1
|
Sozer A, Sahin MC, Sozer B, Sozer E, Bayik P, Tokgoz N, Emmez H, Kaymaz M, Yaman ME. Radioneuromodulation of Nucleus Accumbens for Addiction: The First Animal Study. World Neurosurg 2024:S1878-8750(24)01575-4. [PMID: 39276968 DOI: 10.1016/j.wneu.2024.09.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024]
Abstract
OBJECTIVE Addiction is a serious spiral where negative events or relationships trigger a craving even when the situation is caused by the addiction in the first place. Nucleus accumbens is identified as an important hub for the neural pathways involved in the addictive behavior. Stimulation of this structure was demonstrated to be beneficial for addiction previously, but radioneuromodulation was never investigated until today. This study aimed to investigate if radioneuromodulation of the nucleus accumbens has any effect on alcohol addiction. METHODS An addiction model was used on 36 Long-Evans rats (18 females/18 males), via a 2-bottle intermittent access protocol, and the trial group received 100 Gy of gamma irradiation to their bilateral nucleus accumbens. Rats were followed up for an additional 15 weeks. Multiple sets of a behavioral test battery, a 4-week abstinence period, and quinine adulteration challenges were used to evaluate responses. RESULTS The experiment showed that the intervention reduced alcohol preference in the presence of aversive stimuli in female rats, compared with the nonirradiated control rats, because the trial group showed a 9.83-point decrease in alcohol preference rate under high-dose quinine adulteration compared with baseline, whereas the control group did not show any decrease. There were also implications of additional benefits regarding weight control in females and behavioral tests in males. No evident adverse effect was observed with the treatment. CONCLUSIONS This study indicates that nucleus accumbens radioneuromodulation, although not significantly affecting baseline consumption, reduces intake when an aversive stimulus is involved, implying improved self-control.
Collapse
Affiliation(s)
- Alperen Sozer
- Department of Neurosurgery, Gazi University Faculty of Medicine, Ankara, Turkey.
| | | | - Batuhan Sozer
- Department of Neurosurgery, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Ekin Sozer
- Directorate of Health Culture and Sports, Gazi University, Ankara, Turkey
| | - Pelin Bayik
- Department of Pathology, Baskent University Faculty of Medicine, Ankara, Turkey
| | - Nil Tokgoz
- Department of Radiology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Hakan Emmez
- Department on Neurosurgery, Guven Hospital, Ankara, Turkey
| | - Memduh Kaymaz
- Department of Neurosurgery, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Mesut Emre Yaman
- Department of Neurosurgery, Gazi University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
2
|
Barany L, Meszaros C, Alpar A, Ganslandt O, Hore N, Delev D, Schnell O, Kurucz P. Topographical anatomy of the septum verum and its white matter connections. Sci Rep 2024; 14:18064. [PMID: 39103521 PMCID: PMC11300447 DOI: 10.1038/s41598-024-68464-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/24/2024] [Indexed: 08/07/2024] Open
Abstract
The human septum verum represents a small but clinically important region of the brain. Based on the results of animal experiments, the stimulation of its medial part was recently proposed with various indications like epilepsy or cognitive impairment after traumatic brain injury. The aim of our study was to present the anatomical relationships of the human septum verum using fiber dissection and histological analysis to support its research and provide essential information for future deep brain stimulation therapies. 16 human cadaveric brains were dissected according to Klingler's method. To validate our macroscopical findings, 12 samples obtained from the dissected brains and 2 additional specimens from unfrozen brains were prepared for histological examinations. We identified the following white matter connections of the septum verum: (1) the precommissural fibers of the fornix; (2) the inferior fascicle of the septum pellucidum; (3) the cingulum; (4) the medial olfactory stria; (5) the ventral amygdalofugal pathway; (6) the stria medullaris of the thalamus and (7) the stria terminalis. Moreover, we could distinguish a less-known fiber bundle connecting the postcommissural column of the fornix to the stria medullaris of the thalamus and the anterior thalamic nuclei. In this study we present valuable anatomical information about this region to promote safe and effective deep brain stimulation therapies in the future.
