1
|
Hu Z, Tang C, Ma C. Fully endoscopic approach for resection of brainstem cavernous malformations: a systematic review of the literature. BMC Surg 2024; 24:120. [PMID: 38654230 PMCID: PMC11036755 DOI: 10.1186/s12893-024-02403-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 04/08/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Brainstem cavernous malformations (BCMs) are benign lesions that typically have an acute onset and are associated with a high rate of morbidity. The selection of the optimal surgical approach is crucial for obtaining favorable outcomes, considering the different anatomical locations of various brainstem lesions. Endoscopic surgery is increasingly utilized in treating of BCMs, owing to its depth illumination and panoramic view capabilities. For intra-axial ventral BCMs, the best surgical options are endoscopic endonasal approaches, following the "two-point method. For cavernous hemangiomas on the dorsal side of the brainstem, endoscopy proves valuable by providing enhanced visualization of the operative field and minimizing the need for brain retraction. METHODS In this review, we gathered data on the fully endoscopic approach for the resection of BCMs, and outlined technical notes and tips. Total of 15 articles were included in this review. The endoscopic endonasal approach was utilized in 19 patients, and the endoscopic transcranial approach was performed in 3 patients. RESULTS The overall resection rate was 81.8% (18/22). Among the 19 cases of endoscopic endonasal surgery, postoperative cerebrospinal fluid (CSF) leakage occurred in 5 cases, with lesions exceeding 2 cm in diameter in 3 patients with postoperative CSF rhinorrhea. Among the 20 patients with follow-up data, 2 showed no significant improvement after surgery, whereas the remaining 18 patients showed significant improvement compared to their admission symptoms. CONCLUSIONS This systematic literature review demonstrates that a fully endoscopic approach is a safe and effective option for the resection of BCMs. Further, it can be considered an alternative to conventional craniotomy, particularly when managed by a neurosurgical team with extensive experience in endoscopic surgery, addressing these challenging lesions.
Collapse
Affiliation(s)
- Zhigang Hu
- Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Chao Tang
- Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Chiyuan Ma
- Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China.
- Department of Neurosurgery, Jinling Hospital, Southern Medical University, Nanjing, Jiangsu, China.
- Department of Neurosurgery, Jinling Hospital, Nanjing Medical University, Nanjing, 210002, China.
| |
Collapse
|
2
|
Becker D, Scherer M, Neher P, Jungk C, Jesser J, Pflüger I, Bendszus M, Maier-Hein K, Unterberg A. Q-ball high-resolution fiber tractography of language associated tracts: quantitative evaluation of applicability for glioma resections. J Neurosurg Sci 2024; 68:1-12. [PMID: 31680507 DOI: 10.23736/s0390-5616.19.04782-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND To date, fiber tractography (FT) is predominantly based on diffusion tensor imaging (DTI). High angular resolution diffusion imaging (HARDI)-based reconstructions have become a focus of interest, enabling the resolution of intravoxel fiber crossing. However, experience with high resolution tractography (HRFT) for neurosurgical applications is still limited to a few reports. This prospectively designed feasibility study shares our initial experience using an analytical q-ball approach (QBI) for FT of language-associated pathways in comparison with DTI-FT, focussing on a quantitative analysis and evaluation of its applicability in clinical routine. METHODS Probabilistic QBI-, and DTI-FT were performed for the major components of the language-associated fiber bundles (superior longitudinal fasciculus, inferior fronto-occipital fasciculus, medial/inferior longitudinal faciculus) in 11 patients with eloquent gliomas. The data was derived from a routine DWI sequence (b=1000s/mm2, 64 gradient directions). Quantitative analysis evaluated tract volume (TV), tract length (TL) and tract density (TD). Results were correlated to tumor and edema size. RESULTS Quantitative analysis showed larger TV and TL of the overall fiber object using QBI-FT compared with DTI-FT (TV: 16.45±1.85 vs. 10.07±1.15cm3; P<0.0001; TL: 81.95±6.14 vs. 72.06±6.92 mm; P=0.0011). Regarding overall TD, DTI delivered significantly higher values (40.57±6.59 vs. 60.98±15.94 points/voxel; P=0.0118). Bland-Altman analysis illustrated a systematic advantage to yield lager TV and TL via QBI compared with DTI for all reconstructed pathways. The results were independent of tumor or edema volume. CONCLUSIONS QBI proved to be suitable for an application in the neurosurgical setting without additional expense for the patient. Quantitative analysis of FT reveals larger overall TV, longer TL with lower TD using QBI compared with DTI, suggesting the better depiction of marginal and terminal fibers according to neuroanatomical knowledge. This emphasizes the known limitation of DTI to underestimate the dimensions of a pathway. Rather than relying on DTI, sophisticated HRFT techniques should be considered for preoperative planning and intraoperative guidance in selected cases of eloquent glioma surgery.
Collapse
Affiliation(s)
- Daniela Becker
- Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany -
| | - Moritz Scherer
- Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany
| | - Peter Neher
- Division of Medical Image Computing, German Cancer Research Center, Heidelberg, Germany
| | - Christine Jungk
- Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany
| | - Jessica Jesser
- Department of Neuroradiology, University of Heidelberg, Heidelberg, Germany
| | - Irada Pflüger
- Department of Neuroradiology, University of Heidelberg, Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, University of Heidelberg, Heidelberg, Germany
| | - Klaus Maier-Hein
- Division of Medical Image Computing, German Cancer Research Center, Heidelberg, Germany
| | - Andreas Unterberg
- Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
3
|
Tasiou A, Brotis AG, Kalogeras A, Tzerefos C. Cavernous malformations of the central nervous system: An international consensus statement. BRAIN & SPINE 2023; 3:102707. [PMID: 38020995 PMCID: PMC10668094 DOI: 10.1016/j.bas.2023.102707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/19/2023] [Accepted: 11/04/2023] [Indexed: 12/01/2023]
Abstract
Introduction Cavernous malformations (CM) of the central nervous system constitute rare vascular lesions. They are usually asymptomatic, which has allowed their management to become quite debatable. Even when they become symptomatic their optimal mode and timing of treatment remains controversial. Research question A consensus may navigate neurosurgeons through the decision-making process of selecting the optimal treatment for asymptomatic and symptomatic CMs. Material and methods A 17-item questionnaire was developed to address controversial issues in relation to aspects of the treatment, surgical planning, optimal surgical strategy for specific age groups, the role of stereotactic radiosurgery, as well as a follow-up pattern. Consequently, a three-stage Delphi process was ran through 19 invited experts with the goal of reaching a consensus. The agreement rate for reaching a consensus was set at 70%. Results A consensus for surgical intervention was reached on the importance of the patient's age, symptomatology, and hemorrhagic recurrence; and the CM's location and size. The employment of advanced MRI techniques is considered of value for surgical planning. Observation for asymptomatic eloquent or deep-seated CMs represents the commonest practice among our panel. Surgical resection is considered when a deep-seated CM becomes symptomatic or after a second bleeding episode. Asymptomatic, image-proven hemorrhages constituted no indication for surgical resection for our panelists. Consensus was also reached on not resecting any developmental venous anomalies, and on resecting the associated hemosiderin rim only in epilepsy cases. Discussion and conclusion Our Delphi consensus provides an expert common practice for specific controversial issues of CM patient management.
