1
|
Sencar L, Yilmaz DM, Tuli A, Polat S. Effects of combined treatment of minocycline and methylprednisolone on the expression of tumor necrosis factor alpha and interleukine-6 in experimental spinal cord injury: a light and electron microscopic study. Ultrastruct Pathol 2020; 44:283-299. [PMID: 32567988 DOI: 10.1080/01913123.2020.1771493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Spinal cord injury (SCI) is an important health problem, and there is no universal treatment protocol for it today. Following SCI pro-inflammatory mediators such as tumor necrosis factor- alpha (TNF-α) and interleukin-6 (IL-6) increase at the lesion site and play important roles in secondary tissue damage. Methylprednisolone (MP) is a glucocorticoid, and minocycline is a tetracycline-derived antibiotic both with neuroprotective effects on central nervous system trauma. However, there are limited studies on their effects on SCI. In this study, we aimed to evaluate effects of MP+minocycline combined treatment on cellular distribution and localization of TNF-α And IL-6 after SCI. Eighty Wistar rats were divided into three main groups as the intact control group, sham operation group, and experimental control group that received spinal cord compression injury. Following the injury, the experimental control group was subdivided into four groups as control, methylprednisolone treatment, minocycline treatment and, MP+minocycline combined treatment groups. Tissue samples were obtained from all groups at 24 hours and 72 hours after the injury. We found a significant decrease in TNF-α And IL-6 expressions in combined treatment group at 24 hours after injury. Also, there was a significant decrease in MDA and increase in SOD levels in this group. Furthermore, decreased lipid peroxidation and neuronal and glial cell death were also observed in combined treatment group. These results suggest that MP+minocycline combined treatment promotes functional recovery and, it should be considered as an effective treatment protocol following SCI.
Collapse
Affiliation(s)
- Leman Sencar
- Faculty of Medicine, Histology and Embryology Department, Cukurova University , Adana, Turkey
| | - Derviş Mansuri Yilmaz
- Faculty of Medicine, Department of Neurosurgery, Cukurova University , Adana, Turkey
| | - Abdullah Tuli
- Faculty of Medicine, Biochemistry Department, Cukurova University , Adana, Turkey
| | - Sait Polat
- Faculty of Medicine, Histology and Embryology Department, Cukurova University , Adana, Turkey
| |
Collapse
|
2
|
Wang W, Zuo B, Liu H, Cui L. Intermittent injection of Methylprednisolone Sodium Succinate in the treatment of Cervical Spinal Cord injury complicated with incomplete paraplegia. Pak J Med Sci 2019; 35:141-145. [PMID: 30881412 PMCID: PMC6408664 DOI: 10.12669/pjms.35.1.211] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To evaluate the clinical efficacy and safety of intermittent injection of methylprednisolone sodium succinate in the treatment of cervical spinal cord injury complicated with incomplete paraplegia. METHODS Seventy-eight patients with cervical spinal cord injury complicated with incomplete paraplegia who were admitted between August 2016 and December 2017 were enrolled and grouped into an observation group and a control group using random number table, 39 in each group. Patients in the control group were given vertebral body decompression and bone grafting and internal fixation according to the severity of spinal cord compression, while patients in the observation group were treated by methylprednisolone sodium succinate in addition to the same treatment as the control group. The clinical efficacy and medicine associated adverse reactions were compared between the two groups. RESULTS The cure rate of the observation group was significantly higher than that of the control group (46.2% (18/39) vs. 20.5% (8/39)). After the treatment, the Japanese Orthopaedic Association (JOA) score and American Spinal Cord Injury Association (ASIA) score of the two groups after treatment were significantly higher compared to before treatment, and the scores of the observation group were much higher than those of the control group (P<0.05). The incidence of adverse reactions of the observation and control groups was 15.4% and 17.9% respectively, and the difference was not statistically significant (P>0.05). CONCLUSION Intermittent injection of methylprednisolone sodium succinate has definite efficacy in treating cervical spinal cord injury complicated with incomplete paraplegia, with a low incidence of adverse reactions; hence it is worth promotion.