Collapse
Affiliation(s)
- Laszlo Barany
- Department of Neurosurgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Cintia Meszaros
- Department of Anatomy, Semmelweis University, Budapest, Hungary
| | - Alan Alpar
- Department of Anatomy, Semmelweis University, Budapest, Hungary
- SE NAP Research Group of Experimental Neuroanatomy and Developmental Biology, Semmelweis University, Budapest, Hungary
| | - Oliver Ganslandt
- Department of Neurosurgery, Katharinenhospital, Klinikum Stuttgart, Stuttgart, Germany
| | - Nirjhar Hore
- Department of Neurosurgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Daniel Delev
- Department of Neurosurgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Oliver Schnell
- Department of Neurosurgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Peter Kurucz
- Department of Neurosurgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Department of Neurosurgery, Katharinenhospital, Klinikum Stuttgart, Stuttgart, Germany
| |
Collapse
|
3
|
Shaheen N, Shaheen A, Sarica C, Singh A, Zanaty M, Johari K, Yang A, Zesiewicz T, Dalm B, Bezchlibnyk Y, Lozano AM, Flouty O. Deep brain stimulation for substance use disorder: a systematic review and meta-analysis. Front Psychiatry 2023; 14:1231760. [PMID: 37636824 PMCID: PMC10449586 DOI: 10.3389/fpsyt.2023.1231760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Objective Substance use disorder (SUD) is a significant public health issue with a high mortality rate. Deep brain stimulation (DBS) has shown promising results in treating SUD in certain cases. In this study, we conducted a meta-analysis to evaluate the efficacy of DBS in the treatment of SUD and reduction of relapse rates. Methods We performed a thorough and methodical search of the existing scientific literature, adhering to the PRISMA guidelines, to identify 16 original studies that fulfilled our inclusion criteria. We used the evidence levels recommended by the Oxford Centre for Evidence-Based Medicine to assess bias. The R version 4.2.3 software was utilized to calculate the mean effect size. We estimated study heterogeneity by employing tau2 and I2 indices and conducting Cochran's Q test. Results The results showed that DBS treatment resulted in a significant improvement in the clinical SUD scales of patients, with an average improvement of 59.6%. The observed relapse rate was 8%. The meta-analysis estimated a mean effect size of 55.9 [40.4; 71.4]. Heterogeneity analysis showed a large degree of heterogeneity among the included studies. Subgroup and meta-regression analysis based on age and SUD type suggested that DBS may be more effective for patients above 45 years of age, and for alcohol and opioid addiction compared to nicotine addiction. Conclusion The current literature suggests that DBS has a moderate effect on SUD symptoms. However, the limited number of studies and small sample size indicate that more research is needed to better understand the factors that influence its effectiveness.
Collapse
Affiliation(s)
- Nour Shaheen
- Alexandria Faculty of Medicine, Alexandria, Egypt
| | | | - Can Sarica
- Division of Neurosurgery, University of Toronto, Toronto, ON, Canada
| | - Arun Singh
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
| | - Mario Zanaty
- Department of Neurological Surgery, Thomas Jefferson University Hospitals, Philadelphia, PA, United States
| | - Karim Johari
- Department of Communication Sciences and Disorders, Louisiana State University, Baton Rouge, LA, United States
| | - Andrew Yang
- Division of Neurosurgery, University of Toronto, Toronto, ON, Canada
| | - Theresa Zesiewicz
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, United States
| | - Brian Dalm
- Department of Neurological Surgery, Ohio State University, Columbus, OH, United States
| | - Yarema Bezchlibnyk
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, United States
| | - Andres M. Lozano
- Division of Neurosurgery, University of Toronto, Toronto, ON, Canada
| | - Oliver Flouty
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, United States
| |
Collapse
|
4
|