Collapse
Affiliation(s)
- Anastasia Tasiou
- Department of Neurosurgery, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Alexandros G. Brotis
- Department of Neurosurgery, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Adamantios Kalogeras
- Department of Neurosurgery, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Christos Tzerefos
- Department of Neurosurgery, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, Larissa, Greece
| |
Collapse
|
4
|
Dmitriev AY, Dashyan VG. [Tractography in functional neuronavigation]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:12-18. [PMID: 37490660 DOI: 10.17116/jnevro202312307112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
The review addresses the combined use of tractography and neuronavigation. Fundamentals of diffusion tensor imaging are given, technical aspects of fiber tracking in general and in depicting separate subcortical tracts are described. Main advantages of the method and possible causes of errors are highlighted. Precision assessment of this technology is given by comparing with results of subcortical neurostimulation. Surgical tactics is described depending on distance between the tumor and subcortical pathways.
Collapse
Affiliation(s)
- A Yu Dmitriev
- Sklifosovsky Research Institute for Emergency, Moscow, Russia
- Yevdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - V G Dashyan
- Sklifosovsky Research Institute for Emergency, Moscow, Russia
- Yevdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia
| |
Collapse
|
5
|
Clinical application of diffusion tensor imaging and fiber tractography in the management of brainstem cavernous malformations: a systematic review. Neurosurg Rev 2022; 45:2027-2040. [PMID: 35211879 DOI: 10.1007/s10143-022-01759-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/02/2022] [Accepted: 02/18/2022] [Indexed: 10/19/2022]
Abstract
This study aimed to systematically review the literature to determine the clinical utility and perspectives of diffusion tensor imaging (DTI) in the management of patients with brainstem cavernous malformations (BSCMs). PubMed, Embase, and Cochrane were searched for English-language articles published until May 10, 2021. Clinical studies and case series describing DTI-based evaluation of patients with BSCMs were included. Fourteen articles were included. Preoperative DTI enabled to adjust the surgical approach and choose a brainstem safe entry zone in deep-seated BSCMs. Preoperatively lower fractional anisotropy (FA) of the corticospinal tract (CST) correlated with the severity of CST injury and motor deficits. Postoperatively increased FA and decreased apparent diffusion coefficient (ADC) corresponded with the normalization of the perilesional CST, indicating motor improvement. The positive (PPV) and negative predictive value (NPV) of qualitative DTI ranged from 20 to 75% and from 66.6 to 100%, respectively. The presence of preoperative and postoperative motor deficits was associated with a higher preoperative resting motor threshold (RMT) and lower FA. A higher preoperative CST score was indicative of a lower preoperative and follow-up Medical Research Council (MRC) grade. DTI facilitated the determination of a surgical trajectory with minimized risk of WMTs' damage. Preoperative FA and RMT might indicate the severity of preoperative and postoperative motor deficits. Preoperative CST score can reliably reflect patients' preoperative and follow-up motor status. Due to high NPV, normal CST morphology might predict intact neurological outcomes. Contrarily, sparse and relatively low PPV limits the reliable prediction of neurological deficits.
Collapse
|
6
|
Comparison of diffusion signal models for fiber tractography in eloquent glioma surgery - determination of accuracy under awake craniotomy conditions. World Neurosurg 2021; 158:e429-e440. [PMID: 34767992 DOI: 10.1016/j.wneu.2021.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 10/30/2021] [Accepted: 11/01/2021] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Fiber tractography(FT) has become an important non-invasive tool to ensure maximal safe tumor resection in eloquent glioma surgery. Intraoperatively applied FT is still predominantly based on Diffusion Tensor Imaging(DTI). However, reconstruction schemes of high angular resolution diffusion imaging(HARDI) data for high resolution fiber tractography(HRFT) are gaining increasing attention. The aim of this prospective study was to compare the accuracy of sophisticated HRFT-models compared with DTI-FT. METHODS Ten patients with eloquent gliomas underwent surgery under awake craniotomy conditions. The localization of acquisition points(AP), representing deteriorations during intraoperative electrostimulation(IOM) and neuropsychological mapping, were documented. The offsets of AP to the respective fiber bundle were calculated. Probabilistic QBI- and CSD-FT were compared to DTI-FT for the major language-associated fiber bundles (superior longitudinal fasciclus (SLF) II-IV, inferior fronto-occipital fasciculus (IFOF), inferior longitudinal fasciculus/medial longitudinal fasciculus (ILF/MLF). RESULTS Among 186 offset values, 46% were located closer than 10mm to the estimated fiber bundle (CSD:36%; DTI:40% and QBI:60%). Moreover, only 10 offsets were further away than 30mm (5%). Lowest mean min-offsets (SLF: 7.7±7.9mm; IFOF: 12.7±8.3mm; ILF/MLF: 17.7±6.7mm) were found for QBI, indicating a significant advantage compared with CSD or DTI (p<0.001), respectively. No significant differences were found between CSD-, and DTI-FT offsets (p=0.105), albeit for the compound SLF exclusively (p<0.001). CONCLUSIONS Comparing HRFT techniques QBI and CSD with DTI, QBI delivered significantly better results with lowest offsets and good correlation to IOM results. Besides, QBI-FT was feasible for neurosurgical pre- and intraoperative applications. Our findings suggest that a combined approach of QBI-FT and IOM under awake craniotomy is considerable for best preservation of neurological function in the presented setting. Overall, the implementation of selected HRFT models into neuronavigation systems seems to be a promising tool in glioma surgery.
Collapse
|
7
|
Abhinav K, Nielsen TH, Singh R, Weng Y, Han SS, Iv M, Steinberg GK. Utility of a Quantitative Approach Using Diffusion Tensor Imaging for Prognostication Regarding Motor and Functional Outcomes in Patients With Surgically Resected Deep Intracranial Cavernous Malformations. Neurosurgery 2020; 86:665-675. [PMID: 31360998 DOI: 10.1093/neuros/nyz259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 04/15/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Resection of deep intracranial cavernous malformations (CMs) is associated with a higher risk of neurological deterioration and uncertainty regarding clinical outcomes. OBJECTIVE To examine diffusion tractography imaging (DTI) data evaluating the corticospinal tract (CST) in relation to motor and functional outcomes in patients with surgically resected deep CMs. METHODS Perilesional CST was characterized as disrupted, displaced, or normal. Mean fractional anisotropy (FA) values were obtained for whole ipsilateral CST and in 3 regions: subcortical (proximal), perilesional, and distally. Mean FA values in anatomically equivalent regions in the contralateral CST were obtained. Clinical and radiological data were collected independently. Multivariable regression analysis was used for statistical analysis. RESULTS A total of 18 patients [brainstem (15) and thalamus/basal ganglia (3); median follow-up: 270 d] were identified over 2 yr. The CST was identified preoperatively as disrupted (6), displaced (8), and normal (4). Five of 6 patients with disruption had weakness. Higher preoperative mean FA values for distal ipsilateral CST segment were associated with better preoperative lower (P < .001), upper limb (P = .004), postoperative lower (P = .005), and upper limb (P < .001) motor examination. Preoperative mean FA values for distal ipsilateral CST segment (P = .001) and contralateral perilesional CST segment (P < .001) were negatively associated with postoperative modified Rankin scale scores. CONCLUSION Lower preoperative mean FA values for overall and defined CST segments corresponded to worse patient pre- and postoperative motor examination and/or functional status. FA value for the distal ipsilateral CST segment has prognostic potential with respect to clinical outcomes.
Collapse
Affiliation(s)
- Kumar Abhinav
- Stanford Stroke Center, Department of Neurosurgery, Stanford University School of Medicine, Stanford, California
| | - Troels H Nielsen
- Stanford Stroke Center, Department of Neurosurgery, Stanford University School of Medicine, Stanford, California
| | - Rhea Singh
- Quantitative Sciences Unit, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Yingjie Weng
- Quantitative Sciences Unit, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Summer S Han
- Stanford Stroke Center, Department of Neurosurgery, Stanford University School of Medicine, Stanford, California.,Quantitative Sciences Unit, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Michael Iv
- Division of Neuroradiology, Department of Radiology, Stanford University School of Medicine, Stanford, California
| | - Gary K Steinberg
- Stanford Stroke Center, Department of Neurosurgery, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
8
|
Wende T, Hoffmann KT, Meixensberger J. Tractography in Neurosurgery: A Systematic Review of Current Applications. J Neurol Surg A Cent Eur Neurosurg 2020; 81:442-455. [PMID: 32176926 DOI: 10.1055/s-0039-1691823] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The ability to visualize the brain's fiber connections noninvasively in vivo is relatively young compared with other possibilities of functional magnetic resonance imaging. Although many studies showed tractography to be of promising value for neurosurgical care, the implications remain inconclusive. An overview of current applications is presented in this systematic review. A search was conducted for (("tractography" or "fiber tracking" or "fibre tracking") and "neurosurgery") that produced 751 results. We identified 260 relevant articles and added 20 more from other sources. Most publications concerned surgical planning for resection of tumors (n = 193) and vascular lesions (n = 15). Preoperative use of transcranial magnetic stimulation was discussed in 22 of these articles. Tractography in skull base surgery presents a special challenge (n = 29). Fewer publications evaluated traumatic brain injury (TBI) (n = 25) and spontaneous intracranial bleeding (n = 22). Twenty-three articles focused on tractography in pediatric neurosurgery. Most authors found tractography to be a valuable addition in neurosurgical care. The accuracy of the technique has increased over time. There are articles suggesting that tractography improves patient outcome after tumor resection. However, no reliable biomarkers have yet been described. The better rehabilitation potential after TBI and spontaneous intracranial bleeding compared with brain tumors offers an insight into the process of neurorehabilitation. Tractography and diffusion measurements in some studies showed a correlation with patient outcome that might help uncover the neuroanatomical principles of rehabilitation itself. Alternative corticofugal and cortico-cortical networks have been implicated in motor recovery after ischemic stroke, suggesting more complex mechanisms in neurorehabilitation that go beyond current models. Hence tractography may potentially be able to predict clinical deficits and rehabilitation potential, as well as finding possible explanations for neurologic disorders in retrospect. However, large variations of the results indicate a lack of data to establish robust diagnostical concepts at this point. Therefore, in vivo tractography should still be interpreted with caution and by experienced surgeons.
Collapse
Affiliation(s)
- Tim Wende
- Department of Neurosurgery, University Hospital Leipzig, Leipzig, Germany
| | | | | |
Collapse
|
9
|
Skrap M, Vescovi MC, Pauletto G, Maieron M, Tomasino B, Bagatto D, Tuniz F. Supratentorial Cavernous Malformations Involving the Corticospinal Tract and Sensory Motor Cortex: Treatment Strategies, Surgical Considerations, and Outcomes. Oper Neurosurg (Hagerstown) 2019; 15:483-497. [PMID: 29462365 DOI: 10.1093/ons/opx281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 12/05/2017] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Cavernous malformations (CMs) are congenital malformations and may be located anywhere in the brain. We present a series of CMs located close to or inside of the motor-sensory cortex or corticospinal tract (CST) with clinical onset due to hemorrhage or mass effect. In such cases, surgery becomes an acceptable option. OBJECTIVE To evaluate the role of diffusion tensor imaging (DTI), functional-magnetic-resonance imaging (fMRI), intraoperative neurophysiological monitoring, neuronavigation, and brain-mapping and the clinical results of surgical treatment of CMs in this critical location. METHODS The study included 54 patients harboring 22 cortical and 32 deep locations. This series was distinct because in group I, where the DTI was not obtained, and in the group II, where this evaluation was performed. RESULTS The postoperative permanent morbidity rate was 4% in the historical group for the deeper CMs, and there was no morbidity in the second group. DTI and fMRI permitted us to estimate the distance between the CMs and both the cortical activation cluster and the pyramidal tract. These data, in addition to intraoperative mapping and monitoring, made it necessary for us to perform a partial resection in 2 cases in the second series. CONCLUSION CMs are congenital lesions and CST fibers can run directly on their surface. Integration of fMRI and DTI data with intraoperative functional monitoring and direct cortical and subcortical mapping are mandatory to accomplish an optimal resection, tailoring the best surgical approach to the acceptable morbidity. A subtotal resection could be considered an option for deep locations.
Collapse
Affiliation(s)
- Miran Skrap
- Department of Neurosurgery, Azienda Ospedaliero Universitaria S. Maria della Misericordia, Udine, Italy
| | - Maria Caterina Vescovi
- Department of Neurosurgery, Azienda Ospedaliero Universitaria S. Maria della Misericordia, Udine, Italy
| | - Giada Pauletto
- Department of Neurology, Azienda Ospedaliero Univer-sitaria S. Maria della Misericordia, Udine, Italy
| | - Marta Maieron
- Department of Physics, Azienda Ospedaliero Universitaria S. Maria della Misericordia, Udine, Italy
| | | | - Daniele Bagatto
- Department of Neuroradiology, Azienda Ospedaliero Universitaria S. Maria della Misericordia, Udine, Italy
| | - Francesco Tuniz
- Department of Neurosurgery, Azienda Ospedaliero Universitaria S. Maria della Misericordia, Udine, Italy
| |
Collapse
|
10
|
Limited positive predictive value of diffusion tensor tractography in determining clinically relevant white matter damage in brain stem cavernous malformations: A retrospective study in a single center surgical cohort. J Neuroradiol 2019; 48:432-437. [PMID: 31539583 DOI: 10.1016/j.neurad.2019.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 07/15/2019] [Accepted: 07/25/2019] [Indexed: 11/23/2022]
Abstract
PURPOSE Diffusion tensor tractography (DTT) might reflect the postoperative clinical outcome of the patients with brain stem (BS) tumors correlating well with the neurological symptoms, but cavernous malformation (CM) is a hemorrhagic tumor prone to artifacts that may limit DTT. We set out to determine the correlation of DTT findings with the neurological examination before and after surgical resection in patients with BSCMs. MATERIALS AND METHODS DTT findings were evaluated bilaterally for fiber tract displacement or deviation, deformation and interruption in every patient before and after the surgery. Neurological examination was performed at admission, discharge and outpatient follow-up visit. The sensitivity, specificity, positive and negative predictive values of DTT were calculated both pre- and post-operatively. RESULTS There were 25 patients (9 men 16 women) with a mean age of 39.5±13.9 years. The mean size of the CMs was 6909±8374mm3 (range: 180-38,220mm3) The mean follow-up time was 42.7±23.2 months (range: 8 to 112 months). Preoperatively, the sensitivity, specificity, positive and negative predictive values of DTT for corticospinal tracts (CST) and medial lemnisci (ML) were 100%, 60%, 38.4%, 100% and 87.5%, 11.7%, 31.8%, 66.6%, respectively. Postoperatively, the sensitivity, specificity, positive and negative predictive values of DTT for CSTs and ML were 100%, 64.7%, 40%, 100% and 100%, 0%, 33.3%, 66.6%, respectively. CONCLUSION Positive findings on DTT such as fiber tract deviation, deformation, disruption or interruption should be taken cautiously before drawing conclusions of a clinically relevant damage of white matter tracts.
Collapse
|
11
|
Panesar SS, Abhinav K, Yeh FC, Jacquesson T, Collins M, Fernandez-Miranda J. Tractography for Surgical Neuro-Oncology Planning: Towards a Gold Standard. Neurotherapeutics 2019; 16:36-51. [PMID: 30542904 PMCID: PMC6361069 DOI: 10.1007/s13311-018-00697-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Magnetic resonance imaging tractography permits in vivo visualization of white matter structures. Aside from its academic value, tractography has been proven particularly useful to neurosurgeons for preoperative planning. Preoperative tractography permits both qualitative and quantitative analyses of tumor effects upon surrounding white matter, allowing the surgeon to specifically tailor their operative approach. Despite its benefits, there is controversy pertaining to methodology, implementation, and interpretation of results in this context. High-definition fiber tractography (HDFT) is one of several non-tensor tractography approaches permitting visualization of crossing white matter trajectories at high resolutions, dispensing with the well-known shortcomings of diffusion tensor imaging (DTI) tractography. In this article, we provide an overview of the advantages of HDFT in a neurosurgical context, derived from our considerable experience implementing the technique for academic and clinical purposes. We highlight nuances of qualitative and quantitative approaches to using HDFT for brain tumor surgery planning, and integration of tractography with complementary operative adjuncts, and consider areas requiring further research.
Collapse
Affiliation(s)
- Sandip S Panesar
- Department of Neurosurgery, Stanford University, 300 Pasteur Drive, Palo Alto, CA, 94304, USA
| | - Kumar Abhinav
- Department of Neurosurgery, Stanford University, 300 Pasteur Drive, Palo Alto, CA, 94304, USA
| | - Fang-Cheng Yeh
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Timothée Jacquesson
- CHU de Lyon - Hôpital Neurologique et Neurochirurgical Pierre Wertheimer, Lyon, France
| | - Malie Collins
- Department of Neurosurgery, Stanford University, 300 Pasteur Drive, Palo Alto, CA, 94304, USA
| | - Juan Fernandez-Miranda
- Department of Neurosurgery, Stanford University, 300 Pasteur Drive, Palo Alto, CA, 94304, USA.
| |
Collapse
|
12
|
Fernandes Cabral DT, Zenonos GA, Nuñez M, Celtikci P, Snyderman C, Wang E, Gardner PA, Fernandez-Miranda JC. Endoscopic Endonasal Transclival Approach for Resection of a Pontine Glioma: Surgical Planning, Surgical Anatomy, and Technique. Oper Neurosurg (Hagerstown) 2018. [DOI: 10.1093/ons/opy005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
BACKGROUND
The endoscopic endonasal approach (EEA) has been proposed as a potential alternative for ventral brainstem lesions. The surgical anatomy, feasibility, and limitations of the EEA for intrinsic brainstem lesions are still poorly understood.
OBJECTIVE
To describe the surgical planning, anatomy, and technique of an intrinsic pontine glioma operated via EEA.
METHODS
Six-human brainstems were prepared for white matter microdissection. Ten healthy subjects were studied with high-definition fiber tractography (HDFT). A 56-yr-old female with right-hemiparesis underwent EEA for an exophytic pontine glioma. Pre- and postoperative HDFTs were implemented.
RESULTS
The corticospinal tracts (CSTs) are the most eloquent fibers in the ventral brainstem. At the pons, CSTs run between the pontine nuclei and the middle cerebellar peduncle (MCP). At the lower medulla, the pyramidal decussation leaves no room for safe ventral access. In our illustrative case, preoperative HDFT showed left-CST displaced posteromedially and partially disrupted, right-CST posteriorly displaced, and MCP severely disrupted. A transclival exposure was performed achieving a complete resection of the exophytic component with residual intra-axial tumor. Immediately postop, patient developed new left-side abducens nerve palsy and worse right-hemiparesis. Ten days postop, her strength returned to baseline. HDFT showed preservation and trajectory restoration of the CSTs.
