1
|
Liu C, Yang ZX, Zhou SQ, Ding D, Hu YT, Yang HN, Han D, Hu SQ, Zong XM. Overexpression of vascular endothelial growth factor enhances the neuroprotective effects of bone marrow mesenchymal stem cell transplantation in ischemic stroke. Neural Regen Res 2022; 18:1286-1292. [PMID: 36453413 PMCID: PMC9838145 DOI: 10.4103/1673-5374.358609] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although bone marrow mesenchymal stem cells (BMSCs) might have therapeutic potency in ischemic stroke, the benefits are limited. The current study investigated the effects of BMSCs engineered to overexpress vascular endothelial growth factor (VEGF) on behavioral defects in a rat model of transient cerebral ischemia, which was induced by middle cerebral artery occlusion. VEGF-BMSCs or control grafts were injected into the left striatum of the infarcted hemisphere 24 hours after stroke. We found that compared with the stroke-only group and the vehicle- and BMSCs-control groups, the VEGF-BMSCs treated animals displayed the largest benefits, as evidenced by attenuated behavioral defects and smaller infarct volume 7 days after stroke. Additionally, VEGF-BMSCs greatly inhibited destruction of the blood-brain barrier, increased the regeneration of blood vessels in the region of ischemic penumbra, and reducedneuronal degeneration surrounding the infarct core. Further mechanistic studies showed that among all transplant groups, VEGF-BMSCs transplantation induced the highest level of brain-derived neurotrophic factor. These results suggest that BMSCs transplantation with vascular endothelial growth factor has the potential to treat ischemic stroke with better results than are currently available.
Collapse
Affiliation(s)
- Cui Liu
- Institute of Emergency Rescue Medicine, Emergency Center, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China,Emergency Department of Affiliated Lianyungang Hospital of Xuzhou Medical University/The First People’s Hospital of Lianyungang, Lianyungang, Lianyungang, Jiangsu Province, China
| | - Zhi-Xiang Yang
- Institute of Emergency Rescue Medicine, Emergency Center, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Si-Qi Zhou
- Institute of Emergency Rescue Medicine, Emergency Center, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Ding Ding
- Institute of Emergency Rescue Medicine, Emergency Center, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Yu-Ting Hu
- Institute of Emergency Rescue Medicine, Emergency Center, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Hong-Ning Yang
- Institute of Emergency Rescue Medicine, Emergency Center, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China,Laboratory of Emergency Medicine, Second Clinical Medical College of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Dong Han
- Institute of Emergency Rescue Medicine, Emergency Center, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China,Laboratory of Emergency Medicine, Second Clinical Medical College of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Shu-Qun Hu
- Institute of Emergency Rescue Medicine, Emergency Center, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China,Laboratory of Emergency Medicine, Second Clinical Medical College of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu Province, China,Correspondence to: Xue-Mei Zong, ; Shu-Qun Hu, .
| | - Xue-Mei Zong
- Institute of Emergency Rescue Medicine, Emergency Center, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China,Key Laboratory of Brain Diseases Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu Province, China,Correspondence to: Xue-Mei Zong, ; Shu-Qun Hu, .