Kimura I, Revankar GS, Ogawa K, Amano K, Kajiyama Y, Mochizuki H. Neural correlates of impulsive compulsive behaviors in Parkinson's disease: A Japanese retrospective study. Neuroimage Clin 2023; 37:103307. [PMID: 36586362 PMCID: PMC9817029 DOI: 10.1016/j.nicl.2022.103307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/25/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND Impulsive compulsive behaviors (ICBs) often disturb patients with Parkinson's Disease (PD), of which impulse control disorder (ICD) and dopamine dysregulation syndrome (DDS) are two major subsets. The nucleus accumbens (NAcc) is involved in ICB; however, it remains unclear how the NAcc affects cortical function and defines the different behavioral characteristics of ICD and DDS. OBJECTIVES To identify the cortico-striatal network primarily involved in ICB and the differences in these networks between patients with ICD and DDS using structural and resting-state functional magnetic resonance imaging. METHODS Patients with PD were recruited using data from a previous cohort study and divided into those with ICB (ICB group) and without ICB (non-ICB group) using the Japanese version of the Questionnaire for Impulsive Compulsive Disorders in Parkinson's Disease (J-QUIP). From these two groups, we extracted 37 pairs matched for age, sex, disease duration, and levodopa equivalent daily dose of dopamine agonists. Patients with ICB were further classified as having ICD or DDS based on the J-QUIP subscore. General linear models were used to compare gray matter volume and functional connectivity (FC) of the NAcc, caudate, and putamen between the ICB and non-ICB groups and between patients with ICD and those with DDS. RESULTS We found no significant differences in gray matter volumebetween the ICB and non-ICB groups or between patients with ICD and those with DDS. Compared with the non-ICB group, the FC of the right NAcc in the ICB group was lower in the bilateral ventromedial prefrontal cortex and higher in the left middle occipital gyrus. Furthermore, patients with DDS showed higher FC between the right putamen and left superior temporal gyrus and higher FC between the left caudate and bilateral middle occipital gyrus than patients with ICD. In contrast, patients with ICD exhibited higher FC between the left NAcc and the right posterior cingulate cortex than patients with DDS. CONCLUSIONS The functionally altered network between the right NAcc and ventromedial prefrontal cortex was associated with ICB in PD. In addition, the surrounding cortico-striatal networks may differentiate the behavioral characteristics of patients with ICD and those with DDS.
Collapse
Affiliation(s)
- Ikko Kimura
- Department of Neurology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan; Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Gajanan S Revankar
- Department of Neurology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Kotaro Ogawa
- Department of Neurology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Kaoru Amano
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan; Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan
| | - Yuta Kajiyama
- Department of Neurology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan.
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan.
| |
Collapse
|
5
|
Yu Q, Guo X, Zhu Z, Feng C, Jiang H, Zheng Z, Zhang J, Zhu J, Wu H. White Matter Tracts Associated With Deep Brain Stimulation Targets in Major Depressive Disorder: A Systematic Review. Front Psychiatry 2022; 13:806916. [PMID: 35573379 PMCID: PMC9095936 DOI: 10.3389/fpsyt.2022.806916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Background Deep brain stimulation (DBS) has been proposed as a last-resort treatment for major depressive disorder (MDD) and has shown potential antidepressant effects in multiple clinical trials. However, the clinical effects of DBS for MDD are inconsistent and suboptimal, with 30-70% responder rates. The currently used DBS targets for MDD are not individualized, which may account for suboptimal effect. Objective We aim to review and summarize currently used DBS targets for MDD and relevant diffusion tensor imaging (DTI) studies. Methods A literature search of the currently used DBS targets for MDD, including clinical trials, case reports and anatomy, was performed. We also performed a literature search on DTI studies in MDD. Results A total of 95 studies are eligible for our review, including 51 DBS studies, and 44 DTI studies. There are 7 brain structures targeted for MDD DBS, and 9 white matter tracts with microstructural abnormalities reported in MDD. These DBS targets modulate different brain regions implicated in distinguished dysfunctional brain circuits, consistent with DTI findings in MDD. Conclusions In this review, we propose a taxonomy of DBS targets for MDD. These results imply that clinical characteristics and white matter tracts abnormalities may serve as valuable supplements in future personalized DBS for MDD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Junming Zhu
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hemmings Wu
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
6
|
De Salles A, Lucena L, Paranhos T, Ferragut MA, de Oliveira-Souza R, Gorgulho A. Modern neurosurgical techniques for psychiatric disorders. PROGRESS IN BRAIN RESEARCH 2022; 270:33-59. [PMID: 35396030 DOI: 10.1016/bs.pbr.2022.01.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Psychosurgery refers to an ensemble of more or less invasive techniques designed to reduce the burden caused by psychiatric diseases in patients who have failed to respond to conventional therapy. While most surgeries are designed to correct apparent anatomical abnormalities, no discrete cerebral anatomical lesion is evident in most psychiatric diseases amenable to invasive interventions. Finding the optimal surgical targets in mental illness is troublesome. In general, contemporary psychosurgical procedures can be classified into one of two primary modalities: lesioning and stimulation procedures. The first group is divided into (a) thermocoagulation and (b) stereotactic radiosurgery or recently introduced transcranial magnetic resonance-guided focused ultrasound, whereas stimulation techniques mainly include deep brain stimulation (DBS), cortical stimulation, and the vagus nerve stimulation. The most studied psychiatric diseases amenable to psychosurgical interventions are severe treatment-resistant major depressive disorder, obsessive-compulsive disorder, Tourette syndrome, anorexia nervosa, schizophrenia, and substance use disorder. Furthermore, modern neuroimaging techniques spurred the interest of clinicians to identify cerebral regions amenable to be manipulated to control psychiatric symptoms. On this way, the concept of a multi-nodal network need to be embraced, enticing the collaboration of psychiatrists, psychologists, neurologists and neurosurgeons participating in multidisciplinary groups, conducting well-designed clinical trials.
Collapse
Affiliation(s)
- Antonio De Salles
- University of California Los Angeles (UCLA), Los Angeles, CA, United States; NeuroSapiens®, Brazil; Hospital Rede D'Or, São Luiz, SP, Brazil.
| | - Luan Lucena
- NeuroSapiens®, Brazil; Hospital Rede D'Or, São Luiz, SP, Brazil
| | - Thiago Paranhos
- Hospital Rede D'Or, São Luiz, SP, Brazil; Federal University of Rio De Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | | - Ricardo de Oliveira-Souza
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil; Federal University of the State of Rio De Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | | |
Collapse
|
7
|
Diaz AP, Fernandes BS, Teixeira AL, Mwangi B, Hasan KM, Wu MJ, Selvaraj S, Suen P, Zanao TA, Brunoni AR, Sanches M, Soares JC. White matter microstructure associated with anhedonia among individuals with bipolar disorders and high-risk for bipolar disorders. J Affect Disord 2022; 300:91-98. [PMID: 34936916 PMCID: PMC8828704 DOI: 10.1016/j.jad.2021.12.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/09/2021] [Accepted: 12/17/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Anhedonia - a key symptom of depression - is highly associated with poorer outcomes and suicidal behavior. Alterations in the circuitry of reward-related brain regions have been robustly associated with anhedonia in unipolar depression, but not bipolar disorder (BD). We investigated white matter microstructures associated with anhedonia in participants with BD types I and II and first-degree relatives of patients with BD (BD-siblings). METHODS Eighty participants (BD types I and II: 56 [70%], and BD-siblings: 24 [30%]) underwent diffusion tensor imaging (DTI); Fractional anisotropy (FA) of different tracts were computed. Anhedonia was assessed using item 8, ("inability to feel'') of the MADRS scale. General linear models were used to compare the FA of different tracts in participants with and without anhedonia controlling for several clinical and demographic variables. RESULTS The mean age of the sample was 37 (± 11) years old, and 68.8% were female. Participants with anhedonia (32.5%) presented lower mean FA in the left uncinate fasciculus (UF) (p = 0.005), right temporal endings of the superior longitudinal fasciculus (SLFT) (p = 0.04), and in the left and right parietal endings of the superior longitudinal fasciculus (SLFP) (p = 0.003, and p = 0.04, respectively). Similar comparisons between participants with or without current depressive episodes and between participants with or without inner tension according to the MADRS did not show significant differences, specificity of the findings for anhedonia. CONCLUSIONS Lower FA in the left UF and SLF are potential neuroimaging markers of anhedonia in individuals with BD and high-risk for BD.
Collapse
Affiliation(s)
- Alexandre Paim Diaz
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, 1941 East Road, Suite 3130, Houston, TX 77054, United States.
| | - Brisa S. Fernandes
- The University of Texas Health Science Center at Houston, Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, Houston, Texas
| | - Antonio Lucio Teixeira
- The University of Texas Health Science Center at Houston, Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, Houston, Texas
| | - Benson Mwangi
- The University of Texas Health Science Center at Houston, Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, Houston, Texas
| | - Khader M. Hasan
- The University of Texas Health Science Center at Houston, Department of Diagnostic and Interventional Imaging, Diffusion MRI Research Lab, Houston, Texas
| | - Mon-Ju Wu
- The University of Texas Health Science Center at Houston, Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, Houston, Texas
| | - Sudhakar Selvaraj
- The University of Texas Health Science Center at Houston, Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, Houston, Texas
| | - Paulo Suen
- Department of Internal Medicine, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil; Laboratory of Neurosciences (LIM-27), Department and Institute of Psychiatry, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Tamires Araujo Zanao
- Department of Internal Medicine, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil; Laboratory of Neurosciences (LIM-27), Department and Institute of Psychiatry, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Andre R. Brunoni
- Department of Internal Medicine, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil; Laboratory of Neurosciences (LIM-27), Department and Institute of Psychiatry, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Marsal Sanches
- The University of Texas Health Science Center at Houston, Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, Houston, Texas
| | - Jair C. Soares
- The University of Texas Health Science Center at Houston, Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, Houston, Texas
| |
Collapse
|
8
|
Li M, Zhang Z, Wu X, Wang X, Liu X, Liang J, Chen G, Feng Y, Li M. Tractography of the Stria Terminalis in the Human Brain. Clin Anat 2022; 35:383-391. [PMID: 35102603 DOI: 10.1002/ca.23843] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 11/08/2022]
Abstract
The aim of this study was to investigate the trajectory of the stria terminalis and develop a protocol for mapping the stria terminalis using multi-shell diffusion images based tractography. The stria terminalis was reconstructed by combining one region of interest at the amygdala with another region of interest at the bed nucleus of stria terminalis. In addition, one region of avoidance was placed on the fornix at the interventricular foramen and another was set at the anterior perforated substance. The fiber-tracking protocol was tested in a Human Connectome Project-842 template, 35 healthy subjects from Massachusetts General Hospital, and 20 healthy subjects from the Human Connectome Project using generalized q-sampling imaging based tractography. The stria terminalis was reconstructed in the Human Connectome Project-842 template, 35 Massachusetts General Hospital healthy subjects, and 20 Human Connectome Project healthy subjects with our protocol. The stria terminalis originated from the amygdala and travelled parallel to the fornix. Then, the stria terminalis followed a C-shaped trajectory around the inferior, posterior, and dorsal surfaces of the thalamus before projecting to the bed nucleus of stria terminalis between the thalamus and caudate nucleus. There were no significant differences in the quantitative anisotropy and fractional anisotropy values between the left and right stria terminalis. The stria terminalis was accurately visualized across subjects using multi-shell diffusion images through generalized q-sampling imaging based tractography. This method could be an important tool for the reconstruction and evaluation of the stria terminalis in various neurological disorders. One Sentence Summary The visualizetion of the stria terminalis through the multi-shell diffusion images using generalized q-sampling imaging based tractography.
