1
|
Cox KM, Kase D, Znati T, Turner RS. Detecting rhythmic spiking through the power spectra of point process model residuals. J Neural Eng 2024; 21:046041. [PMID: 38986461 PMCID: PMC11299538 DOI: 10.1088/1741-2552/ad6188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/21/2024] [Accepted: 07/10/2024] [Indexed: 07/12/2024]
Abstract
Objective. Oscillations figure prominently as neurological disease hallmarks and neuromodulation targets. To detect oscillations in a neuron's spiking, one might attempt to seek peaks in the spike train's power spectral density (PSD) which exceed a flat baseline. Yet for a non-oscillating neuron, the PSD is not flat: The recovery period ('RP', the post-spike drop in spike probability, starting with the refractory period) introduces global spectral distortion. An established 'shuffling' procedure corrects for RP distortion by removing the spectral component explained by the inter-spike interval (ISI) distribution. However, this procedure sacrifices oscillation-related information present in the ISIs, and therefore in the PSD. We asked whether point process models (PPMs) might achieve more selective RP distortion removal, thereby enabling improved oscillation detection.Approach. In a novel 'residuals' method, we first estimate the RP duration (nr) from the ISI distribution. We then fit the spike train with a PPM that predicts spike likelihood based on the time elapsed since the most recent of any spikes falling within the precedingnrmilliseconds. Finally, we compute the PSD of the model's residuals.Main results. We compared the residuals and shuffling methods' ability to enable accurate oscillation detection with flat baseline-assuming tests. Over synthetic data, the residuals method generally outperformed the shuffling method in classification of true- versus false-positive oscillatory power, principally due to enhanced sensitivity in sparse spike trains. In single-unit data from the internal globus pallidus (GPi) and ventrolateral anterior thalamus (VLa) of a parkinsonian monkey-in which alpha-beta oscillations (8-30 Hz) were anticipated-the residuals method reported the greatest incidence of significant alpha-beta power, with low firing rates predicting residuals-selective oscillation detection.Significance. These results encourage continued development of the residuals approach, to support more accurate oscillation detection. Improved identification of oscillations could promote improved disease models and therapeutic technologies.
Collapse
Affiliation(s)
- Karin M Cox
- Department of Computer Science, University of Pittsburgh, Pittsburgh, PA 15260, United States of America
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States of America
| | - Daisuke Kase
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States of America
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
- Systems Neuroscience Center, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| | - Taieb Znati
- Department of Computer Science, University of Pittsburgh, Pittsburgh, PA 15260, United States of America
| | - Robert S Turner
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States of America
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
- Systems Neuroscience Center, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| |
Collapse
|
2
|
Cox KM, Kase D, Znati T, Turner RS. Detecting rhythmic spiking through the power spectra of point process model residuals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.08.556120. [PMID: 38586036 PMCID: PMC10996479 DOI: 10.1101/2023.09.08.556120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Objective Oscillations figure prominently as neurological disease hallmarks and neuromodulation targets. To detect oscillations in a neuron's spiking, one might attempt to seek peaks in the spike train's power spectral density (PSD) which exceed a flat baseline. Yet for a non-oscillating neuron, the PSD is not flat: The recovery period ("RP", the post-spike drop in spike probability, starting with the refractory period) introduces global spectral distortion. An established "shuffling" procedure corrects for RP distortion by removing the spectral component explained by the inter-spike interval (ISI) distribution. However, this procedure sacrifices oscillation-related information present in the ISIs, and therefore in the PSD. We asked whether point process models (PPMs) might achieve more selective RP distortion removal, thereby enabling improved oscillation detection. Approach In a novel "residuals" method, we first estimate the RP duration (nr) from the ISI distribution. We then fit the spike train with a PPM that predicts spike likelihood based on the time elapsed since the most recent of any spikes falling within the preceding nr milliseconds. Finally, we compute the PSD of the model's residuals. Main results We compared the residuals and shuffling methods' ability to enable accurate oscillation detection with flat baseline-assuming tests. Over synthetic data, the residuals method generally outperformed the shuffling method in classification of true- versus false-positive oscillatory power, principally due to enhanced sensitivity in sparse spike trains. In single-unit data from the internal globus pallidus (GPi) and ventrolateral anterior thalamus (VLa) of a parkinsonian monkey -- in which alpha-beta oscillations (8-30 Hz) were anticipated -- the residuals method reported the greatest incidence of significant alpha-beta power, with low firing rates predicting residuals-selective oscillation detection. Significance These results encourage continued development of the residuals approach, to support more accurate oscillation detection. Improved identification of oscillations could promote improved disease models and therapeutic technologies.