CONCLUSION
The EEA provides direct access to the ventral brainstem, overcoming the limitations of lateral approaches. For intrinsic pathology, HDFT helps choosing the most appropriate surgical route/boundaries for safer resection. Further experience is needed to determine the indications and limitations of this approach that should be performed by neurosurgeons with high-level expertise in EEA.
Collapse
Affiliation(s)
- David T Fernandes Cabral
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Georgios A Zenonos
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Maximiliano Nuñez
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Pinar Celtikci
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Carl Snyderman
- Department of Otolaryngology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Eric Wang
- Department of Otolaryngology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Paul A Gardner
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Juan C Fernandez-Miranda
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| |
Collapse
|
13
|
Lin Y, Lin F, Kang D, Jiao Y, Cao Y, Wang S. Supratentorial cavernous malformations adjacent to the corticospinal tract: surgical outcomes and predictive value of diffusion tensor imaging findings. J Neurosurg 2018; 128:541-552. [PMID: 28362238 DOI: 10.3171/2016.10.jns161179] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVEDiffusion tensor imaging (DTI) findings may facilitate clinical decision making in patients with supratentorial cavernous malformations adjacent to the corticospinal tract (CST-CMs). The objective of this study was to determine the predictive value of preoperative DTI findings for surgical outcomes in patients with CST-CMs.METHODSA prospectively maintained database of patients with CM referred to the authors' hospital between September 2012 and October 2015 was reviewed to identify all consecutive surgically treated patients with CST-CM. All patients had undergone sagittal T1-weighted anatomical imaging and DTI before surgery. Both DTI findings and clinical characteristics of the patients and lesions were analyzed with respect to surgery-related motor deficits. DTI findings included lesion-to-CST distance (LCD) and the alteration (i.e., deviation, interruption, or degeneration due to the CM) of CST on preoperative DTI images. Surgery-related motor deficits at 1 week and the last clinic visit (≥ 3 months) after surgery were defined as short-term and long-term deficits, respectively. Preoperative and final modified Rankin Scale scores were also analyzed to identify the surgical outcomes in these patients.RESULTSA total of 56 patients with 56 CST-CMs were included in this study. The mean LCD was 3.9 ± 3.2 mm, and alterations of the CST were detected in 20 (36.7%) patients. One week after surgery, 21 (37.5%) patients had short-term surgery-related motor deficits, but only 14 (25.0%) patients had long term deficits at the last clinical visit. The mean patient follow-up was 14.7 ± 10.1 months. The difference between preoperative and final modified Rankin Scale scores was not statistically significant (p = 0.490). Multivariate analysis showed that both short-term (p < 0.001) and long-term (p = 0.002) surgery-related motor deficits were significantly associated with LCD. Receiver operating characteristic (ROC) curve results were as follows: for short-term surgery-related motor deficits, the area under the ROC curve (AUC) was 0.860, and the cutoff point was LCD = 2.55 mm; for long-term deficits, the AUC was 0.894, and the cutoff point was LCD = 2.30 mm. Both univariate (p = 0.012) and multivariate (p = 0.049) analyses revealed that CST alteration on preoperative DTI was significantly correlated with short-term surgery-related motor deficits. On univariate analysis, deep location of the CST-CMs was significantly correlated with long-term motor deficits (p = 0.016). Deep location of the CST-CMs had a trend toward significance with long-term motor deficits on the multivariate analysis (p = 0.060).CONCLUSIONSTo facilitate clinical practice, the authors propose that 3.00 mm (2.55 to ∼3.00 mm) may be the safe LCD for surgery in patients with CST-CMs. A CST alteration on preoperative DTI and a deep location of the CST-CM may be risk factors for short- and long-term surgery-related motor deficits, respectively. A randomized controlled trial is needed to demonstrate the predictive value of preoperative DTI findings on surgical outcomes in patients with CST-CMs in future studies.
Collapse
Affiliation(s)
- Yuanxiang Lin
- 1Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fujian Province
| | - Fuxin Lin
- 1Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fujian Province
| | - Dezhi Kang
- 1Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fujian Province
| | - Yuming Jiao
- 2Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing
- 3China National Clinical Research Center for Neurological Diseases, Beijing
- 4Center of Stroke, Beijing Institute for Brain Disorders, Beijing; and
- 5Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, People's Republic of China
| | - Yong Cao
- 2Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing
- 3China National Clinical Research Center for Neurological Diseases, Beijing
- 4Center of Stroke, Beijing Institute for Brain Disorders, Beijing; and
- 5Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, People's Republic of China
| | - Shuo Wang
- 2Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing
- 3China National Clinical Research Center for Neurological Diseases, Beijing
- 4Center of Stroke, Beijing Institute for Brain Disorders, Beijing; and
- 5Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, People's Republic of China
| |
Collapse
|
14
|
Celtikci P, Fernandes-Cabral DT, Yeh FC, Panesar SS, Fernandez-Miranda JC. Generalized q-sampling imaging fiber tractography reveals displacement and infiltration of fiber tracts in low-grade gliomas. Neuroradiology 2018; 60:267-280. [PMID: 29372286 DOI: 10.1007/s00234-018-1985-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/16/2018] [Indexed: 01/12/2023]
Abstract
PURPOSE Low-grade gliomas (LGGs) are slow growing brain tumors that often cause displacement and/or infiltration of the surrounding white matter pathways. Differentiation between infiltration and displacement of fiber tracts remains a challenge. Currently, there is no reliable noninvasive imaging method capable of revealing such white matter alteration patterns. We employed quantitative anisotropy (QA) derived from generalized q-sampling imaging (GQI) to identify patterns of fiber tract alterations by LGGs. METHODS Sixteen patients with a neuropathological diagnosis of LGG (WHO grade II) were enrolled. Peritumoral fiber tracts underwent qualitative and quantitative evaluation. Contralateral hemisphere counterparts were used for comparison. Tracts were qualitatively classified as unaffected, displaced, infiltrated or displaced, and infiltrated at once. The average QA of whole tract (W), peritumoral tract segment (S), and their ratio (S/W) were obtained and compared to the healthy side for quantitative evaluation. RESULTS Qualitative analysis revealed 9 (13.8%) unaffected, 24 (36.9%) displaced, 13 (20%) infiltrated, and 19 (29.2%) tracts with a combination of displacement and infiltration. There were no disrupted tracts. There was a significant increase in S/W ratio among displaced tracts in the pre-operative scans in comparison with the contralateral side. QA values of peritumoral tract segments (S) were significantly lower in infiltrated tracts. CONCLUSION WHO grade II LGGs might displace, infiltrate, or cause a combination of displacement and infiltration of WM tracts. QA derived from GQI provides valuable information that helps to differentiate infiltration from displacement. Anisotropy changes correlate with qualitative alterations, which may serve as a potential biomarker of fiber tract integrity.
Collapse
Affiliation(s)
- Pinar Celtikci
- Department of Neurological Surgery, University of Pittsburgh Medical Center, 200 Lothrop St., Suite B-400, Pittsburgh, PA, 15213, USA
| | - David T Fernandes-Cabral
- Department of Neurological Surgery, University of Pittsburgh Medical Center, 200 Lothrop St., Suite B-400, Pittsburgh, PA, 15213, USA
| | - Fang-Cheng Yeh
- Department of Neurological Surgery, University of Pittsburgh Medical Center, 200 Lothrop St., Suite B-400, Pittsburgh, PA, 15213, USA
| | - Sandip S Panesar
- Department of Neurological Surgery, University of Pittsburgh Medical Center, 200 Lothrop St., Suite B-400, Pittsburgh, PA, 15213, USA
| | - Juan C Fernandez-Miranda
- Department of Neurological Surgery, University of Pittsburgh Medical Center, 200 Lothrop St., Suite B-400, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
15
|
Yoshino M, Abhinav K, Yeh FC, Panesar S, Fernandes D, Pathak S, Gardner PA, Fernandez-Miranda JC. Visualization of Cranial Nerves Using High-Definition Fiber Tractography. Neurosurgery 2017; 79:146-65. [PMID: 27070917 DOI: 10.1227/neu.0000000000001241] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Recent studies have demonstrated diffusion tensor imaging tractography of cranial nerves (CNs). Spatial and angular resolution, however, is limited with this modality. A substantial improvement in image resolution can be achieved with high-angle diffusion magnetic resonance imaging and atlas-based fiber tracking to provide detailed trajectories of CNs. OBJECTIVE To use high-definition fiber tractography to identify CNs in healthy subjects and patients with brain tumors. METHODS Five neurologically healthy adults and 3 patients with brain tumors were scanned with diffusion spectrum imaging that allowed high-angular-resolution fiber tracking. In addition, a 488-subject diffusion magnetic resonance imaging template constructed from the Human Connectome Project data was used to conduct atlas space fiber tracking of CNs. RESULTS The cisternal portions of most CNs were tracked and visualized in each healthy subject and in atlas fiber tracking. The entire optic radiation, medial longitudinal fasciculus, spinal trigeminal nucleus/tract, petroclival portion of the abducens nerve, and intrabrainstem portion of the facial nerve from the root exit zone to the adjacent abducens nucleus were identified. This suggested that the high-angular-resolution fiber tracking was able to distinguish the facial nerve from the vestibulocochlear nerve complex. The tractography clearly visualized CNs displaced by brain tumors. These tractography findings were confirmed intraoperatively. CONCLUSION Using high-angular-resolution fiber tracking and atlas-based fiber tracking, we were able to identify all CNs in unprecedented detail. This implies its potential in localization of CNs during surgical planning. ABBREVIATIONS CN, cranial nerveDSI, diffusion spectrum imagingDTI, diffusion tensor imagingHCP, Human Connectome ProjectHDFT, high-definition fiber tractographyMLF, medial longitudinal fasciculusODF, orientation distribution functionROI, region of interest.
Collapse
Affiliation(s)
- Masanori Yoshino
- *Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; ‡Department of Psychology, Carnegie Mellon University, Pittsburgh, Pennsylvania; §Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Meola A, Yeh FC, Fellows-Mayle W, Weed J, Fernandez-Miranda JC. Human Connectome-Based Tractographic Atlas of the Brainstem Connections and Surgical Approaches. Neurosurgery 2017; 79:437-55. [PMID: 26914259 DOI: 10.1227/neu.0000000000001224] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The brainstem is one of the most challenging areas for the neurosurgeon because of the limited space between gray matter nuclei and white matter pathways. Diffusion tensor imaging-based tractography has been used to study the brainstem structure, but the angular and spatial resolution could be improved further with advanced diffusion magnetic resonance imaging (MRI). OBJECTIVE To construct a high-angular/spatial resolution, wide-population-based, comprehensive tractography atlas that presents an anatomical review of the surgical approaches to the brainstem. METHODS We applied advanced diffusion MRI fiber tractography to a population-based atlas constructed with data from a total of 488 subjects from the Human Connectome Project-488. Five formalin-fixed brains were studied for surgical landmarks. Luxol Fast Blue-stained histological sections were used to validate the results of tractography. RESULTS We acquired the tractography of the major brainstem pathways and validated them with histological analysis. The pathways included the cerebellar peduncles, corticospinal tract, corticopontine tracts, medial lemniscus, lateral lemniscus, spinothalamic tract, rubrospinal tract, central tegmental tract, medial longitudinal fasciculus, and dorsal longitudinal fasciculus. Then, the reconstructed 3-dimensional brainstem structure was sectioned at the level of classic surgical approaches, namely supracollicular, infracollicular, lateral mesencephalic, perioculomotor, peritrigeminal, anterolateral (to the medulla), and retro-olivary approaches. CONCLUSION The advanced diffusion MRI fiber tracking is a powerful tool to explore the brainstem neuroanatomy and to achieve a better understanding of surgical approaches. ABBREVIATIONS CN, cranial nerveCPT, corticopontine tractCST, corticospinal tractCTT, central tegmental tractDLF, dorsal longitudinal fasciculusHCP, Human Connectome ProjectML, medial lemniscusMLF, medial longitudinal fasciculusRST, rubrospinal tractSTT, spinothalamic tract.