Collapse
Affiliation(s)
- Wei Wang
- Wei Wang, Binzhou People’s Hospital, Binzhou, Shandong-256610, China
| | - Baoshu Zuo
- Baoshu Zuo, Binzhou People’s Hospital, Binzhou, Shandong-256610, China
| | - Haixia Liu
- Haixia Liu, Binzhou People’s Hospital, Binzhou, Shandong-256610, China
| | - Limin Cui
- Limin Cui, Binzhou People’s Hospital, Binzhou, Shandong-256610, China
| |
Collapse
|
3
|
Synchrotron Radiation Imaging Reveals the Role of Estrogen in Promoting Angiogenesis After Acute Spinal Cord Injury in Rats. Spine (Phila Pa 1976) 2018. [PMID: 29529001 DOI: 10.1097/brs.0000000000002629] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN The efficacy of estrogen on vessel angiogenesis in acute spinal cord injury (SCI) in a rat model was evaluated by synchrotron radiation. OBJECTIVE Here, we investigate the change in injured spinal cord vessels and used the synchrotron radiation to investigate the effect of estrogen on vessel angiogenesis and functional recovery in a rat model of SCI. SUMMARY OF BACKGROUND DATA The promotion of angiogenesis after SCI may be a therapeutic target in the treatment of SCI. Estrogen has been reported to improve locomotor recovery after SCI. However, how estrogen regulates angiogenesis in acute SCI and enhances neurological functional recovery has not been fully characterized. METHODS Synchrotron radiation imaging combined with histological methods was used to image angiogenesis in acute spinal cord treatment with estrogen in rats. RESULTS Synchrotron radiation imaging vividly demonstrated three-dimensional vessel changes in the spinal cord after injury. The imaging showed that vessel number, vessel volume fraction, and vessel connectivity value in the groups treated with estrogen after SCI were significantly increased compared to control groups (P < 0.05). Vessel angiogenesis increased in groups treated with estrogen compared with control rats, which was confirmed with histological staining. Estrogen treatment also attenuated the injury-induced lesion area compared with control groups and improved locomotor functional recovery after SCI. CONCLUSION The results indicated that synchrotron radiation is a powerful imaging tool for visualizing angiogenesis after acute SCI. Estrogen treatment exerted a neuroprotective effect on acute SCI treatment by promoting angiogenesis and reducing the injury-induced lesion area could be recommended as a potential preclinical treatment approach for acute SCI. LEVEL OF EVIDENCE N/A.
Collapse
|
4
|
Chen XG, Chen LH, Xu RX, Zhang HT. Effect evaluation of methylprednisolone plus mitochondrial division inhibitor-1 on spinal cord injury rats. Childs Nerv Syst 2018; 34:1479-1487. [PMID: 29682689 DOI: 10.1007/s00381-018-3792-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 03/28/2018] [Indexed: 12/30/2022]
Abstract
PURPOSE To investigate the combination effect of methylprednisolone (MP) and mitochondrial division inhibitor-1 (Mdivi-1) on the neurological function recovery of rat spinal cord injury (SCI) model. METHODS The weight-drop method was used to establish the rat SCI model; then, rats were randomized into sham group, SCI group, MP group, Mdivi-1 group and MP+Mdivi-1 group. Motor function scores were quantified to evaluate locomotor ability; HE staining was used to assess spinal cord histopathology; tissue water content, oxidative stress, tissue mitochondrial function, neurons apoptosis, and apoptosis-related protein expression were detected. RESULTS From the third day after SCI, BBB score of the MP+Mdivi-1 group was obviously higher than the other experimental groups (p < 0.05). Compared with the SCI group, tissue water content of the Mdivi-1 group and MP+Mdivi-1 group reduced obviously (p < 0.05), mitochondrial membrane potential (MMP) level and ATP content in the Mdivi-1 group and MP+Mdivi-1 group were both higher (p < 0.05). Meanwhile, three kinds of treatment all reduced apoptosis significantly, while MP plus Mdivi-1 exhibited the best inhibition effect on apoptosis (p < 0.05). The expression levels of Drp1, cytochrome c, and caspase-3 were all upregulated obviously; Mdivi-1 could inhibit Drp1 upregulation induced by SCI; for the upregulation of cytochrome c and caspase-3, the inhibition effect of Mdivi-1 approached MP. When MP combined with Mdivi-1, there was the best inhibition effect. CONCLUSIONS MP combined with Mdivi-1 may produce better neurological function recovery, through improving functional status of mitochondria and inhibiting lipid peroxidation in damaged tissue of SCI rats, and thus alleviating apoptosis.
Collapse
Affiliation(s)
- Xu-Gui Chen
- The Affiliated Bayi Brain Hospital, the Army General Hospital PLA, No. 5, Nanmencang, Dongcheng District, Beijing, 100700, China
| | - Li-Hua Chen
- The Affiliated Bayi Brain Hospital, the Army General Hospital PLA, No. 5, Nanmencang, Dongcheng District, Beijing, 100700, China
| | - Ru-Xiang Xu
- The Affiliated Bayi Brain Hospital, the Army General Hospital PLA, No. 5, Nanmencang, Dongcheng District, Beijing, 100700, China
| | - Hong-Tian Zhang
- The Affiliated Bayi Brain Hospital, the Army General Hospital PLA, No. 5, Nanmencang, Dongcheng District, Beijing, 100700, China.
| |
Collapse
|
5
|
Jo MJ, Kumar H, Joshi HP, Choi H, Ko WK, Kim JM, Hwang SSS, Park SY, Sohn S, Bello AB, Kim KT, Lee SH, Zeng X, Han I. Oral Administration of α-Asarone Promotes Functional Recovery in Rats With Spinal Cord Injury. Front Pharmacol 2018; 9:445. [PMID: 29867457 PMCID: PMC5949368 DOI: 10.3389/fphar.2018.00445] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/17/2018] [Indexed: 11/13/2022] Open
Abstract
α-asarone, a bioactive compound found in Acorus plant species, has been shown to exhibit neuroprotective, anti-oxidative, anti-inflammatory, and cognitive-enhancing effects. However, the effects of α-asarone on spinal cord injury (SCI) have not yet been elucidated. The present study investigated the effects of α-asarone on the mRNA of pro-inflammatory cytokines, macrophage polarization toward an anti-inflammatory M2 phenotype, and angiogenesis in rats with compressive SCI. α-Asarone was orally administered (10 mg/kg) once per day for 14 days following moderate static compression SCI. Compared to controls, α-asarone treatment significantly improved locomotor score, prevented neuroinflammation, and facilitated angiogenesis in the spinal cord at 14 days after SCI. Furthermore, α-asarone significantly reduced the TNF-α, IL-1β, IL-6, monocyte chemoattractant protein 1 (MCP-1), macrophage inflammatory protein 2 (MIP-2), and inducible nitric oxide synthase (iNOS) levels but increased the IL-4, IL-10, and arginase 1 levels at 24 h after SCI. At 7 and 14 days after SCI, immunohistochemistry showed reduced reactive gliosis and neuroinflammation and an increased expression of M2 macrophage markers and angiogenesis. The results suggest that the inhibition of pro-inflammatory cytokines, macrophage polarization toward an anti-inflammatory M2 phenotype, and angiogenesis by α-asarone may be some of the mechanisms underlying the α-asarone-mediated neuroprotective effects on an injured spinal cord.
Collapse
Affiliation(s)
- Min-Jae Jo
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si, South Korea
| | - Hemant Kumar
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si, South Korea
| | - Hari P. Joshi
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si, South Korea
| | - Hyemin Choi
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si, South Korea
| | - Wan-Kyu Ko
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si, South Korea
| | - J. M. Kim
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si, South Korea
| | - Sean S. S. Hwang
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si, South Korea
| | - Song Y. Park
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si, South Korea
| | - Seil Sohn
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si, South Korea
| | - Alvin B. Bello
- Department of Biomedical Science, CHA University, Seongnam-si, South Korea
| | - Kyoung-Tae Kim
- Department of Neurosurgery, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Soo-Hong Lee
- Department of Biomedical Science, CHA University, Seongnam-si, South Korea
| | - Xiang Zeng
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Inbo Han
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si, South Korea
| |
Collapse
|
6
|
Is the Wnt/β-catenin pathway involved in the anti-inflammatory activity of glucocorticoids in spinal cord injury? Neuroreport 2018; 27:1086-94. [PMID: 27513198 DOI: 10.1097/wnr.0000000000000663] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The Wnt canonical or the Wnt/β-catenin pathway has been implicated in the regulation of several physiopathological pathways such as inflammation. Glucocorticoids (GCs) are administered widely to treat inflammation in several diseases, including spinal cord injury (SCI). The aim of this study was to evaluate whether the Wnt canonical pathway is involved in experimental SCI and whether it is implicated in the anti-inflammatory activity of two different GCs: the methylprednisolone sodium succinate (MPSS), considered the standard treatment for acute SCI, and mometasone furoate (MF), mainly administered for the treatment of airway and skin diseases. Experimental SCI was induced in mice by surgical spinal cord compression at the T6-T7 level. Then, mice were treated with MPSS (6 mg/kg) or MF (0.1 mg/kg) for 7 days until they were killed. Both GCs were found to modulate the Wnt canonical pathway, but in particular, the MF treatment was shown to restore completely the downregulated pathway in SCI. The MF treatment also significantly increased peroxisome proliferator-activated receptor-γ, a Wnt target gene with anti-inflammatory properties, compared with MPSS, and it also inhibited the levels of the proinflammatory cytokines interleukin 1β and tumor necrosis factor-α. Here, we suggest that MF has more efficacy than MPSS in inhibiting inflammation in an SCI experimental model and we propose the β-catenin/peroxisome proliferator-activated receptor-γ axis as the mechanism by which MF exerts these beneficial effects.
