1
|
van Opijnen MP, Sadigh Y, Dijkstra ME, Young JS, Krieg SM, Ille S, Sanai N, Rincon-Torroella J, Maruyama T, Schucht P, Smith TR, Nahed BV, Broekman MLD, De Vleeschouwer S, Berger MS, Vincent AJPE, Gerritsen JKW. The impact of intraoperative mapping during re-resection in recurrent gliomas: a systematic review. J Neurooncol 2025; 171:485-493. [PMID: 39556284 PMCID: PMC11729115 DOI: 10.1007/s11060-024-04874-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 10/31/2024] [Indexed: 11/19/2024]
Abstract
PURPOSE Previous evidence suggests that glioma re-resection can be effective in improving clinical outcomes. Furthermore, the use of mapping techniques during surgery has proven beneficial for newly diagnosed glioma patients. However, the effects of these mapping techniques during re-resection are not clear. This systematic review aimed to assess the evidence of using these techniques for recurrent glioma patients. METHODS A systematic search was performed to identify relevant studies. Articles were eligible if they included adult patients with recurrent gliomas (WHO grade 2-4) who underwent re-resection. Study characteristics, application of mapping, and surgical outcome data on survival, patient functioning, and complications were extracted. RESULTS The literature strategy identified 6372 articles, of which 125 were screened for eligibility. After full-text evaluation, 58 articles were included in this review, comprising 5311 patients with re-resection for glioma. Of these articles, 17% (10/58) reported the use of awake or asleep intraoperative mapping techniques during re-resection. Mapping was applied in 5% (280/5311) of all patients, and awake craniotomy was used in 3% (142/5311) of the patients. CONCLUSION Mapping techniques can be used during re-resection, with some evidence that it is useful to improve clinical outcomes. However, there is a lack of high-quality support in the literature for using these techniques. The low number of studies reporting mapping techniques may, next to publication bias, reflect limited application in the recurrent setting. We advocate for future studies to determine their utility in reducing morbidity and increasing extent of resection, similar to their benefits in the primary setting.
Collapse
Affiliation(s)
- Mark P van Opijnen
- Department of Neurosurgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Yasmin Sadigh
- Department of Neurosurgery, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Miles E Dijkstra
- Department of Neurosurgery, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Jacob S Young
- Department of Neurosurgery, University of California, San Francisco, CA, USA
| | - Sandro M Krieg
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Sebastian Ille
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Nader Sanai
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AZ, USA
| | | | - Takashi Maruyama
- Department of Neurosurgery, Tokyo Women's Medical University Hospital, Tokyo, Japan
| | - Philippe Schucht
- Department of Neurosurgery, Inselspital Universitätsspital Bern, Bern, Switzerland
| | - Timothy R Smith
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Brian V Nahed
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - Marike L D Broekman
- Department of Neurosurgery, Leiden University Medical Center, Leiden, The Netherlands
- Department of Neurosurgery, Haaglanden Medical Center, The Hague, The Netherlands
| | - Steven De Vleeschouwer
- Department of Neurosurgery, Leuven Brain Center (LBI), University Hospital Leuven, Louvain, KU, Belgium
| | - Mitchel S Berger
- Department of Neurosurgery, University of California, San Francisco, CA, USA
| | - Arnaud J P E Vincent
- Department of Neurosurgery, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Jasper K W Gerritsen
- Department of Neurosurgery, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
- Department of Neurosurgery, University of California, San Francisco, CA, USA.
| |
Collapse
|
2
|
Demasi M, Elia A, Simboli GA, Moiraghi A, Paun L, Hudelist B, Hamza M, Schumacher X, Trancart B, Seneca M, Dezamis E, Muto J, Chretien F, Oppenheim C, Roux A, Zanello M, Pallud J. Feasibility, Safety, and Impact of Awake Resection for Recurrent Insular Diffuse Gliomas in Adults. Neurosurgery 2025:00006123-990000000-01506. [PMID: 39878468 DOI: 10.1227/neu.0000000000003366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/06/2024] [Indexed: 01/31/2025] Open
Abstract
BACKGROUND AND OBJECTIVES The risk-to-benefit ratio of transopercular awake resection for recurrent insular diffuse gliomas is poorly studied. We assessed feasibility, safety, and efficacy of awake surgical resection of recurrent insular diffuse gliomas in patients with previous treatments (resection and/or radiotherapy and/or chemotherapy and/or combination). METHODS Observational, retrospective, single-institution cohort analysis (2010-2023) of 123 consecutive adult patients operated on for an insular diffuse glioma (2021 World Health Organization classification) under awake conditions. Comparison between awake resection for an insular diffuse glioma as first-line treatment (n = 87) and after previous treatments (n = 36). RESULTS Function-based transopercular awake resection for a recurrent insular diffuse glioma (1) did not increase intraoperative adverse events compared with first-line resection; (2) was associated with a higher rate of intraoperative insufficient cooperation in patients with a previous combined oncological treatment (33.3%), compared with patients with a previous monotherapeutic modality (7.4%), and compared with patients with a first-line surgery (8.1%, P = .046); (3) resulted in resection rates similar to those of awake resection at first-line surgery (median 91.9%, vs 90.1%); (4) did not increase surgery-related complications or duration of hospital stay; (5) did not worsen the 6-month Karnofsky Performance Status score, seizure control, and sick leave; (6) did not influence the 6-month sick leave from work, but was associated with longer sick leave in patients with high-grade gliomas (38.0% vs 7.7%, P < .001). CONCLUSION Function-based transopercular awake resection seems feasible and safe at recurrence of a previously treated insular diffuse glioma, with similar resection rates and outcomes than first-time surgery.
