678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA