1
|
MAESAWA S, ISHIZAKI T, MUTOH M, ITO Y, TORII J, TANEI T, NAKATSUBO D, SAITO R. Clinical Impacts of Stereotactic Electroencephalography on Epilepsy Surgery and Associated Issues in the Current Situation in Japan. Neurol Med Chir (Tokyo) 2023; 63:179-190. [PMID: 37005247 DOI: 10.2176/jns-nmc.2022-0271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023] Open
Abstract
Stereotactic electroencephalography (SEEG) is receiving increasing attention as a safe and effective technique in the invasive evaluation for epileptogenic zone (EZ) detection. The main clinical question is whether the use of SEEG truly improves outcomes. Herein, we compared outcomes in our patients after three types of intracranial EEG (iEEG): SEEG, the subdural electrode (SDE), and a combined method using depth and strip electrodes. We present here our preliminary results from two demonstrative cases. Several international reports from large epilepsy centers found the following clinical advantages of SEEG: 1) three-dimensional analysis of structures, including bilateral and multilobar structures; 2) low rate of complications; 3) less pneumoencephalopathy and less patient burden during postoperative course, which allows the initiation of video-EEG monitoring immediately after implantation and does not require resection to be performed in the same hospitalization; and 4) a higher rate of good seizure control after resection. In other words, SEEG more accurately identified the EZ than the SDE method. We obtained similar results in our preliminary experiences under limited conditions. In Japan, as of August 2022, dedicated electrodes and SEEG accessories have not been approved and the use of the robot arm is not widespread. The Japanese medical community is hopeful that these issues will soon be resolved and that the experience with SEEG in Japan will align with that of large epilepsy centers internationally.
Collapse
Affiliation(s)
- Satoshi MAESAWA
- Department of Neurosurgery, Nagoya University School of Medicine
| | | | - Manabu MUTOH
- Department of Neurosurgery, Nagoya University School of Medicine
| | - Yoshiki ITO
- Department of Neurosurgery, Nagoya University School of Medicine
| | - Jun TORII
- Department of Neurosurgery, Nagoya University School of Medicine
| | - Takafumi TANEI
- Department of Neurosurgery, Nagoya University School of Medicine
| | | | - Ryuta SAITO
- Department of Neurosurgery, Nagoya University School of Medicine
| |
Collapse
|
2
|
Liégeois‐Chauvel C, Dubarry A, Wang I, Chauvel P, Gonzalez‐Martinez JA, Alario F. Inter-individual variability in dorsal stream dynamics during word production. Eur J Neurosci 2022; 56:5070-5089. [PMID: 35997580 PMCID: PMC9804493 DOI: 10.1111/ejn.15807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/10/2022] [Accepted: 08/14/2022] [Indexed: 01/05/2023]
Abstract
The current standard model of language production involves a sensorimotor dorsal stream connecting areas in the temporo-parietal junction with those in the inferior frontal gyrus and lateral premotor cortex. These regions have been linked to various aspects of word production such as phonological processing or articulatory programming, primarily through neuropsychological and functional imaging group studies. Most if not all the theoretical descriptions of this model imply that the same network should be identifiable across individual speakers. We tested this hypothesis by quantifying the variability of activation observed across individuals within each dorsal stream anatomical region. This estimate was based on electrical activity recorded directly from the cerebral cortex with millisecond accuracy in awake epileptic patients clinically implanted with intracerebral depth electrodes for pre-surgical diagnosis. Each region's activity was quantified using two different metrics-intra-cerebral evoked related potentials and high gamma activity-at the level of the group, the individual and the recording contact. The two metrics show simultaneous activation of parietal and frontal regions during a picture naming task, in line with models that posit interactive processing during word retrieval. They also reveal different levels of between-patient variability across brain regions, except in core auditory and motor regions. The independence and non-uniformity of cortical activity estimated through the two metrics push the current model towards sub-second and sub-region explorations focused on individualized language speech production. Several hypotheses are considered for this within-region heterogeneity.
Collapse
Affiliation(s)
- Catherine Liégeois‐Chauvel
- Epilepsy Center, Neurological InstituteCleveland Clinic FoundationClevelandOhioUSA,Aix Marseille Univ, INSERM, INS, Inst Neurosci SystMarseilleFrance,Present address:
Department of Neurological Surgery, School of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | | | - Irene Wang
- Epilepsy Center, Neurological InstituteCleveland Clinic FoundationClevelandOhioUSA
| | | | - Jorge A. Gonzalez‐Martinez
- Present address:
Department of Neurological Surgery, School of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - F.‐Xavier Alario
- Present address:
Department of Neurological Surgery, School of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA,Aix Marseille Univ, CNRS, LPCMarseilleFrance
| |
Collapse
|
3
|
Abstract
BACKGROUND A large number of patients have epilepsy that is intractable and adversely affects a child's lifelong experience with addition societal burden that is disabling and expensive. The last two decades have seen a major explosion of new antiseizure medication options. Despite these advances, children with epilepsy continue to have intractable seizures. An option that has been long available but little used is epilepsy surgery to control intractable epilepsy. METHODS This article is a review of the literature as well as published opinions. RESULTS Epilepsy surgery in pediatrics is an underused modality to effectively treat children with epilepsy. Adverse effects of medication should be weighed against risks of surgery as well as risks of nonefficacy. CONCLUSIONS We discuss an approach to selecting the appropriate pediatric patient for consideration, a detailed evaluation including necessary evaluation, and the creation of an algorithm to approach patients with both generalized and focal epilepsy. We then discuss surgical options available including outcome data. New modalities are also addressed including high-frequency ultrasound and co-registration techniques including magnetic resonance imaging-guided laser therapy.
Collapse
|
4
|
Intracranial Electrode Placement for Seizures Before Temporal Lobectomy: A Risk-Benefit Analysis. World Neurosurg 2019; 121:e215-e222. [DOI: 10.1016/j.wneu.2018.09.079] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 09/07/2018] [Accepted: 09/11/2018] [Indexed: 02/03/2023]
|
5
|
Goldstein HE, Youngerman BE, Shao B, Akman CI, Mandel AM, McBrian DK, Riviello JJ, Sheth SA, McKhann GM, Feldstein NA. Safety and efficacy of stereoelectroencephalography in pediatric focal epilepsy: a single-center experience. J Neurosurg Pediatr 2018; 22:444-452. [PMID: 30028270 DOI: 10.3171/2018.5.peds1856] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Patients with medically refractory localization-related epilepsy (LRE) may be candidates for surgical intervention if the seizure onset zone (SOZ) can be well localized. Stereoelectroencephalography (SEEG) offers an attractive alternative to subdural grid and strip electrode implantation for seizure lateralization and localization; yet there are few series reporting the safety and efficacy of SEEG in pediatric patients. METHODS The authors review their initial 3-year consecutive experience with SEEG in pediatric patients with LRE. SEEG coverage, SOZ localization, complications, and preliminary seizure outcomes following subsequent surgical treatments are assessed. RESULTS Twenty-five pediatric patients underwent 30 SEEG implantations, with a total of 342 electrodes placed. Ten had prior resections or ablations. Seven had no MRI abnormalities, and 8 had multiple lesions on MRI. Based on preimplantation hypotheses, 7 investigations were extratemporal (ET), 1 was only temporal-limbic (TL), and 22 were combined ET/TL investigations. Fourteen patients underwent bilateral investigations. On average, patients were monitored for 8 days postimplant (range 3-19 days). Nearly all patients were discharged home on the day following electrode explantation. There were no major complications. Minor complications included 1 electrode deflection into the subdural space, resulting in a minor asymptomatic extraaxial hemorrhage; and 1 in-house and 1 delayed electrode superficial scalp infection, both treated with local wound care and oral antibiotics. SEEG localized the hypothetical SOZ in 23 of 25 patients (92%). To date, 18 patients have undergone definitive surgical intervention. In 2 patients, SEEG localized the SOZ near eloquent cortex and subdural grids were used to further delineate the seizure focus relative to mapped motor function just prior to resection. At last follow-up (average 21 months), 8 of 15 patients with at least 6 months of follow-up (53%) were Engel class I, and an additional 6 patients (40%) were Engel class II or III. Only 1 patient was Engel class IV. CONCLUSIONS SEEG is a safe and effective technique for invasive SOZ localization in medically refractory LRE in the pediatric population. SEEG permits bilateral and multilobar investigations while avoiding large craniotomies. It is conducive to deep, 3D, and perilesional investigations, particularly in cases of prior resections. Patients who are not found to have focally localizable seizures are spared craniotomies.
Collapse
Affiliation(s)
- Hannah E Goldstein
- 1Department of Neurological Surgery, Columbia University Medical Center, Columbia-Presbyterian, New York
| | - Brett E Youngerman
- 1Department of Neurological Surgery, Columbia University Medical Center, Columbia-Presbyterian, New York
| | - Belinda Shao
- 2Division of Pediatric Neurosurgery, Department of Neurological Surgery, Children's Hospital of New York, Columbia-Presbyterian, New York
| | - Cigdem I Akman
- 3Department of Neurology, Child Neurology Division, Children's Hospital of New York, Columbia-Presbyterian, New York, New York; and
| | - Arthur M Mandel
- 3Department of Neurology, Child Neurology Division, Children's Hospital of New York, Columbia-Presbyterian, New York, New York; and
| | - Danielle K McBrian
- 3Department of Neurology, Child Neurology Division, Children's Hospital of New York, Columbia-Presbyterian, New York, New York; and
| | - James J Riviello
- 4Department of Neurology and Developmental Neuroscience, Texas Children's Hospital, Houston, Texas
| | - Sameer A Sheth
- 1Department of Neurological Surgery, Columbia University Medical Center, Columbia-Presbyterian, New York
| | - Guy M McKhann
- 1Department of Neurological Surgery, Columbia University Medical Center, Columbia-Presbyterian, New York
| | - Neil A Feldstein
- 2Division of Pediatric Neurosurgery, Department of Neurological Surgery, Children's Hospital of New York, Columbia-Presbyterian, New York
| |
Collapse
|
6
|
Robotic-Guided Bihippocampal and Biparahippocampal Depth Placement for Responsive Neurostimulation in Bitemporal Lobe Epilepsy. World Neurosurg 2018; 111:181-189. [DOI: 10.1016/j.wneu.2017.10.164] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 10/27/2017] [Accepted: 10/28/2017] [Indexed: 11/16/2022]
|
7
|
Abstract
Stereoelectroencephalography (SEEG) is a method for invasive study of patients with refractory epilepsy. Localization of the epileptogenic zone in SEEG relied on the hypothesis of anatomo-electro-clinical analysis limited by X-ray, analog electroencephalography (EEG), and seizure semiology in the 1950s. Modern neuroimaging studies and digital video-EEG have developed the hypothesis aiming at more precise localization of the epileptic network. Certain clinical scenarios favor SEEG over subdural EEG (SDEEG). SEEG can cover extensive areas of bilateral hemispheres with highly accurate sampling from sulcal areas and deep brain structures. A hybrid technique of SEEG and subdural strip electrode placement has been reported to overcome the SEEG limitations of poor functional mapping. Technological advances including acquisition of three-dimensional angiography and magnetic resonance image (MRI) in frameless conditions, advanced multimodal planning, and robot-assisted implantation have contributed to the accuracy and safety of electrode implantation in a simplified fashion. A recent meta-analysis of the safety of SEEG concluded the low value of the pooled prevalence for all complications. The complications of SEEG were significantly less than those of SDEEG. The removal of electrodes for SEEG was much simpler than for SDEEG and allowed sufficient time for data analysis, discussion, and consensus for both patients and physicians before the proceeding treatment. Furthermore, SEEG is applicable as a therapeutic alternative for deep-seated lesions, e.g., nodular heterotopia, in nonoperative epilepsies using SEEG-guided radiofrequency thermocoagulation. We review the SEEG method with technological advances for planning and implantation of electrodes. We highlight the indication and efficacy, advantages and disadvantages of SEEG compared with SDEEG.
Collapse
Affiliation(s)
- Koji Iida
- Department of Neurosurgery, Hiroshima University Hospital.,Epilepsy Center, Hiroshima University Hospital
| | - Hiroshi Otsubo
- Neurophysiology Laboratory, Division of Neurology, The Hospital for Sick Children
| |
Collapse
|
8
|
Patel SH, Halpern CH, Shepherd TM, Timpone VM. Electrical stimulation and monitoring devices of the CNS: An imaging review. J Neuroradiol 2017; 44:175-184. [DOI: 10.1016/j.neurad.2016.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 10/12/2016] [Accepted: 12/21/2016] [Indexed: 10/20/2022]
|
9
|
Jin P, Wu D, Li X, Ren L, Wang Y. Towards precision medicine in epilepsy surgery. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:24. [PMID: 26889477 DOI: 10.3978/j.issn.2305-5839.2015.12.65] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Up to a third of all patients with epilepsy are refractory to medical therapy even in the context of the introduction of new antiepileptic drugs (AEDs) with considerable advantages in safety and tolerability over the last two decades. It has been widely accepted that epilepsy surgery is a highly effective therapeutic option in a selected subset of patients with refractory focal seizure. There is no doubt that accurate localization of the epileptogenic zone (EZ) is crucial to the success of resection surgery for intractable epilepsy. The pre-surgical evaluation requires a multimodality approach wherein each modality provides unique and complimentary information. Accurate localization of EZ still remains challenging, especially in patients with normal features on MRI. Whereas substantial progress has been made in the methods of pre-surgical assessment in recent years, which widened the applicability of surgical treatment for children and adults with refractory seizure. Advances in neuroimaging including voxel-based morphometric MRI analysis, multimodality techniques and computer-aided subtraction ictal SPECT co-registered to MRI have improved our ability to identify subtle structural and metabolic lesions causing focal seizure. Considerable observations from animal model with epilepsy and pre-surgical patients have consistently found a strong correlation between high frequency oscillations (HFOs) and epileptogenic brain tissue that suggest HFOs could be a potential biomarker of EZ. Since SEEG emphasizes the importance to study the spatiotemporal dynamics of seizure discharges, accounting for the dynamic, multidirectional spatiotemporal organization of the ictal discharges, it has greatly deep our understanding of the anatomo-electro-clinical profile of seizure. In this review, we focus on some state-of-the-art pre-surgical investigations that contribute to the precision medicine. Furthermore, advances also provide opportunity to achieve the minimal side effects and maximal benefit individually, which meets the need for the current concept of precision medicine in epilepsy surgery.
Collapse
Affiliation(s)
- Pingping Jin
- 1 Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China ; 2 Department of Neurology, China-Japan Friendship Hospital, Beijing 100029, China ; 3 Department of Neurology, Beijing Key Laboratory of Neuromodulation, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Dongyan Wu
- 1 Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China ; 2 Department of Neurology, China-Japan Friendship Hospital, Beijing 100029, China ; 3 Department of Neurology, Beijing Key Laboratory of Neuromodulation, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xiaoxuan Li
- 1 Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China ; 2 Department of Neurology, China-Japan Friendship Hospital, Beijing 100029, China ; 3 Department of Neurology, Beijing Key Laboratory of Neuromodulation, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Liankun Ren
- 1 Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China ; 2 Department of Neurology, China-Japan Friendship Hospital, Beijing 100029, China ; 3 Department of Neurology, Beijing Key Laboratory of Neuromodulation, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yuping Wang
- 1 Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China ; 2 Department of Neurology, China-Japan Friendship Hospital, Beijing 100029, China ; 3 Department of Neurology, Beijing Key Laboratory of Neuromodulation, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| |
Collapse
|