Collapse
Affiliation(s)
- Mengjun Li
- Department of Neurosurgery, Samii Clinical Neuroanatomy Research & Education Center, Capital Medical University Xuanwu Hospital, China International Neuroscience Institute (China-INI), Beijing, China
| | - Zhiping Zhang
- Department of Neurosurgery, Samii Clinical Neuroanatomy Research & Education Center, Capital Medical University Xuanwu Hospital, China International Neuroscience Institute (China-INI), Beijing, China
| | - Xiaolong Wu
- Department of Neurosurgery, Samii Clinical Neuroanatomy Research & Education Center, Capital Medical University Xuanwu Hospital, China International Neuroscience Institute (China-INI), Beijing, China
| | - Xu Wang
- Department of Neurosurgery, Samii Clinical Neuroanatomy Research & Education Center, Capital Medical University Xuanwu Hospital, China International Neuroscience Institute (China-INI), Beijing, China
| | - Xiaohai Liu
- Department of Neurosurgery, Samii Clinical Neuroanatomy Research & Education Center, Capital Medical University Xuanwu Hospital, China International Neuroscience Institute (China-INI), Beijing, China
| | - Jiantao Liang
- Department of Neurosurgery, Samii Clinical Neuroanatomy Research & Education Center, Capital Medical University Xuanwu Hospital, China International Neuroscience Institute (China-INI), Beijing, China
| | - Ge Chen
- Department of Neurosurgery, Samii Clinical Neuroanatomy Research & Education Center, Capital Medical University Xuanwu Hospital, China International Neuroscience Institute (China-INI), Beijing, China
| | - Yuanjing Feng
- Institute of Information Processing and Automation, College of Information Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Mingchu Li
- Department of Neurosurgery, Samii Clinical Neuroanatomy Research & Education Center, Capital Medical University Xuanwu Hospital, China International Neuroscience Institute (China-INI), Beijing, China
| |
Collapse
|
9
|
Three-dimensional anatomy of the anterior commissure: A tractography and anatomical study. World Neurosurg 2021; 159:e365-e374. [PMID: 34952222 DOI: 10.1016/j.wneu.2021.12.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 11/22/2022]
Abstract
The anterior commissure (AC) is one of the main commissural fibers of the brain. Commissural fibers are involved in bilateral integration and coordination of any normal brain activity. The AC is an important interhemispheric structure which forms a bidirectional communication channel between the frontal, temporal, parietal and occipital lobes bilaterally. In this article, we focus on describing the morphology, relations, and distribution of the AC through diffusion spectrum imaging (DSI) DSI-based fiber tracking. Tractographies were compared with gross anatomical dissection of the anterior commissure of adult's brains. Our study suggests that the AC found by tracking methods is bigger in comparison to the one found by dissection. In summary, the tractography added extensions to the main AC structure.
Collapse
|
10
|
Rusche T, Kaufmann J, Voges J. Nucleus accumbens projections: Validity and reliability of fiber reconstructions based on high-resolution diffusion-weighted MRI. Hum Brain Mapp 2021; 42:5888-5910. [PMID: 34528323 PMCID: PMC8596959 DOI: 10.1002/hbm.25657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 08/02/2021] [Accepted: 08/29/2021] [Indexed: 12/17/2022] Open
Abstract
Clinical effects of deep brain stimulation are largely mediated by the activation of myelinated axons. Hence, increasing attention has been paid in the past on targeting white matter tracts in addition to gray matter. Aims of the present study were: (i) visualization of discrete afferences and efferences of the nucleus accumbens (NAc), supposed to be a major hub of neural networks relating to mental disorders, using probabilistic fiber tractography and a data driven approach, and (ii) validation of the applied methodology for standardized routine clinical applications. MR‐data from 11 healthy subjects and 7 measurement sessions each were acquired on a 3T MRI‐scanner. For probabilistic fiber tracking the NAc as a seed region and the medial prefrontal cortex (mPFC), anterior cingulate cortex (ACC), amygdala (AMY), hippocampus (HPC), dorsomedial thalamus (dmT) and ventral tegmental area (VTA) as target regions were segmented for each subject and both hemispheres. To quantitatively assess the reliability and stability of the reconstructions, we filtered and clustered the individual fiber‐tracts (NAc to target) for each session and subject and performed a point‐by‐point calculation of the maximum cluster distances for intra‐subject comparison. The connectivity patterns formed by the obtained fibers were in good concordance with published data from tracer and/or fiber‐dissection studies. Furthermore, the reliability assessment of the (NAc to target)‐fiber‐tracts yielded to high correlations between the obtained clustered‐tracts. Using DBS with directional lead technology, the workflow elaborated in this study may guide selective electrical stimulation of NAc projections.
Collapse
Affiliation(s)
- Thilo Rusche
- Department of Stereotactic Neurosurgery, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Department of Radiology, Clinic of Radiology & Nuclear Medicine, University Hospital Basel, University Basel, Basel, Switzerland
| | - Jörn Kaufmann
- Department of Neurology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Jürgen Voges
- Department of Stereotactic Neurosurgery, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
11
|
Navarro PA, Paranhos T, Lovo E, De Oliveira-Souza R, Gorgulho AA, De Salles A, López WOC. Safety and Feasibility of Nucleus Accumbens Surgery for Drug Addiction: A Systematic Review. Neuromodulation 2021; 25:171-184. [PMID: 33460201 DOI: 10.1111/ner.13348] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 12/01/2022]
Abstract
BACKGROUND Substance addiction encompasses the incapacity to discontinue urgent drug use; many severely disabled patients might be considered appropriate candidates for surgery due to the high rates of relapse despite conservative treatment. A crucial finding in the brain of these patients is increased extracellular concentrations of dopamine in the nucleus accumbens (NAcc). OBJECTIVES To determine the efficacy and safety of NAcc surgery for the treatment of substance dependence. MATERIALS AND METHODS Adhering to PRISMA guidelines, we performed a systematic review to identify all original studies in which NAcc surgery was performed to treat relapsing drug addiction with a minimum follow-up of six months. From database inception to April 10, 2020, we searched PubMed, Scopus, and LILACS. Two reviewers independently selected studies and extracted data. The main outcome was the relapse rate. The GRADE methods were applied to evaluate the quality of evidence. This study was registered with PROSPERO CRD42020177054. RESULTS Fifteen studies involving 359 participants met inclusion criteria; eight (56%) included NAcc deep brain stimulation (DBS) in 13 patients with addiction for alcohol (N = 6, 46.1%), opioid (N = 4, 30.7%), and nicotine (N = 3, 15.3%); seven studies (N = 346, 44%) performed NAcc radiofrequency (RF) ablation for opioid (N = 334) and alcohol (N = 12) dependence. Relapse rates were 38.4% for DBS and 39% for RF ablation. CONCLUSIONS Despite available studies reporting a benefit in the treatment of drug addictions with NAcc surgery, this systematic review stresses the need for carefully planned prospective studies in order to further address the efficacy and indications.
Collapse
Affiliation(s)
- Paula Alejandra Navarro
- Grupo de investigación NEMOD, división de neurocirugía funcional, departamento de neurocirugía, clínica FOSCAL, Universidad Autónoma de Bucaramanga, Bucaramanga, Colombia
| | - Thiago Paranhos
- School of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eduardo Lovo
- Centro Internacional de Cáncer Hospital de Diagnóstico, San Salvador, El Salvador
| | - Ricardo De Oliveira-Souza
- Department of Neurology and Neuropsychiatry, D'Or Institute for Research and Education, Rio de Janeiro, Brazil
| | | | | | - William Omar Contreras López
- Grupo de investigación NEMOD, división de neurocirugía funcional, departamento de neurocirugía, clínica FOSCAL, Universidad Autónoma de Bucaramanga, Bucaramanga, Colombia
| |
Collapse
|
12
|
The ansa peduncularis in the human brain: A tractography and fiber dissection study. Brain Res 2020; 1746:146978. [PMID: 32535175 DOI: 10.1016/j.brainres.2020.146978] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 11/21/2022]
Abstract
INTRODUCTION The ansa peduncularis is a composite of white matter fiber bundles closely packed together that sweeps around the cerebral peduncle. The exact components of the ansa peduncularis and their anatomical trajectories are still not established firmly in the literature. OBJECTIVE The aim of this study was to examine the topographical anatomy of the ansa peduncularis and its subcomponents using the fiber dissection and tractography techniques. METHODS Ten formalin-fixed brains were prepared according to Klingler's method and dissected by the fiber dissection technique from the lateral, medial and inferior surfaces. The ansa peduncularis was also traced using high definition fiber tracking (HDFT) from the MRI data of twenty healthy adults and a 1021-subject template from the Human Connectome Project. RESULTS The ventral amygdalofugal pathway system includes white matter fiber bundles with a topographically close relation as they sweep around the cerebral peduncle and contribute to form the ansa peduncularis: amygdaloseptal fibers connect the amygdala and anterior temporal cortex to the septal region and amygdalohypothalamic fibers project from the amygdala to the hypothalamus. Additionally, from the amygdala and anterior temporal cortex, amygdalothalamic fibers project to the medial thalamic region. The ansa lenticularis, which connects the globus pallidus to the thalamus, was not shown in our study. CONCLUSION The study demonstrated the trajectory of the ansa peduncularis and its subcomponents, based on fiber dissection and tractography, improving our understanding of human brain anatomical connectivity.
Collapse
|
13
|
Baran O, Baydin S, Gungor A, Balak N, Middlebrooks E, Saygi T, Aydin I, Tanriover N. Surgical Approaches to the Thalamus in Relation to the White Matter Tracts of the Cerebrum. World Neurosurg 2019; 128:e1048-e1086. [DOI: 10.1016/j.wneu.2019.05.068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 05/08/2019] [Indexed: 12/20/2022]
|
14
|
Matsushima T, Matsushima K, Kobayashi S, Lister JR, Morcos JJ. The microneurosurgical anatomy legacy of Albert L. Rhoton Jr., MD: an analysis of transition and evolution over 50 years. J Neurosurg 2018; 129:1331-1341. [PMID: 29393756 DOI: 10.3171/2017.7.jns17517] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 07/13/2017] [Indexed: 11/06/2022]
Abstract
The authors chronologically categorized the 160 original articles written by Dr. Rhoton and his fellows to show why they selected their themes and how they carried out their projects. The authors note that as neurosurgery progresses and new techniques and approaches are developed, accurate and safe treatment will depend upon continued clarification of microsurgical anatomy.
Collapse
Affiliation(s)
- Toshio Matsushima
- 1International University of Health and Welfare
- 2Neuroscience Center, Fukuoka Sanno Hospital, Fukuoka
| | - Ken Matsushima
- 3Department of Neurosurgery, Tokyo Medical University, Tokyo
| | - Shigeaki Kobayashi
- 4Medical Research and Education Center, Aizawa Hospital, Matsumoto, Japan
| | - J Richard Lister
- 5Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville; and
| | - Jacques J Morcos
- 6Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
15
|
Balak N. In Reply to “Joy of Learning: Mammilotegmental Tract Connecting 2 Circuits of Memory and Pleasure in Brain”. World Neurosurg 2018; 118:389-390. [DOI: 10.1016/j.wneu.2018.07.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 07/03/2018] [Indexed: 12/18/2022]
|
16
|
Baydin S, Gungor A, Tanriover N, Rhoton AL. In Reply: Microsurgical and Fiber Tract Anatomy of the Nucleus Accumbens. Oper Neurosurg (Hagerstown) 2016; 12:E396-E397. [PMID: 29506289 DOI: 10.1227/neu.0000000000001422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Serhat Baydin
- Department of Neurosurgery, Kanuni Sultan Suleyman Research and Training Hospital, Istanbul, Turkey
| | - Abuzer Gungor
- Department of Neurosurgery Bakirkoy Research and Training Hospital for Neurology, Neurosurgery, and Psychiatry, Istanbul, Turkey
| | - Necmettin Tanriover
- Department of Neurosurgery, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Albert L Rhoton
- Department of Neurosurgery, University of Florida, College of Medicine, Gainesville, Florida
| |
Collapse
|
17
|
Mavridis IN. Letter: Microsurgical and Fiber Tract Anatomy of the Nucleus Accumbens. Oper Neurosurg (Hagerstown) 2016; 12:E395-E396. [PMID: 29506288 DOI: 10.1227/neu.0000000000001423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Ioannis N Mavridis
- Department of Neurosurgery, "K.A.T.-N.R.C." General Hospital of Attica, Athens, Greece
| |
Collapse
|