1
|
Li R, Zhang C, Rao Y, Yuan TF. Deep brain stimulation of fornix for memory improvement in Alzheimer's disease: A critical review. Ageing Res Rev 2022; 79:101668. [PMID: 35705176 DOI: 10.1016/j.arr.2022.101668] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 05/16/2022] [Accepted: 06/09/2022] [Indexed: 11/30/2022]
Abstract
Memory reflects the brain function in encoding, storage and retrieval of the data or information, which is a fundamental ability for any live organism. The development of approaches to improve memory attracts much attention due to the underlying mechanistic insight and therapeutic potential to treat neurodegenerative diseases with memory loss, such as Alzheimer's disease (AD). Deep brain stimulation (DBS), a reversible, adjustable, and non-ablative therapy, has been shown to be safe and effective in many clinical trials for neurodegenerative and neuropsychiatric disorders. Among all potential regions with access to invasive electrodes, fornix is considered as it is the major afferent and efferent connection of the hippocampus known to be closely associated with learning and memory. Indeed, clinical trials have demonstrated that fornix DBS globally improved cognitive function in a subset of patients with AD, indicating fornix can serve as a potential target for neurosurgical intervention in treating memory impairment in AD. The present review aims to provide a better understanding of recent progresses in the application of fornix DBS for ameliorating memory impairments in AD patients.
Collapse
Affiliation(s)
- Ruofan Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chencheng Zhang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanxia Rao
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Laboratory Animal Science, Fudan University, China.
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China; Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
UCHL1 and Proteasome in Blood Serum in Relation to Dietary Habits, Concentration of Selected Antioxidant Minerals and Total Antioxidant Status among Patients with Alzheimer's Disease. J Clin Med 2022; 11:jcm11020412. [PMID: 35054106 PMCID: PMC8779407 DOI: 10.3390/jcm11020412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/02/2022] [Accepted: 01/11/2022] [Indexed: 02/04/2023] Open
Abstract
Alzheimer's disease (AD) is an incurable neurodegenerative disease. It is the most common form of dementia among the elderly population. So far, no effective methods of its treatment have been found. Research to better understand the mechanism of pathology may provide new methods for early diagnosis. This, in turn, could enable early intervention that could slow or halt disease progression and improve patients' quality of life. Therefore, minimally invasive markers, including serum-based markers, are being sought to improve the diagnosis of AD. One of the important markers may be the concentration of UCHL1 and the proteasome in the blood serum. Their concentration can be affected by many factors, including eating habits. This study was conducted in 110 patients with early or moderate AD, with a mean age of 78.0 ± 8.1 years. The patients were under the care of the Podlasie Center of Psychogeriatrics and the Department of Neurology (Medical University of Białystok, Poland). The control group consisted of 60 healthy volunteers, matched for gender and age. The concentration of UCHL1 and the 20S proteasome subunit were measured by surface plasmon resonance imaging (SPRI). In addition, a nutritional interview was conducted with patients with AD, which assessed the frequency of consumption of 36 groups of products. In the group of patients with AD, compared to the control group, we showed a significantly higher concentration of UCHL1 (56.05 vs. 7.98 ng/mL) and the proteasome (13.02 vs. 5.72 µg/mL). Moreover, we found a low negative correlation between UCHL1 and the proteasome in the control group, and positive in the AD group. The analysis of eating habits showed that the consumption of selected groups of products may affect the concentration of the tested components, and therefore may have a protective effect on AD.