Collapse
|
7
|
Mechanism of Neuroprotection Against Experimental Spinal Cord Injury by Riluzole or Methylprednisolone. Neurochem Res 2017; 44:200-213. [PMID: 29290040 DOI: 10.1007/s11064-017-2459-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/12/2017] [Accepted: 12/26/2017] [Indexed: 12/29/2022]
Abstract
Any spinal cord injury carries the potential for persistent disability affecting motor, sensory and autonomic functions. To prevent this outcome, it is highly desirable to block a chain of deleterious reactions developing in the spinal areas immediately around the primary lesion. Thus, early timing of pharmacological neuroprotection should be one major strategy whose impact may be first studied with preclinical models. Using a simple in vitro model of the rat spinal cord it is possible to mimic pathological processes like excitotoxicity that damages neurons because of excessive glutamate receptor activation due to injury, or hypoxic/dysmetabolic insult that preferentially affects glia following vascular dysfunction. While ongoing research is exploring the various components of pathways leading to cell death, current treatment principally relies on the off-label use of riluzole (RLZ) or methylprednisolone sodium succinate (MPSS). The mechanism of action of these drugs is diverse as RLZ targets mainly neurons and MPSS targets glia. Even when applied after a transient excitotoxic stimulus, RLZ can provide effective prevention of secondary excitotoxic damage to premotoneurons, although not to motoneurons that remain very vulnerable. This observation indicates persistent inability to express locomotor activity despite pharmacological treatment conferring some histological protection. MPSS can protect glia from dysmetabolic insult, yet it remains poorly effective to prevent neuronal death. In summary, it appears that these pharmacological agents can produce delayed protection for certain cell types only, and that their combined administration does not provide additional benefit. The search should continue for better, mechanism-based neuroprotective agents.
Collapse
|
8
|
Yao NW, Lu Y, Shi LQ, Xu F, Cai XH. Neuroprotective effect of combining tanshinone IIA with low-dose methylprednisolone following acute spinal cord injury in rats. Exp Ther Med 2017; 13:2193-2202. [PMID: 28565827 PMCID: PMC5443198 DOI: 10.3892/etm.2017.4271] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 01/13/2017] [Indexed: 01/20/2023] Open
Abstract
The present study compared the potential neuroprotective effect of tanshinone IIA (TIIA) monotherapy, methylprednisolone (MP) monotherapy and combined treatment in an adult acute spinal cord injury (ASCI) rat model. The current study used the weight-drop method (Allen's Impactor) in the rat model and the mechanical scratch method in primary spinal cord neuron culture to determine whether the combined treatment was able to reduce the required dosage of MP in the treatment of ASCI to produce a similar or improved therapeutic effect. In vivo male Sprague Dawley rats (n=60) were randomly divided into 5 groups, of which 12 rats were selected for the sham group and T9-T11 laminectomies, leading to ASCI, were performed on 48 of the 60 rats using a 10 g ×25 mm weight-drop at the level of T10 spinal cord. Therefore, the ASCI group (n=12) included the 'laminectomy and weight-drop'. The remaining 36 ASCI model animals were subdivided into 3 groups (n=12 each group): TIIA group (30 mg/kg/day), MP group (30 mg/kg) and combined treatment group (TIIA 30 mg/kg/day + MP 20 mg/kg). Neuronal function following ASCI was evaluated using the Basso Beattie Bresnahan (BBB) locomotor rating scale. Levels of the anti-apoptotic factor B-cell lymphoma-2 (Bcl-2), the pro-apoptotic factors Bcl-2 associated protein X (Bax) and caspase-3, and the inflammatory associated factor nuclear factor-κB, were analyzed by western blot analysis. Immunohistochemistry was used to detect caspase-3. To investigate the underlying mechanism, the anti-oxidative effect of combination TIIA and MP treatment was assessed by measuring the activity of malondialdehyde (MDA) and superoxide dismutase (SOD) in ASCI. In agreement with the experiment in vivo, primary neurons were prepared from the spinal cord of one-day-old Sprague-Dawley rats' and co-cultured with astrocytes from the brain cortex. The injury of neurons was induced by mechanical scratch and levels of apoptosis factors were analyzed by western blot analysis. The results of the current study indicated that injured animals in the combined treatment group exhibited a significant increase in BBB scores (P<0.05). TIIA + MP combined treatment and MP treatment was observed to reduce the expression of pro-apoptotic factors and promote neuron survival in vivo and in vitro. Combined treatment may promote neuroprotection through reduced apoptosis and inflammation caused by ASCI, similar to MP alone. Combined treatment reversed the decrease of SOD and the increase of MDA level caused by ASCI. In addition, combined treatment decreased the expression of caspase-3 in the neurons following ASCI in rats, as indicated by immunofluorescence double labeling. Overall, the present study indicates that the combined treatment of TIIA and MP may protect the neurons by stimulating the rapid initiation of neuroprotection following ASCI and reduce the dosage of MP in the treatment of ASCI required to produce the same or improved neuroprotective effects in vivo and in vitro.