Collapse
Affiliation(s)
- Antonio Meola
- *Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; ‡Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts; §Department of Psychology, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | | | | | | | | |
Collapse
|
17
|
High-Definition Fiber Tractography in Evaluation and Surgical Planning of Thalamopeduncular Pilocytic Astrocytomas in Pediatric Population: Case Series and Review of Literature. World Neurosurg 2017; 98:463-469. [DOI: 10.1016/j.wneu.2016.11.061] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/11/2016] [Accepted: 11/12/2016] [Indexed: 12/16/2022]
|
18
|
Wei PH, Cong F, Chen G, Li MC, Yu XG, Bao YH. Neuronavigation Based on Track Density Image Extracted from Deterministic High-Definition Fiber Tractography. World Neurosurg 2017; 98:880.e9-880.e15. [DOI: 10.1016/j.wneu.2016.11.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/05/2016] [Accepted: 11/07/2016] [Indexed: 10/20/2022]
|
19
|
Parlatini V, Radua J, Dell'Acqua F, Leslie A, Simmons A, Murphy DG, Catani M, Thiebaut de Schotten M. Functional segregation and integration within fronto-parietal networks. Neuroimage 2016; 146:367-375. [PMID: 27639357 PMCID: PMC5312783 DOI: 10.1016/j.neuroimage.2016.08.031] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 08/11/2016] [Accepted: 08/16/2016] [Indexed: 11/25/2022] Open
Abstract
Experimental data on monkeys and functional studies in humans support the existence of a complex fronto-parietal system activating for cognitive and motor tasks, which may be anatomically supported by the superior longitudinal fasciculus (SLF). Advanced tractography methods have recently allowed the separation of the three branches of the SLF but are not suitable for their functional investigation. In order to gather comprehensive information about the functional organisation of these fronto-parietal connections, we used an innovative method, which combined tractography of the SLF in the largest dataset so far (129 participants) with 14 meta-analyses of functional magnetic resonance imaging (fMRI) studies. We found that frontal and parietal functions can be clustered into a dorsal spatial/motor network associated with the SLF I, and a ventral non-spatial/motor network associated with the SLF III. Further, all the investigated functions activated a middle network mostly associated with the SLF II. Our findings suggest that dorsal and ventral fronto-parietal networks are segregated but also share regions of activation, which may support flexible response properties or conscious processing. In sum, our novel combined approach provided novel findings on the functional organisation of fronto-parietal networks, and may be successfully applied to other brain connections. We used a novel approach to investigate fronto-parietal functions. These are segregated into a dorsal spatial and a ventral non-spatial network. These networks rely on the superior longitudinal fasciculus (1st and 3rd branch). They overlap on areas with flexible response properties that rely on the 2nd branch.
Collapse
Affiliation(s)
- Valeria Parlatini
- Sackler Institute of Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 8AF London, UK; Natbrainlab, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 8AF London, UK.
| | - Joaquim Radua
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 8AF London, UK; FIDMAG Germanes Hospitalàries, CIBERSAM, Sant Boi de Llobregat 08035, Spain
| | - Flavio Dell'Acqua
- Natbrainlab, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 8AF London, UK; Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 8AF London, UK; NIHR Biomedical Research Centre for Mental Health at South London and Maudsley NHS Foundation Trust and King's College London, Institute of Psychiatry, SE5 8AF London, UK
| | - Anoushka Leslie
- Natbrainlab, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 8AF London, UK; Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 8AF London, UK; NIHR Biomedical Research Centre for Mental Health at South London and Maudsley NHS Foundation Trust and King's College London, Institute of Psychiatry, SE5 8AF London, UK
| | - Andy Simmons
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 8AF London, UK; NIHR Biomedical Research Centre for Mental Health at South London and Maudsley NHS Foundation Trust and King's College London, Institute of Psychiatry, SE5 8AF London, UK; MRC Centre for Neurodegeneration Research, King's College London, SE5 9RX London, UK
| | - Declan G Murphy
- Sackler Institute of Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 8AF London, UK
| | - Marco Catani
- Sackler Institute of Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 8AF London, UK; Natbrainlab, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 8AF London, UK
| | - Michel Thiebaut de Schotten
- Sackler Institute of Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 8AF London, UK; Natbrainlab, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 8AF London, UK; Brain Connectivity Behaviour group, FrontLab, Paris, France; Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, Institut du cerveau et la moelle (ICM) - Hôpital Pitié-Salpêtrière, Boulevard de l'hôpital, F-75013, Paris, France.
| |
Collapse
|
20
|
High-Definition Fiber Tractography in the Evaluation and Surgical Planning of Lhermitte-Duclos Disease: A Case Report. World Neurosurg 2016; 92:587.e9-587.e13. [PMID: 27168233 DOI: 10.1016/j.wneu.2016.04.128] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 04/28/2016] [Accepted: 04/30/2016] [Indexed: 11/21/2022]
Abstract
BACKGROUND Preoperative delineation of normal tissue displacement patterns in Lhermitte-Duclos disease has not been feasible with conventional imaging means. Surgical resection of this type of lesion remains challenging, because the boundaries of the lesion are indistinguishable during surgery. CASE DESCRIPTION The clinical presentation, preoperative and postoperative magnetic resonance imaging (MRI) findings, high-definition fiber tractography (HDFT) and histopathological studies, are presented in a 46-year-old male subject with symptomatic Lhermitte-Duclos disease. HDFT was performed using a quantitative anisotropy-based generalized deterministic tracking algorithm to define fiber tracts. Displacement of the cerebellar and brainstem tracts on the affected side was performed using the unaffected contralateral side as a comparison. The displacement of the normal tissues was not apparent on preoperative MRI but was immediately evident on the preoperative HDFT. Of note, there was a relative paucity of fiber tracts within the lesion. By tailoring our operative boundaries based on the HDFT findings, we were able to spare the displaced fiber tracts when debulking the tumor. Restoration of normal fiber tract anatomy on postoperative HDFT imaging was correlated with clinical resolution of preoperative symptoms. CONCLUSIONS This case report suggests that HDFT may be a powerful surgical planning tool in cases of Lhermitte-Duclos disease, in which the pattern of normal tissue displacement is not evident with conventional imaging, allowing maximal lesion resection without damage to the unaffected tracts. Therefore, this report contributes to solving the greatest challenge when operating on this type of lesion, which has not been resolved in any previous report in our review of the English literature.
Collapse
|
21
|
Abstract
The implementation of fiber tracking or tractography modules in commercial navigation systems resulted in a broad availability of visualization possibilities for major white matter tracts in the neurosurgical community. Unfortunately the implemented algorithms and tracking approaches do not represent the state of the art of tractography strategies and may lead to false tracking results. The application of advanced tractography techniques for neurosurgical procedures poses even additional challenges that relate to effects of the individual anatomy that might be altered by edema and tumor, to stereotactic inaccuracies due to image distortion, as well as to registration inaccuracies and brain shift.