Collapse
|
3
|
Schnitzler A, Mir P, Brodsky MA, Verhagen L, Groppa S, Alvarez R, Evans A, Blazquez M, Nagel S, Pilitsis JG, Pötter-Nerger M, Tse W, Almeida L, Tomycz N, Jimenez-Shahed J, Libionka W, Carrillo F, Hartmann CJ, Groiss SJ, Glaser M, Defresne F, Karst E, Cheeran B, Vesper J. Directional Deep Brain Stimulation for Parkinson's Disease: Results of an International Crossover Study With Randomized, Double-Blind Primary Endpoint. Neuromodulation 2021; 25:817-828. [PMID: 34047410 DOI: 10.1111/ner.13407] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/11/2021] [Accepted: 03/23/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Published reports on directional deep brain stimulation (DBS) have been limited to small, single-center investigations. Therapeutic window (TW) is used to describe the range of stimulation amplitudes achieving symptom relief without side effects. This crossover study performed a randomized double-blind assessment of TW for directional and omnidirectional DBS in a large cohort of patients implanted with a DBS system in the subthalamic nucleus for Parkinson's disease. MATERIALS AND METHODS Participants received omnidirectional stimulation for the first three months after initial study programming, followed by directional DBS for the following three months. The primary endpoint was a double-blind, randomized evaluation of TW for directional vs. omnidirectional stimulation at three months after initial study programming. Additional data recorded at three- and six-month follow-ups included stimulation preference, therapeutic current strength, Unified Parkinson's Disease Rating Scale (UPDRS) part III motor score, and quality of life. RESULTS The study enrolled 234 subjects (62 ± 8 years, 33% female). TW was wider using directional stimulation in 183 of 202 subjects (90.6%). The mean increase in TW with directional stimulation was 41% (2.98 ± 1.38 mA, compared to 2.11 ± 1.33 mA for omnidirectional). UPDRS part III motor score on medication improved 42.4% at three months (after three months of omnidirectional stimulation) and 43.3% at six months (after three months of directional stimulation) with stimulation on, compared to stimulation off. After six months, 52.8% of subjects blinded to stimulation type (102/193) preferred the period with directional stimulation, and 25.9% (50/193) preferred the omnidirectional period. The directional period was preferred by 58.5% of clinicians (113/193) vs. 21.2% (41/193) who preferred the omnidirectional period. CONCLUSION Directional stimulation yielded a wider TW compared to omnidirectional stimulation and was preferred by blinded subjects and clinicians.
Collapse
Affiliation(s)
- Alfons Schnitzler
- Department of Neurology, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Pablo Mir
- Clinical Neurology and Neurophysiology Department, Movement Disorders Unit, Institute of Biomedicine of Seville, Virgen del Rocío University Hospital, CSIC/University of Seville, Seville, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Seville, Spain
| | - Matthew A Brodsky
- Department of Neurology, Oregon Health and Science University, Portland, OR, USA
| | - Leonard Verhagen
- Department of Neurological Sciences, Rush University, Chicago, IL, USA
| | - Sergiu Groppa
- Johannes Gutenberg University of Mainz, Clinic of Neurology, Mainz, Germany
| | - Ramiro Alvarez
- Department of Neurology, Hospital Trias i Pujol, Badalona, Spain
| | - Andrew Evans
- Department of Neurology, Royal Melbourne Hospital, Melbourne, Australia
| | - Marta Blazquez
- Department of Neurology, Hospital Universitario Central de Asturias, Spain
| | - Sean Nagel
- Department of Neurosurgery, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Julie G Pilitsis
- Department of Neurosurgery, Albany Medical Center, New York, NY, USA
| | | | - Winona Tse
- Department of Neurology, Mount Sinai Hospital, New York, NY, USA
| | - Leonardo Almeida
- Department of Neurology, Shands at University of Florida, Gainesville, FL, USA
| | - Nestor Tomycz
- Department of Neurosurgery, Allegheny General Hospital, Pittsburgh, PA, USA
| | | | - Witold Libionka
- Department of Neurology, Copernicus Hospital, Gdansk, Poland
| | - Fatima Carrillo
- Clinical Neurology and Neurophysiology Department, Movement Disorders Unit, Institute of Biomedicine of Seville, Virgen del Rocío University Hospital, CSIC/University of Seville, Seville, Spain
| | - Christian J Hartmann
- Department of Neurology, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Stefan Jun Groiss
- Department of Neurology, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Martin Glaser
- Department of Neurosurgery, Johannes Gutenberg University of Mainz, Mainz, Germany
| | | | - Edward Karst
- Abbott, Medical and Clinical Affairs, Plano, TX, USA
| | | | - Jan Vesper
- Department of Neurosurgery, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | | |
Collapse
|
4
|
Klebe S, Coenen V. [Deep brain stimulation in neurological and psychiatric diseases]. DER NERVENARZT 2021; 92:1042-1051. [PMID: 33630100 PMCID: PMC8484136 DOI: 10.1007/s00115-021-01079-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 01/15/2021] [Indexed: 11/18/2022]
Abstract
Die invasive Hirnstimulation (tiefe Hirnstimulation [THS], „deep brain stimulation“ [DBS]) ist mittlerweile ein etabliertes Therapieverfahren bei einer Reihe neurologischer Erkrankungen insbesondere Bewegungsstörungen. Die Anzahl der mit einer THS versorgten Patienten steigt stetig, die technische Entwicklung der THS-Systeme schreitet voran und neue Indikationen werden aktuell in Studien überprüft. Im folgenden Beitrag soll ein Überblick über die aktuellen Indikationen und ein Ausblick auf zukünftige Entwicklungen der THS bei Bewegungsstörungen und psychiatrischen Erkrankungen gegeben werden.
Collapse
Affiliation(s)
- Stephan Klebe
- Klinik für Neurologie, Universitätsmedizin Essen, Hufelandstr. 55, 45147, Essen, Deutschland.
| | - Volker Coenen
- Abteilung Stereotaktische und Funktionelle Neurochirurgie, Klinik für Neurochirurgie, Neurozentrum, Universitätsklinikum Freiburg, Breisacher Str. 64, 79106, Freiburg, Deutschland
| |
Collapse
|
5
|
Howard CW, Toossi A, Mushahwar VK. Variety Is the Spice of Life: Positive and Negative Effects of Noise in Electrical Stimulation of the Nervous System. Neuroscientist 2020; 27:529-543. [DOI: 10.1177/1073858420951155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Noisy stimuli may hold the key for optimal electrical stimulation of the nervous system. Possible mechanisms of noise’s impact upon neuronal function are discussed, including intracellular, extracellular, and systems-level mechanisms. Specifically, channel resonance, stochastic resonance, high conductance states, and network binding are investigated. These mechanisms are examined and possible directions of growth for the field are discussed, with examples of applications provided from the fields of deep brain stimulation or spinal cord injury. Together, this review highlights the theoretical basis and evidence base for the use of noise to enhance current stimulation paradigms of the nervous system.
Collapse
Affiliation(s)
- Calvin W. Howard
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, Alberta, Canada
| | - Amirali Toossi
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, Alberta, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Vivian K. Mushahwar
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, Alberta, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
6
|
Senova S, Fomenko A, Gondard E, Lozano AM. Anatomy and function of the fornix in the context of its potential as a therapeutic target. J Neurol Neurosurg Psychiatry 2020; 91:547-559. [PMID: 32132227 PMCID: PMC7231447 DOI: 10.1136/jnnp-2019-322375] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/10/2020] [Accepted: 02/15/2020] [Indexed: 02/07/2023]
Abstract
The fornix is a white matter bundle located in the mesial aspect of the cerebral hemispheres, which connects various nodes of a limbic circuitry and is believed to play a key role in cognition and episodic memory recall. As the most prevalent cause of dementia, Alzheimer's disease (AD) dramatically impairs the quality of life of patients and imposes a significant societal burden on the healthcare system. As an established treatment for movement disorders, deep brain stimulation (DBS) is currently being investigated in preclinical and clinical studies for treatment of memory impairment in AD by modulating fornix activity. Optimal target and stimulation parameters to potentially rescue memory deficits have yet to be determined. The aim of this review is to consolidate the structural and functional aspects of the fornix in the context of neuromodulation for memory deficits. We first present an anatomical and functional overview of the fibres and structures interconnected by the fornix. Recent evidence from preclinical models suggests that the fornix is subdivided into two distinct functional axes: a septohippocampal pathway and a subiculothalamic pathway. Each pathway's target and origin structures are presented, followed by a discussion of their oscillatory dynamics and functional connectivity. Overall, neuromodulation of each pathway of the fornix is discussed in the context of evidence-based forniceal DBS strategies. It is not yet known whether driving fornix activity can enhance cognition-optimal target and stimulation parameters to rescue memory deficits have yet to be determined.