| |
Collapse
|
2
|
Isaiah S, Loots DT, Solomons R, van der Kuip M, Tutu Van Furth AM, Mason S. Overview of Brain-to-Gut Axis Exposed to Chronic CNS Bacterial Infection(s) and a Predictive Urinary Metabolic Profile of a Brain Infected by Mycobacterium tuberculosis. Front Neurosci 2020; 14:296. [PMID: 32372900 PMCID: PMC7186443 DOI: 10.3389/fnins.2020.00296] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/16/2020] [Indexed: 12/12/2022] Open
Abstract
A new paradigm in neuroscience has recently emerged - the brain-gut axis (BGA). The contemporary focus in this paradigm has been gut → brain ("bottom-up"), in which the gut-microbiome, and its perturbations, affects one's psychological state-of-mind and behavior, and is pivotal in neurodegenerative disorders. The emerging brain → gut ("top-down") concept, the subject of this review, proposes that dysfunctional brain health can alter the gut-microbiome. Feedback of this alternative bidirectional highway subsequently aggravates the neurological pathology. This paradigm shift, however, focuses upon non-communicable neurological diseases (progressive neuroinflammation). What of infectious diseases, in which pathogenic bacteria penetrate the blood-brain barrier and interact with the brain, and what is this effect on the BGA in bacterial infection(s) that cause chronic neuroinflammation? Persistent immune activity in the CNS due to chronic neuroinflammation can lead to irreversible neurodegeneration and neuronal death. The properties of cerebrospinal fluid (CSF), such as immunological markers, are used to diagnose brain disorders. But what of metabolic markers for such purposes? If a BGA exists, then chronic CNS bacterial infection(s) should theoretically be reflected in the urine. The premise here is that chronic CNS bacterial infection(s) will affect the gut-microbiome and that perturbed metabolism in both the CNS and gut will release metabolites into the blood that are filtered (kidneys) and excreted in the urine. Here we assess the literature on the effects of chronic neuroinflammatory diseases on the gut-microbiome caused by bacterial infection(s) of the CNS, in the context of information attained via metabolomics-based studies of urine. Furthermore, we take a severe chronic neuroinflammatory infectious disease - tuberculous meningitis (TBM), caused by Mycobacterium tuberculosis, and examine three previously validated CSF immunological biomarkers - vascular endothelial growth factor, interferon-gamma and myeloperoxidase - in terms of the expected changes in normal brain metabolism. We then model the downstream metabolic effects expected, predicting pivotal altered metabolic pathways that would be reflected in the urinary profiles of TBM subjects. Our cascading metabolic model should be adjustable to account for other types of CNS bacterial infection(s) associated with chronic neuroinflammation, typically prevalent, and difficult to distinguish from TBM, in the resource-constrained settings of poor communities.
Collapse
Affiliation(s)
- Simon Isaiah
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Du Toit Loots
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Regan Solomons
- Department of Pediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Martijn van der Kuip
- Pediatric Infectious Diseases and Immunology, Amsterdam University Medical Center, Academic Medical Center, Emma Children’s Hospital, Amsterdam, Netherlands
| | - A. Marceline Tutu Van Furth
- Pediatric Infectious Diseases and Immunology, Amsterdam University Medical Center, Academic Medical Center, Emma Children’s Hospital, Amsterdam, Netherlands
| | - Shayne Mason
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
3
|
Neural Vascular Mechanism for the Cerebral Blood Flow Autoregulation after Hemorrhagic Stroke. Neural Plast 2017; 2017:5819514. [PMID: 29104807 PMCID: PMC5634612 DOI: 10.1155/2017/5819514] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/11/2017] [Indexed: 12/21/2022] Open
Abstract
During the initial stages of hemorrhagic stroke, including intracerebral hemorrhage and subarachnoid hemorrhage, the reflex mechanisms are activated to protect cerebral perfusion, but secondary dysfunction of cerebral flow autoregulation will eventually reduce global cerebral blood flow and the delivery of metabolic substrates, leading to generalized cerebral ischemia, hypoxia, and ultimately, neuronal cell death. Cerebral blood flow is controlled by various regulatory mechanisms, including prevailing arterial pressure, intracranial pressure, arterial blood gases, neural activity, and metabolic demand. Evoked by the concept of vascular neural network, the unveiled neural vascular mechanism gains more and more attentions. Astrocyte, neuron, pericyte, endothelium, and so forth are formed as a communicate network to regulate with each other as well as the cerebral blood flow. However, the signaling molecules responsible for this communication between these new players and blood vessels are yet to be definitively confirmed. Recent evidence suggested the pivotal role of transcriptional mechanism, including but not limited to miRNA, lncRNA, exosome, and so forth, for the cerebral blood flow autoregulation. In the present review, we sought to summarize the hemodynamic changes and underline neural vascular mechanism for cerebral blood flow autoregulation in stroke-prone state and after hemorrhagic stroke and hopefully provide more systematic and innovative research interests for the pathophysiology and therapeutic strategies of hemorrhagic stroke.