Collapse
Affiliation(s)
- Christopher Nimsky
- Department of Neurosurgery, University Marburg, Baldingerstrasse, Marburg, 35033, Germany.
| | - Miriam Bauer
- Department of Neurosurgery, University Marburg, Baldingerstrasse, Marburg, 35033, Germany
| | - Barbara Carl
- Department of Neurosurgery, University Marburg, Baldingerstrasse, Marburg, 35033, Germany
| |
Collapse
|
22
|
Abhinav K, Yeh FC, Mansouri A, Zadeh G, Fernandez-Miranda JC. High-definition fiber tractography for the evaluation of perilesional white matter tracts in high-grade glioma surgery. Neuro Oncol 2015; 17:1199-209. [PMID: 26117712 DOI: 10.1093/neuonc/nov113] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 01/20/2015] [Indexed: 12/14/2022] Open
Abstract
Conventional white matter (WM) imaging approaches, such as diffusion tensor imaging (DTI), have been used to preoperatively identify the location of affected WM tracts in patients with intracranial tumors in order to maximize the extent of resection and potentially reduce postoperative morbidity. DTI, however, has limitations that include its inability to resolve multiple crossing fibers and its susceptibility to partial volume effects. Therefore, recent focus has shifted to more advanced WM imaging techniques such as high-definition fiber tractography (HDFT). In this paper, we illustrate the application of HDFT, which in our preliminary experience has enabled accurate depiction of perilesional tracts in a 3-dimensional manner in multiple anatomical compartments including edematous zones around high-grade gliomas. This has facilitated accurate surgical planning. This is illustrated by using case examples of patients with glioblastoma multiforme. We also discuss future directions in the role of these techniques in surgery for gliomas.
Collapse
Affiliation(s)
- Kumar Abhinav
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (K.A., J.C.F.-M.); Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania (F.-C.Y); Department of Neurosurgery, University of Toronto, Toronto, Canada (A.M., G.Z.)
| | - Fang-Cheng Yeh
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (K.A., J.C.F.-M.); Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania (F.-C.Y); Department of Neurosurgery, University of Toronto, Toronto, Canada (A.M., G.Z.)
| | - Alireza Mansouri
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (K.A., J.C.F.-M.); Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania (F.-C.Y); Department of Neurosurgery, University of Toronto, Toronto, Canada (A.M., G.Z.)
| | - Gelareh Zadeh
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (K.A., J.C.F.-M.); Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania (F.-C.Y); Department of Neurosurgery, University of Toronto, Toronto, Canada (A.M., G.Z.)
| | - Juan C Fernandez-Miranda
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (K.A., J.C.F.-M.); Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania (F.-C.Y); Department of Neurosurgery, University of Toronto, Toronto, Canada (A.M., G.Z.)
| |
Collapse
|
23
|
Faraji AH, Abhinav K, Jarbo K, Yeh FC, Shin SS, Pathak S, Hirsch BE, Schneider W, Fernandez-Miranda JC, Friedlander RM. Longitudinal evaluation of corticospinal tract in patients with resected brainstem cavernous malformations using high-definition fiber tractography and diffusion connectometry analysis: preliminary experience. J Neurosurg 2015; 123:1133-44. [PMID: 26047420 DOI: 10.3171/2014.12.jns142169] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECT Brainstem cavernous malformations (CMs) are challenging due to a higher symptomatic hemorrhage rate and potential morbidity associated with their resection. The authors aimed to preoperatively define the relationship of CMs to the perilesional corticospinal tracts (CSTs) by obtaining qualitative and quantitative data using high-definition fiber tractography. These data were examined postoperatively by using longitudinal scans and in relation to patients' symptomatology. The extent of involvement of the CST was further evaluated longitudinally using the automated "diffusion connectometry" analysis. METHODS Fiber tractography was performed with DSI Studio using a quantitative anisotropy (QA)-based generalized deterministic tracking algorithm. Qualitatively, CST was classified as being "disrupted" and/or "displaced." Quantitative analysis involved obtaining mean QA values for the CST and its perilesional and nonperilesional segments. The contralateral CST was used for comparison. Diffusion connectometry analysis included comparison of patients' data with a template from 90 normal subjects. RESULTS Three patients (mean age 22 years) with symptomatic pontomesencephalic hemorrhagic CMs and varying degrees of hemiparesis were identified. The mean follow-up period was 37.3 months. Qualitatively, CST was partially disrupted and displaced in all. Direction of the displacement was different in each case and progressively improved corresponding with the patient's neurological status. No patient experienced neurological decline related to the resection. The perilesional mean QA percentage decreases supported tract disruption and decreased further over the follow-up period (Case 1, 26%-49%; Case 2, 35%-66%; and Case 3, 63%-78%). Diffusion connectometry demonstrated rostrocaudal involvement of the CST consistent with the quantitative data. CONCLUSIONS Hemorrhagic brainstem CMs can disrupt and displace perilesional white matter tracts with the latter occurring in unpredictable directions. This requires the use of tractography to accurately define their orientation to optimize surgical entry point, minimize morbidity, and enhance neurological outcomes. Observed anisotropy decreases in the perilesional segments are consistent with neural injury following hemorrhagic insults. A model using these values in different CST segments can be used to longitudinally monitor its craniocaudal integrity. Diffusion connectometry is a complementary approach providing longitudinal information on the rostrocaudal involvement of the CST.
Collapse
Affiliation(s)
| | | | - Kevin Jarbo
- Department of Psychology, University of Pittsburgh; and
| | - Fang-Cheng Yeh
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | | | - Sudhir Pathak
- Department of Psychology, University of Pittsburgh; and
| | | | | | | | | |
Collapse
|
24
|
Advanced diffusion MRI fiber tracking in neurosurgical and neurodegenerative disorders and neuroanatomical studies: A review. Biochim Biophys Acta Mol Basis Dis 2014; 1842:2286-2297. [PMID: 25127851 DOI: 10.1016/j.bbadis.2014.08.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 08/03/2014] [Accepted: 08/05/2014] [Indexed: 12/26/2022]
Abstract
Diffusion MRI enabled in vivo microstructural imaging of the fiber tracts in the brain resulting in its application in a wide range of settings, including in neurological and neurosurgical disorders. Conventional approaches such as diffusion tensor imaging (DTI) have been shown to have limited applications due to the crossing fiber problem and the susceptibility of their quantitative indices to partial volume effects. To overcome these limitations, the recent focus has shifted to the advanced acquisition methods and their related analytical approaches. Advanced white matter imaging techniques provide superior qualitative data in terms of demonstration of multiple crossing fibers in their spatial orientation in a three dimensional manner in the brain. In this review paper, we discuss the advancements in diffusion MRI and introduce their roles. Using examples, we demonstrate the role of advanced diffusion MRI-based fiber tracking in neuroanatomical studies. Results from its preliminary application in the evaluation of intracranial space occupying lesions, including with respect to future directions for prognostication, are also presented. Building upon the previous DTI studies assessing white matter disease in Huntington's disease and Amyotrophic lateral sclerosis; we also discuss approaches which have led to encouraging preliminary results towards developing an imaging biomarker for these conditions.
Collapse
|