Collapse
Affiliation(s)
- Suhan Senova
- Neurosurgery, Institut Mondor de recherche biomedicale, Créteil, Île-de-France, France
| | - Anton Fomenko
- Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada
- University Health Network, Toronto, Ontario, Canada
| | | | - Andres M Lozano
- Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada
- University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Bittlinger M, Müller S. Opening the debate on deep brain stimulation for Alzheimer disease - a critical evaluation of rationale, shortcomings, and ethical justification. BMC Med Ethics 2018; 19:41. [PMID: 29886845 PMCID: PMC5994654 DOI: 10.1186/s12910-018-0275-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 05/01/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) as investigational intervention for symptomatic relief from Alzheimer disease (AD) has generated big expectations. Our aim is to discuss the ethical justification of this research agenda by examining the underlying research rationale as well as potential methodological pitfalls. The shortcomings we address are of high ethical importance because only scientifically valid research has the potential to be ethical. METHOD We performed a systematic search on MEDLINE and EMBASE. We included 166 publications about DBS for AD into the analysis of research rationale, risks and ethical aspects. Fifty-eight patients were reported in peer-reviewed journals with very mixed results. A grey literature search revealed hints for 75 yet to be published, potentially enrolled patients. RESULTS The results of our systematic review indicate methodological shortcomings in the literature that are both scientific and ethical in nature. According to our analysis, research with human subjects was performed before decisive preclinical research was published examining the specific research question at stake. We also raise the concern that conclusions on the potential safety and efficacy have been reported in the literature that seem premature given the design of the feasibility studies from which they were drawn. In addition, some publications report that DBS for AD was performed without written informed consent from some patients, but from surrogates only. Furthermore, registered ongoing trials plan to enroll severely demented patients. We provide reasons that this would violate Art. 28 of the Declaration of Helsinki, because DBS for AD involves more than minimal risks and burdens, and because its efficacy and safety are not yet empirically established to be likely. CONCLUSION Based on our empirical analysis, we argue that clinical research on interventions of risk class III (Food and Drug Administration and European Medicines Agency) should not be exploratory but grounded on sound, preclinically tested, and disease-specific a posteriori hypotheses. This also applies to DBS for dementia as long as therapeutic benefits are uncertain, and especially when research subjects with cognitive deficits are involved, who may foreseeably progress to full incapacity to provide informed consent during the required follow-up period.