Collapse
Affiliation(s)
- Karin M. Cox
- Department of Computer Science, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, United States of America
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, Maryland, 20815, United States of America
| | - Daisuke Kase
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, Maryland, 20815, United States of America
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, United States of America
- Systems Neuroscience Center, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, United States of America
| | - Taieb Znati
- Department of Computer Science, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, United States of America
| | - Robert S. Turner
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, Maryland, 20815, United States of America
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, United States of America
- Systems Neuroscience Center, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, United States of America
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, United States of America
| |
Collapse
|
3
|
Murray M, Pahapill PA, Awad AJ. Deep Brain Stimulation for Chronic Cluster Headaches: A Systematic Review and Meta-Analysis. Stereotact Funct Neurosurg 2023; 101:232-243. [PMID: 37245509 DOI: 10.1159/000530508] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/29/2023] [Indexed: 05/30/2023]
Abstract
BACKGROUND Chronic cluster headache (CCH) is a severe and debilitating sub-type of trigeminal autonomic cephalalgia that can be resistant to medical management and associated with significant impairment in quality of life. Studies of deep brain stimulation (DBS) for CCH have provided promising results but have not been assessed in a comprehensive systematic review/meta-analysis. OBJECTIVE The objective was to perform a systematic literature review and meta-analysis of patients with CCH treated with DBS to provide insight on safety and efficacy. METHODS A systematic review and meta-analysis were performed according to PRISMA 2020 guidelines. 16 studies were included in final analysis. A random-effects model was used to meta-analyze data. RESULTS Sixteen studies reported 108 cases for data extraction and analysis. DBS was feasible in >99% of cases and was performed either awake or asleep. Meta-analysis revealed that the mean difference in headache attack frequency and headache intensity after DBS were statistically significant (p < 0.0001). Utilization of microelectrode recording was associated with statistically significant improvement in headache intensity postoperatively (p = 0.006). The average overall follow-up period was 45.4 months and ranged from 1 to 144 months. Death occurred in <1%. The rate of major complications was 16.67%. CONCLUSIONS DBS for CCHs is a feasible surgical technique with a reasonable safety profile that can be successfully performed either awake or asleep. In carefully selected patients, approximately 70% of patients achieve excellent control of their headaches.
Collapse
Affiliation(s)
- Molly Murray
- Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Peter A Pahapill
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Ahmed J Awad
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| |
Collapse
|
4
|
Kelly R, Pearce J, Sani S. Commentary: Posteromedial Hypothalamic Deep Brain Stimulation for Refractory Aggressiveness in a Patient With Weaver Syndrome: Clinical, Technical Report, and Operative Video. Oper Neurosurg (Hagerstown) 2021; 21:E454-E456. [PMID: 34467982 PMCID: PMC8510845 DOI: 10.1093/ons/opab293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 07/06/2021] [Indexed: 11/25/2022] Open
Affiliation(s)
- Ryan Kelly
- Rush University Medical Center, Department of Neurosurgery, Rush University, Chicago, Illinois, USA
| | - John Pearce
- Rush University Medical Center, Department of Neurosurgery, Rush University, Chicago, Illinois, USA
| | - Sepher Sani
- Rush University Medical Center, Department of Neurosurgery, Rush University, Chicago, Illinois, USA
| |
Collapse
|
5
|
Kakusa B, Saluja S, Dadey DYA, Barbosa DAN, Gattas S, Miller KJ, Cowan RP, Kouyoumdjian Z, Pouratian N, Halpern CH. Electrophysiology and Structural Connectivity of the Posterior Hypothalamic Region: Much to Learn From a Rare Indication of Deep Brain Stimulation. Front Hum Neurosci 2020; 14:164. [PMID: 32670034 PMCID: PMC7326144 DOI: 10.3389/fnhum.2020.00164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 04/15/2020] [Indexed: 12/18/2022] Open
Abstract