Collapse
|
4
|
Tsygan NV, Trashkov AP, Yakovleva VA, Malkova VM, Gracheva EV, Kovalenko AL, Vasiliev AG. [Characteristics of the regulation of neurotrophic mechanisms in ischemic stroke]. Zh Nevrol Psikhiatr Im S S Korsakova 2015; 115:112-116. [PMID: 26356524 DOI: 10.17116/jnevro201511571112-116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
AIM To explore the endogenous and pharmacological activation of neurotrophic mechanisms in a model of brain ischemic lesion in rats. MATERIAL AND METHODS The study was performed on 170 male albino rats (195-205 g). The model of ischemic stroke was accomplished by the electrocoagulation of the proximal segment of the left middle cerebral artery and simultaneous permanent ligation of the left common carotid artery. RESULTS AND CONCLUSION The evaluation of NSE, NO, VEGF, NGF levels in the brain cytoplasmic lysate and plasma showed the delayed activation of neurotrophic mechanisms in astrocytes accompanied by a decrease in delayed alteration of neurons. The use of cytoflavin in the treatment of stroke was accompanied by the earlier and more intense activation of neurotrophic mechanisms in astrocytes, delayed activation of neurotrophic mechanisms in endothelial cells, which promoted neuroprotection in acute ischemic stroke.
Collapse
Affiliation(s)
- N V Tsygan
- Kirov Military Medical Academy, St. Petersburg
| | - A P Trashkov
- St. Petersburg State Pediatric Medical University, St. Petersburg
| | - V A Yakovleva
- St. Petersburg State Pediatric Medical University, St. Petersburg
| | - V M Malkova
- St. Petersburg State Pediatric Medical University, St. Petersburg
| | - E V Gracheva
- St. Petersburg State Pediatric Medical University, St. Petersburg
| | - A L Kovalenko
- Institute of Toxicology of the Federal Medical-Biological Agency, St. Petersburg
| | - A G Vasiliev
- St. Petersburg State Pediatric Medical University, St. Petersburg
| |
Collapse
|
5
|
Patel CB, Cohen DM, Ahobila-Vajjula P, Sundberg LM, Chacko T, Narayana PA. Effect of VEGF treatment on the blood-spinal cord barrier permeability in experimental spinal cord injury: dynamic contrast-enhanced magnetic resonance imaging. J Neurotrauma 2010; 26:1005-16. [PMID: 19226205 DOI: 10.1089/neu.2008.0860] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Compromised blood-spinal cord barrier (BSCB) is a factor in the outcome following traumatic spinal cord injury (SCI). Vascular endothelial growth factor (VEGF) is a potent stimulator of angiogenesis and vascular permeability. The role of VEGF in SCI is controversial. Relatively little is known about the spatial and temporal changes in the BSCB permeability following administration of VEGF in experimental SCI. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) studies were performed to noninvasively follow spatial and temporal changes in the BSCB permeability following acute administration of VEGF in experimental SCI over a post-injury period of 56 days. The DCE-MRI data was analyzed using a two-compartment pharmacokinetic model. Animals were assessed for open field locomotion using the Basso-Beattie-Bresnahan score. These studies demonstrate that the BSCB permeability was greater at all time points in the VEGF-treated animals compared to saline controls, most significantly in the epicenter region of injury. Although a significant temporal reduction in the BSCB permeability was observed in the VEGF-treated animals, BSCB permeability remained elevated even during the chronic phase. VEGF treatment resulted in earlier improvement in locomotor ability during the chronic phase of SCI. This study suggests a beneficial role of acutely administered VEGF in hastening neurobehavioral recovery after SCI.