Collapse
Affiliation(s)
- Merlin Bittlinger
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department for Psychiatry and Psychotherapy, CCM, Division of Mind and Brain Research, Charitéplatz 1, 10117 Berlin, Germany
| | - Sabine Müller
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department for Psychiatry and Psychotherapy, CCM, Division of Mind and Brain Research, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
8
|
Xia F, Yiu A, Stone SSD, Oh S, Lozano AM, Josselyn SA, Frankland PW. Entorhinal Cortical Deep Brain Stimulation Rescues Memory Deficits in Both Young and Old Mice Genetically Engineered to Model Alzheimer's Disease. Neuropsychopharmacology 2017; 42:2493-2503. [PMID: 28540926 PMCID: PMC5686482 DOI: 10.1038/npp.2017.100] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/16/2017] [Accepted: 05/18/2017] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive cognitive decline. Deep brain stimulation (DBS) has been used to treat a variety of brain disorders and shows promise in alleviating cognitive symptoms in some AD patients (Laxton et al, 2010). We previously showed that DBS of the entorhinal cortex (EC) enhances spatial memory formation in normal (wild-type) mice (Stone et al, 2011). Here we tested the effects of EC-DBS on the progressive cognitive deficits in a genetically-based mouse model of AD. TgCRND8 (Tg) transgenic mice express human amyloid precursor protein harboring the Swedish and Indiana familial AD mutations. These mice exhibit age-related increases in Aβ production, plaque deposition, as well as contextual fear and spatial memory impairments. Here, we found EC stimulation in young mice (6 weeks old) rescued the early contextual fear and spatial memory deficits and decreased subsequent plaque load in Tg mice. Moreover, stimulation in older mice (6 months old) was also sufficient to rescue the memory deficits in Tg mice. The memory enhancement induced by DBS emerged gradually (over the course of weeks) and was both persistent and specific to hippocampal-based memories. These results provide further support for the development of novel therapeutics aimed to resolve the cognitive decline and memory impairment in AD using DBS of hippocampal afferents.
Collapse
Affiliation(s)
- Frances Xia
- Department of Physiology, University of Toronto, Toronto, ON, Canada,Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, ON, Canada
| | - Adelaide Yiu
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, ON, Canada
| | - Scellig S D Stone
- Harvard Medical School, Boston, MA, USA,Department of Neurosurgery, Boston Children's Hospital, Boston, MA, USA
| | - Soojin Oh
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, ON, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada,Toronto Western Research Institute, Krembil Discovery Tower, University Health Network, Toronto, ON, Canada
| | - Sheena A Josselyn
- Department of Physiology, University of Toronto, Toronto, ON, Canada,Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, ON, Canada,Department of Psychology, University of Toronto, Toronto, ON, Canada,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada,Program in Neurosciences and Mental Health, Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada, Tel: +(416) 813-7654, E-mail: or
| | - Paul W Frankland
- Department of Physiology, University of Toronto, Toronto, ON, Canada,Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, ON, Canada,Department of Psychology, University of Toronto, Toronto, ON, Canada,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada,Program in Neurosciences and Mental Health, Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada, Tel: +(416) 813-7654, E-mail: or
| |
Collapse
|
9
|
Peng X, Xing P, Li X, Qian Y, Song F, Bai Z, Han G, Lei H. Towards Personalized Intervention for Alzheimer's Disease. GENOMICS PROTEOMICS & BIOINFORMATICS 2016; 14:289-297. [PMID: 27693548 PMCID: PMC5093853 DOI: 10.1016/j.gpb.2016.01.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 01/14/2016] [Accepted: 01/31/2016] [Indexed: 01/17/2023]
Abstract
Alzheimer's disease (AD) remains to be a grand challenge for the international community despite over a century of exploration. A key factor likely accounting for such a situation is the vast heterogeneity in the disease etiology, which involves very complex and divergent pathways. Therefore, intervention strategies shall be tailored for subgroups of AD patients. Both demographic and in-depth information is needed for patient stratification. The demographic information includes primarily APOE genotype, age, gender, education, environmental exposure, life style, and medical history, whereas in-depth information stems from genome sequencing, brain imaging, peripheral biomarkers, and even functional assays on neurons derived from patient-specific induced pluripotent cells (iPSCs). Comprehensive information collection, better understanding of the disease mechanisms, and diversified strategies of drug development would help with more effective intervention in the foreseeable future.
Collapse
Affiliation(s)
- Xing Peng
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; Cunji Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peiqi Xing
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; Cunji Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiuhui Li
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; Cunji Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Qian
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; Cunji Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fuhai Song
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; Cunji Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhouxian Bai
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; Cunji Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangchun Han
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongxing Lei
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; Cunji Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing 100053, China.
| |
Collapse
|