Cluster headache (CH) is among the most common and debilitating autonomic cephalalgias. We characterize clinical outcomes of deep brain stimulation (DBS) to the posterior hypothalamic region through a novel analysis of the electrophysiological topography and tractography-based structural connectivity. The left posterior hypothalamus was targeted ipsilateral to the refractory CH symptoms. Intraoperatively, field potentials were captured in 1 mm depth increments. Whole-brain probabilistic tractography was conducted to assess the structural connectivity of the estimated volume of activated tissue (VAT) associated with therapeutic response. Stimulation of the posterior hypothalamic region led to the resolution of CH symptoms, and this benefit has persisted for 1.5-years post-surgically. Active contacts were within the posterior hypothalamus and dorsoposterior border of the ventral anterior thalamus (VAp). Delta- (3 Hz) and alpha-band (8 Hz) powers increased and peaked with proximity to the posterior hypothalamus. In the posterior hypothalamus, the delta-band phase was coupled to beta-band amplitude, the latter of which has been shown to increase during CH attacks. Finally, we identified that the VAT encompassing these regions had a high proportion of streamlines of pain processing regions, including the insula, anterior cingulate gyrus, inferior parietal lobe, precentral gyrus, and the brainstem. Our unique case study of posterior hypothalamic region DBS supports durable efficacy and provides a platform using electrophysiological topography and structural connectivity, to improve mechanistic understanding of CH and this promising therapy.
Collapse
Affiliation(s)
- Bina Kakusa
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Sabir Saluja
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| | - David Y A Dadey
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Daniel A N Barbosa
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Sandra Gattas
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Kai J Miller
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, United States
| | - Robert P Cowan
- Department of Neurology and Neurosciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Zepure Kouyoumdjian
- Department of Neurology, South Valley Neurology, Morgan Hill, CA, United States
| | - Nader Pouratian
- Department of Neurosurgery, School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Casey H Halpern
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
6
|
Surgery for treatment of refractory chronic cluster headache: toward standard procedures. Neurol Sci 2015; 36 Suppl 1:131-5. [PMID: 26017528 DOI: 10.1007/s10072-015-2179-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The degree of disability due to chronic cluster headache refractory to conservative treatments justifies surgical procedures as second-line treatments. Many studies and reports nowadays confirm the efficacy of the two mostly used surgical techniques in such cases. Both deep brain stimulation and occipital nerve stimulation are in fact currently utilized for this purpose but the surgical technique has not yet been standardized. We describe the surgical steps of both procedures.
Collapse
|
7
|
Leone M, Franzini A, Cecchini AP, Broggi G, Bussone G. Hypothalamic deep brain stimulation in the treatment of chronic cluster headache. Ther Adv Neurol Disord 2011; 3:187-95. [PMID: 21179610 DOI: 10.1177/1756285610370722] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Cluster headache (CH) is a short-lasting unilateral headache associated with ipsilateral craniofacial autonomic manifestations. A positron emission tomography (PET) study has shown that the posterior hypothalamus is activated during CH attacks, suggesting that hypothalamic hyperactivity plays a key role in CH pathophysiology. On this basis, stimulation of the ipsilateral posterior hypothalamus was hypothesized to counteract such hyperactivity to prevent intractable CH. Ten years after its introduction, hypothalamic stimulation has been proved to successfully prevent attacks in more than 60% of 58 hypothalamic implanted drug-resistant chronic CH patients. The implantation procedure has generally been proved to be safe, although it carries a small risk of brain haemorrhage. Long-term stimulation is safe, and nonsymptomatic impairment of orthostatic adaptation is the only noteworthy change. Microrecording studies will make it possible to better identify the target site. Neuroimaging investigations have shown that hypothalamic stimulation activates ipsilateral trigeminal complex, but with no immediate perceived sensation within the trigeminal distribution. Other studies on the pain threshold in chronically stimulated patients showed increased threshold for cold pain in the distribution of the first trigeminal branch ipsilateral to stimulation. These studies suggest that activation of the hypothalamus and of the trigeminal system are both necessary, but not sufficient to generate CH attacks. In addition to the hypothalamus, other unknown brain areas are likely to play a role in the pathophysiology of this illness. Hypothalamus implantation is associated with a small risk of intracerebral haemorrhage and must be performed by an expert neurosurgical team, in selected patients.