Collapse
Affiliation(s)
- Nian-Wei Yao
- Department of Orthopedics, The Third Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu 210000, P.R. China.,Department of Orthopedics, Wuhan General Hospital of Guangzhou Military Command, Wuhan, Hubei 430070, P.R. China.,College of Acupuncture and Orthopedics, Hubei University of Traditional Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Yuan Lu
- Department of Neurology, Nantong First People's Hospital, Nantong, Jiangsu 226000, P.R. China
| | - Li-Qi Shi
- Department of Orthopedics, Yuyao Hospital of Traditional Chinese Medicine, Ningbo, Zhejiang 315000, P.R. China
| | - Feng Xu
- Department of Orthopedics, Wuhan General Hospital of Guangzhou Military Command, Wuhan, Hubei 430070, P.R. China
| | - Xian-Hua Cai
- Department of Orthopedics, Wuhan General Hospital of Guangzhou Military Command, Wuhan, Hubei 430070, P.R. China
| |
Collapse
|
9
|
Salem N, Salem MY, Elmaghrabi MM, Elawady MA, Elawady MA, Sabry D, Shamaa A, Elkasapy AHH, Ibrhim N, Elamir A. Does vitamin C have the ability to augment the therapeutic effect of bone marrow-derived mesenchymal stem cells on spinal cord injury? Neural Regen Res 2017; 12:2050-2058. [PMID: 29323045 PMCID: PMC5784354 DOI: 10.4103/1673-5374.221163] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Methylprednisolone (MP) is currently the only drug confirmed to exhibit a neuroprotective effect on acute spinal cord injury (SCI). Vitamin C (VC) is a natural water-soluble antioxidant that exerts neuroprotective effects through eliminating free radical damage to nerve cells. Bone marrow mesenchymal stem cells (BMMSCs), as multipotent stem cells, are promising candidates in SCI repair. To evaluate the therapeutic effects of MP, VC and BMMSCs on traumatic SCI, 80 adult male rats were randomly divided into seven groups: control, SCI (SCI induction by weight-drop method), MP (SCI induction, followed by administration of 30 mg/kg MP via the tail vein, once every other 6 hours, for five times), VC (SCI induction, followed by intraperitoneal administration of 100 mg/kg VC once a day, for 28 days), MP + VC (SCI induction, followed by administration of MP and VC as the former), BMMSCs (SCI induction, followed by injection of 3 × 106 BMMSCs at the injury site), and BMMSCs + VC (SCI induction, followed by BMMSCs injection and VC administration as the former). Locomotor recovery was assessed using the Basso Mouse Scale. Injured spinal cord tissue was evaluated using hematoxylin-eosin staining and immunohistochemical staining. Expression of transforming growth factor-beta, tumor necrosis factor-alpha, and matrix metalloproteinase-2 genes was determined using real-time quantitative PCR. BMMSCs intervention better promoted recovery of nerve function of rats with SCI, mitigated nerve cell damage, and decreased expression of transforming growth factor-beta, tumor necrosis factor-alpha, and matrix metalloproteinase-2 genes than MP and/or VC. More importantly, BMMSCs in combination with VC induced more obvious improvements. These results suggest that VC can enhance the neuroprotective effects of BMMSCs against SCI.
Collapse
Affiliation(s)
- Nesrine Salem
- Department of Histology and Cell Biology, Faculty of Medicine, Banha University, Banha, Egypt
| | - Mohamed Y Salem
- Department of Histology and Cell Biology, Faculty of Medicine, Banha University, Banha, Egypt
| | | | - Moataz A Elawady
- Department of Neurosurgery, Faculty of Medicine, Banha University, Banha, Egypt
| | - Mona A Elawady
- Department of Community Medicine, Faculty of Medicine, Banha University, Banha, Egypt
| | - Dina Sabry
- Department of Medical Biochemistry, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Ashraf Shamaa
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | | | - Noha Ibrhim
- Department of Medical Physiology, Faculty of Medicine, Banha University, Banha, Egypt
| | - Azza Elamir
- Department of Medical Biochemistry, Faculty of Medicine, El Fayoum University, Egyptian, Egypt
| |
Collapse
|
10
|
Verla T, Fridley JS, Khan AB, Mayer RR, Omeis I. Neuromonitoring for Intramedullary Spinal Cord Tumor Surgery. World Neurosurg 2016; 95:108-116. [DOI: 10.1016/j.wneu.2016.07.066] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 07/17/2016] [Accepted: 07/18/2016] [Indexed: 11/27/2022]
|
11
|
Micro-CT as a Tool to Investigate the Efficacy of Tetramethylpyrazine in a Rat Spinal Cord Injury Model. Spine (Phila Pa 1976) 2016; 41:1272-1278. [PMID: 26953664 DOI: 10.1097/brs.0000000000001546] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN The micro-computed tomography (micro-CT) was applied to assess the effect of tetramethylpyrazine (TMP) on experimental spinal cord injury (SCI). OBJECTIVE The aim of the study was to explore the therapeutic effect of TMP on a rat SCI model using micro-CT. SUMMARY OF BACKGROUND DATA SCI is a devastating event and always accompanied by severe vascular injury. Promoting angiogenesis after SCI has recently been recognized as a potential way to enhance the neurological function recovery. How the TMP promotes angiogenesis and improved locomotor function recovery after SCI has, however, not been fully clarified. In this study, we used micro-CT to evaluate the effect on the microvasculature changes after TMP treatment. METHODS The contusion SCI model was induced in rats by a modified Allen's impact method. In the TMP treatment group, rats were injected intraperitoneally with TMP. The control group was treated with saline. Hindlimb motor function was evaluated using the Basso, Beattie, Bresnahan score. Histology was employed to examine the pathological changes and quantified at 28 days after injury. Spinal cord vessel network and angiogenesis were assessed using micro-CT. RESULTS Angiogenesis was increased in groups treated with TMP compared with rat in the control groups (P < 0.05). Micro-CT vividly depicted the three-dimensional morphology changes of the spinal cord microvasculature after injury and demonstrated more vessels number, vessel volume fraction, and vessel connectivity value in the groups treated with TMP than in the control groups (P < 0.05). In addition, the injury-induced lesion area in TMP group was attenuated in comparison with control groups. Similarly, neurological functions were greatly improved in groups treated with TMP compared with rats in the control groups. CONCLUSION Micro-CT is useful for detecting angiogenesis after SCI. TMP therapy reduced the neuronal loss, promoted angiogenesis, and exerted a positive effect on neurological function recovery after SCI. LEVEL OF EVIDENCE N/A.
Collapse
|
12
|
Gao S, Zhang ZM, Shen ZL, Gao K, Chang L, Guo Y, Li Z, Wang W, Wang AM. Atorvastatin activates autophagy and promotes neurological function recovery after spinal cord injury. Neural Regen Res 2016; 11:977-82. [PMID: 27482228 PMCID: PMC4962597 DOI: 10.4103/1673-5374.184498] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Atorvastatin, a lipid-lowering medication, provides neuroprotective effects, although the precise mechanisms of action remain unclear. Our previous studies confirmed activated autophagy following spinal cord injury, which was conducive to recovery of neurological functions. We hypothesized that atorvastatin could also activate autophagy after spinal cord injury, and subsequently improve recovery of neurological functions. A rat model of spinal cord injury was established based on the Allen method. Atorvastatin (5 mg/kg) was intraperitoneally injected at 1 and 2 days after spinal cord injury. At 7 days post-injury, western blot assay, reverse transcription-polymerase chain reaction, and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining results showed increased Beclin-1 and light chain 3B gene and protein expressions in the spinal cord injury + atorvastatin group. Additionally, caspase-9 and caspase-3 expression was decreased, and the number of TUNEL-positive cells was reduced. Compared with the spinal cord injury + saline group, Basso, Beattie, and Bresnahan locomotor rating scale scores significantly increased in the spinal cord injury + atorvastatin group at 14-42 days post-injury. These findings suggest that atorvastatin activated autophagy after spinal cord injury, inhibited apoptosis, and promoted recovery of neurological function.
Collapse
Affiliation(s)
- Shuang Gao
- Department of Physiology, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Zhong-Ming Zhang
- Department of Orthopedics, Jinzhou Municipal Second Hospital, Jinzhou, Liaoning Province, China
| | - Zhao-Liang Shen
- Department of Orthopedics, Jinzhou Municipal Second Hospital, Jinzhou, Liaoning Province, China
| | - Kai Gao
- Department of Orthopedics, Jining No. 1 People's Hospital, Jining, Shandong Province, China
| | - Liang Chang
- Jinzhou Central Hospital, Jinzhou, Liaoning Province, China
| | - Yue Guo
- Department of Orthopedics, Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Zhuo Li
- Department of Orthopedics, Jinzhou Municipal Second Hospital, Jinzhou, Liaoning Province, China
| | - Wei Wang
- Department of Orthopedics, First Hospital of Qinhuangdao City, Qinhuangdao, Hebei Province, China
| | - Ai-Mei Wang
- Department of Physiology, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| |
Collapse
|
13
|
Gao W, Chen SR, Wu MY, Gao K, Li YL, Wang HY, Li CY, Li H. Methylprednisolone exerts neuroprotective effects by regulating autophagy and apoptosis. Neural Regen Res 2016; 11:823-8. [PMID: 27335569 PMCID: PMC4904476 DOI: 10.4103/1673-5374.182711] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Methylprednisolone markedly reduces autophagy and apoptosis after secondary spinal cord injury. Here, we investigated whether pretreatment of cells with methylprednisolone would protect neuron-like cells from subsequent oxidative damage via suppression of autophagy and apoptosis. Cultured N2a cells were pretreated with 10 µM methylprednisolone for 30 minutes, then exposed to 100 µM H2O2 for 24 hours. Inverted phase contrast microscope images, MTT assay, flow cytometry and western blot results showed that, compared to cells exposed to 100 µM H2O2 alone, cells pretreated with methylprednisolone had a significantly lower percentage of apoptotic cells, maintained a healthy morphology, and showed downregulation of autophagic protein light chain 3B and Beclin-1 protein expression. These findings indicate that methylprednisolone exerted neuroprotective effects against oxidative damage by suppressing autophagy and apoptosis.
Collapse
Affiliation(s)
- Wei Gao
- Department of Biochemistry, Liaoning Medical University, Jinzhou, Liaoning Province, China
| | - Shu-Rui Chen
- Department of Biochemistry, Liaoning Medical University, Jinzhou, Liaoning Province, China
| | - Meng-Yao Wu
- Department of Biochemistry, Liaoning Medical University, Jinzhou, Liaoning Province, China
| | - Kai Gao
- Department of Biochemistry, Liaoning Medical University, Jinzhou, Liaoning Province, China
| | - Yuan-Long Li
- Department of Biochemistry, Liaoning Medical University, Jinzhou, Liaoning Province, China
| | - Hong-Yu Wang
- Department of Biochemistry, Liaoning Medical University, Jinzhou, Liaoning Province, China
| | - Chen-Yuan Li
- Department of Biochemistry, Liaoning Medical University, Jinzhou, Liaoning Province, China
| | - Hong Li
- Department of Biochemistry, Liaoning Medical University, Jinzhou, Liaoning Province, China
| |
Collapse
|
14
|
Lu GB, Niu FW, Zhang YC, Du L, Liang ZY, Gao Y, Yan TZ, Nie ZK, Gao K. Methylprednisolone promotes recovery of neurological function after spinal cord injury: association with Wnt/β-catenin signaling pathway activation. Neural Regen Res 2016; 11:1816-1823. [PMID: 28123427 PMCID: PMC5204239 DOI: 10.4103/1673-5374.194753] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Some studies have indicated that the Wnt/β-catenin signaling pathway is activated following spinal cord injury, and expression levels of specific proteins, including low-density lipoprotein receptor related protein-6 phosphorylation, β-catenin, and glycogen synthase kinase-3β, are significantly altered. We hypothesized that methylprednisolone treatment contributes to functional recovery after spinal cord injury by inhibiting apoptosis and activating the Wnt/β-catenin signaling pathway. In the current study, 30 mg/kg methylprednisolone was injected into rats with spinal cord injury immediately post-injury and at 1 and 2 days post-injury. Basso, Beattie, and Bresnahan scores showed that methylprednisolone treatment significantly promoted locomotor functional recovery between 2 and 6 weeks post-injury. The number of surviving motor neurons increased, whereas the lesion size significantly decreased following methylprednisolone treatment at 7 days post-injury. Additionally, caspase-3, caspase-9, and Bax protein expression levels and the number of apoptotic cells were reduced at 3 and 7 days post-injury, while Bcl-2 levels at 7 days post-injury were higher in methylprednisolone-treated rats compared with saline-treated rats. At 3 and 7 days post-injury, methylprednisolone up-regulated expression and activation of the Wnt/β-catenin signaling pathway, including low-density lipoprotein receptor related protein-6 phosphorylation, β-catenin, and glycogen synthase kinase-3β phosphorylation. These results indicate that methylprednisolone-induced neuroprotection may correlate with activation of the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Gong-Biao Lu
- Department of Orthopedics, Jining No.1 People's Hospital, Jining, Shandong Province, China
| | - Fu-Wen Niu
- Department of Orthopedics, Jining No.1 People's Hospital, Jining, Shandong Province, China
| | - Ying-Chun Zhang
- Department of Interventional Radiology, Jining No.1 People's Hospital, Jining, Shandong Province, China
| | - Lin Du
- Jining Medical University, Jining, Shandong Province, China
| | - Zhi-Yuan Liang
- Department of Orthopedics, Jining No.1 People's Hospital, Jining, Shandong Province, China
| | - Yuan Gao
- Department of Orthopedics, Jining No.1 People's Hospital, Jining, Shandong Province, China
| | - Ting-Zhen Yan
- Department of Orthopedics, Jining No.1 People's Hospital, Jining, Shandong Province, China
| | - Zhi-Kui Nie
- Department of Orthopedics, Jining No.1 People's Hospital, Jining, Shandong Province, China
| | - Kai Gao
- Department of Orthopedics, Jining No.1 People's Hospital, Jining, Shandong Province, China
| |
Collapse
|
15
|
Sámano C, Kaur J, Nistri A. A study of methylprednisolone neuroprotection against acute injury to the rat spinal cord in vitro. Neuroscience 2015; 315:136-49. [PMID: 26701292 DOI: 10.1016/j.neuroscience.2015.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 11/30/2015] [Accepted: 12/01/2015] [Indexed: 12/21/2022]
Abstract
Methylprednisolone sodium succinate (MPSS) has been proposed as a first-line treatment for acute spinal cord injury (SCI). Its clinical use remains, however, controversial because of the modest benefits and numerous side-effects. We investigated if MPSS could protect spinal neurons and glia using an in vitro model of the rat spinal cord that enables recording reflexes, fictive locomotion and morphological analysis of damage. With this model, a differential lesion affecting mainly either neurons or glia can be produced via kainate-evoked excitotoxicity or application of a pathological medium (lacking O2 and glucose), respectively. MPSS (6-10 μM) applied for 24 h after 1-h pathological medium protected astrocytes and oligodendrocytes especially in the ventrolateral white matter. This effect was accompanied by the return of slow, alternating oscillations (elicited by NMDA and 5-hydroxytryptamine (5-HT)) reminiscent of a sluggish fictive locomotor pattern. MPSS was, however, unable to reverse even a moderate neuronal loss and the concomitant suppression of fictive locomotion evoked by kainate (0.1 mM; 1 h). These results suggest that MPSS could, at least in part, contrast damage to spinal glia induced by a dysmetabolic state (associated to oxygen and glucose deprivation) and facilitate reactivation of spinal networks. Conversely, when even a minority of neurons was damaged by excitotoxicity, MPSS did not protect them nor did it restore network function in the current experimental model.
Collapse
Affiliation(s)
- C Sámano
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Mexico City, Mexico
| | - J Kaur
- Neuroscience Department, International School for Advanced Studies (SISSA), Trieste, Italy
| | - A Nistri
- Neuroscience Department, International School for Advanced Studies (SISSA), Trieste, Italy; SPINAL (Spinal Person Injury Neurorehabilitation Applied Laboratory) Laboratory, Istituto di Medicina Fisica e Riabilitazione, Udine, Italy.
| |
Collapse
|
16
|
Fagoe ND, van Heest J, Verhaagen J. Spinal cord injury and the neuron-intrinsic regeneration-associated gene program. Neuromolecular Med 2014; 16:799-813. [PMID: 25269879 DOI: 10.1007/s12017-014-8329-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 09/20/2014] [Indexed: 12/14/2022]
Abstract
Spinal cord injury (SCI) affects millions of people worldwide and causes a significant physical, emotional, social and economic burden. The main clinical hallmark of SCI is the permanent loss of motor, sensory and autonomic function below the level of injury. In general, neurons of the central nervous system (CNS) are incapable of regeneration, whereas injury to the peripheral nervous system is followed by axonal regeneration and usually results in some degree of functional recovery. The weak neuron-intrinsic regeneration-associated gene (RAG) response upon injury is an important reason for the failure of neurons in the CNS to regenerate an axon. This response consists of the expression of many RAGs, including regeneration-associated transcription factors (TFs). Regeneration-associated TFs are potential key regulators of the RAG program. The function of some regeneration-associated TFs has been studied in transgenic and knock-out mice and by adeno-associated viral vector-mediated overexpression in injured neurons. Here, we review these studies and propose that AAV-mediated gene delivery of combinations of regeneration-associated TFs is a potential strategy to activate the RAG program in injured CNS neurons and achieve long-distance axon regeneration.
Collapse
Affiliation(s)
- Nitish D Fagoe
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, an Institute of the Royal Academy of Arts and Sciences, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands,
| | | | | |
Collapse
|