Collapse
Affiliation(s)
- Chirag B Patel
- Department of Diagnostic and Interventional Imaging, University of Texas Medical School at Houston, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
6
|
Merrill MJ, Oldfield EH. A reassessment of vascular endothelial growth factor in central nervous system pathology. J Neurosurg 2005; 103:853-68. [PMID: 16304990 DOI: 10.3171/jns.2005.103.5.0853] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
✓ Overexpression of vascular endothelial growth factor (VEGF) is associated with several central nervous system (CNS) diseases and abnormalities, and is often postulated as a causative factor and promising therapeutic target in these settings. The authors' goal was to reassess the contribution of VEGF to the biology and pathology of the CNS.
The authors review the literature relating to the following aspects of VEGF: 1) the biology of VEGF in normal brain; 2) the involvement of VEGF in CNS disorders other than tumors (traumatic and ischemic injuries, arteriovenous malformations, inflammation); and 3) the role of VEGF in brain tumor biology (gliomas and the associated vasogenic edema, and hemangioblastomas).
The authors conclude the following: first, that VEGF overexpression contributes to the phenotype associated with many CNS disorders, but VEGF is a reactive rather than a causative factor in many cases; and second, that use of VEGF as a therapeutic agent or target is complicated by the effects of VEGF not only on the cerebral vasculature, but also on astrocytes, neurons, and inflammatory cells. In many cases, therapeutic interventions targeting the VEGF/VEGF receptor axis are likely to be ineffective or even detrimental. Clinical manipulation of VEGF levels in the CNS must be approached with caution.
Collapse
Affiliation(s)
- Marsha J Merrill
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892-1414, USA.
| | | |
Collapse
|
7
|
Yano A, Shingo T, Takeuchi A, Yasuhara T, Kobayashi K, Takahashi K, Muraoka K, Matsui T, Miyoshi Y, Hamada H, Date I. Encapsulated vascular endothelial growth factor—secreting cell grafts have neuroprotective and angiogenic effects on focal cerebral ischemia. J Neurosurg 2005; 103:104-14. [PMID: 16121981 DOI: 10.3171/jns.2005.103.1.0104] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Object
The authors evaluated the neuroprotective and angiogenic effects of a continuous and low-dose infusion of vascular endothelial growth factor (VEGF)-165 on cerebral ischemia in rats.
Methods
The authors introduced VEGF complementary (c)DNA into baby hamster kidney (BHK) cells and established a cell line that produces human VEGF165 (BHK-VEGF). The BHK-VEGF cells and BHK cells that had been transfected with an expression vector that did not contain human VEGF165 cDNA (BHK-control) were encapsulated. Both capsules were implanted into rat striata. Six days after capsule implantation, the right middle cerebral artery (MCA) was occluded. Some animals were killed 24 hours after occlusion to measure the volume of the resulting infarct and to perform immunohistochemical studies. Other animals were used for subsequent behavioral studies 1, 7, and 14 days after MCA occlusion.
The encapsulated BHK-VEGF cell grafts significantly reduced the volume of the infarct and the number of apoptotic cells in the penumbral area when compared with the effect of the BHK-control cell capsule. In addition, angiogenesis and gliogenesis significantly increased in the region around the capsule in animals that received BHK-VEGF cell capsules without an increase in focal cerebral blood flow; this did not occur in animals that received the BHK-control cell capsule. In behavioral studies rats that received the BHK-VEGF cell capsule displayed significant recovery while participating in the accelerating rotarod test after stroke.
Conclusions
Continuous intracerebral administration of low-dose VEGF165 through encapsulated grafts of VEGF-producing cells produces neuroprotective and angiogenic effects. These effects improve subsequent motor function.
Collapse
Affiliation(s)
- Akimasa Yano
- Department of Neurological Surgery, Okayama University Graduate School of Medicine and Dentistry, Okayama, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|