Collapse
Affiliation(s)
- Massimo Leone
- Headache Centre, Neuromodulation and Neurological Department, Fondazione Istituto Neurologico Carlo Besta, via Celoria 11, 20133 Milano, Italy.
| | | | | | | | | |
Collapse
|
8
|
Leone M, Franzini A, Proietti Cecchini A, Mea E, Broggi G, Bussone G. Deep brain stimulation in trigeminal autonomic cephalalgias. Neurotherapeutics 2010; 7:220-8. [PMID: 20430322 PMCID: PMC5084104 DOI: 10.1016/j.nurt.2010.02.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Accepted: 02/11/2010] [Indexed: 11/24/2022] Open
Abstract
Cluster headache (CH), paroxysmal hemicrania (PH), and short-lasting unilateral neuralgiform headache attacks with conjunctival injection and tearing (SUNCT syndrome) are primary headaches grouped together as trigeminal autonomic cephalalgias (TACs). All are characterized by short-lived unilateral head pain attacks associated with oculofacial autonomic phenomena. Neuroimaging studies have demonstrated that the posterior hypothalamus is activated during attacks, implicating hypothalamic hyperactivity in TAC pathophysiology and suggesting stimulation of the ipsilateral posterior hypothalamus as a means of preventing intractable CH. After almost 10 years of experience, hypothalamic stimulation has proved successful in preventing pain attacks in approximately 60% of the 58 documented chronic drug-resistant CH patients implanted at various centers. Positive results have also been reported in drug-resistant SUNCT and PH. Microrecording studies on hypothalamic neurons are increasingly being performed and promise to make it possible to more precisely identify the target site. The implantation procedure has generally proved safe, although it carries a small risk of brain hemorrhage. Long-term stimulation is proving to be safe: studies on patients under continuous hypothalamic stimulation have identified nonsymptomatic impairment of orthostatic adaptation as the only noteworthy change. Studies on pain threshold in chronically stimulated patients show increased threshold for cold pain in the distribution of the first trigeminal branch ipsilateral to stimulation. When the stimulator is switched off, changes in sensory and pain thresholds do not occur immediately, indicating that long-term hypothalamic stimulation is necessary to produce sensory and nociceptive changes, as also indicated by clinical experience that CH attacks are brought under control only after weeks of stimulation. Infection, transient loss of consciousness, and micturition syncope have been reported, but treatment interruption usually is not required.
Collapse
Affiliation(s)
- Massimo Leone
- Headache Center, Neuromodulation Unit, Department of Neurology, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, via Celoria 11, 20133 Milan, Italy.
| | | | | | | | | | | |
Collapse
|
9
|
Sillay KA, Sani S, Starr PA. Deep brain stimulation for medically intractable cluster headache. Neurobiol Dis 2009; 38:361-8. [PMID: 19501166 DOI: 10.1016/j.nbd.2009.05.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 04/27/2009] [Accepted: 05/25/2009] [Indexed: 11/29/2022] Open
Abstract
Cluster headache is the most severe primary headache disorder known. Ten to 20% of cases are medically intractable. DBS of the posterior hypothalamic area has shown effectiveness for alleviation of cluster headache in many but not all of the 46 reported cases from European centers and the eight cases studied at the University of California, San Francisco. This surgical strategy was based on the finding of increased blood flow in the posterior hypothalamic area on H(2)(15)O PET scanning during spontaneous and nitroglycerin-induced cluster headache attacks. The target point used, 4-5 mm posterior to the mamillothalamic tract, is in the border zone between posterior hypothalamus, anterior periventricular gray matter, and inferior thalamus. Recently, occipital nerve stimulation has shown efficacy, calling in question the use of DBS as a first line surgical therapy. In this report, we review the indications, techniques, and outcomes of DBS for cluster headache.
Collapse
Affiliation(s)
- Karl A Sillay
- Department of Neurosurgery, University of Wisconsin, Madison, WI 53792, USA.
| | | | | |
Collapse
|