Collapse
Affiliation(s)
- Marco Demasi
- Service de Neurochirurgie, GHU-Paris Psychiatrie et Neurosciences, Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, IMA-Brain, Paris, France
- Department of Neurosurgery, University of Milan, Milan, Italy
| | - Angela Elia
- Service de Neurochirurgie, GHU-Paris Psychiatrie et Neurosciences, Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, IMA-Brain, Paris, France
| | - Giorgia Antonia Simboli
- Service de Neurochirurgie, GHU-Paris Psychiatrie et Neurosciences, Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, IMA-Brain, Paris, France
- Department of Neuropathology, GHU-Paris Psychiatrie et Neuroscience, Paris, France
| | - Alessandro Moiraghi
- Service de Neurochirurgie, GHU-Paris Psychiatrie et Neurosciences, Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, IMA-Brain, Paris, France
| | - Luca Paun
- Service de Neurochirurgie, GHU-Paris Psychiatrie et Neurosciences, Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, IMA-Brain, Paris, France
| | - Benoit Hudelist
- Service de Neurochirurgie, GHU-Paris Psychiatrie et Neurosciences, Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, IMA-Brain, Paris, France
| | - Meissa Hamza
- Service de Neurochirurgie, GHU-Paris Psychiatrie et Neurosciences, Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, IMA-Brain, Paris, France
| | - Xavier Schumacher
- Service de Neurochirurgie, GHU-Paris Psychiatrie et Neurosciences, Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, IMA-Brain, Paris, France
| | - Bénédicte Trancart
- Service de Neurochirurgie, GHU-Paris Psychiatrie et Neurosciences, Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, IMA-Brain, Paris, France
| | - Maimiti Seneca
- Service de Neurochirurgie, GHU-Paris Psychiatrie et Neurosciences, Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, IMA-Brain, Paris, France
| | - Edouard Dezamis
- Service de Neurochirurgie, GHU-Paris Psychiatrie et Neurosciences, Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, IMA-Brain, Paris, France
| | - Jun Muto
- Department of Neurosurgery, Fujita Health University, Aichi, Japan
| | - Fabrice Chretien
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, IMA-Brain, Paris, France
- Department of Neuropathology, GHU-Paris Psychiatrie et Neuroscience, Paris, France
| | - Catherine Oppenheim
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, IMA-Brain, Paris, France
- Department of Neuroradiology, GHU-Paris Psychiatrie et Neuroscience, Paris, France
| | - Alexandre Roux
- Service de Neurochirurgie, GHU-Paris Psychiatrie et Neurosciences, Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, IMA-Brain, Paris, France
| | - Marc Zanello
- Service de Neurochirurgie, GHU-Paris Psychiatrie et Neurosciences, Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, IMA-Brain, Paris, France
| | - Johan Pallud
- Service de Neurochirurgie, GHU-Paris Psychiatrie et Neurosciences, Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, IMA-Brain, Paris, France
| |
Collapse
|
3
|
Ng S, Moritz-Gasser S, Lemaitre AL, Duffau H, Herbet G. Multivariate mapping of low-resilient neurocognitive systems within and around low-grade gliomas. Brain 2024; 147:2718-2731. [PMID: 38657204 DOI: 10.1093/brain/awae130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/18/2024] [Accepted: 04/05/2024] [Indexed: 04/26/2024] Open
Abstract
Accumulating evidence suggests that the brain exhibits a remarkable capacity for functional compensation in response to neurological damage, a resilience potential that is deeply rooted in the malleable features of its underlying anatomofunctional architecture. This propensity is particularly exemplified by diffuse low-grade glioma, a subtype of primary brain tumour. However, functional plasticity is not boundless, and surgical resections directed at structures with limited neuroplasticity can lead to incapacitating impairments. Yet, maximizing diffuse low-grade glioma resections offers substantial oncological benefits, especially when the resection extends beyond the tumour margins (i.e. supra-tumour or supratotal resection). In this context, the primary objective of this study was to identify which cerebral structures were associated with less favourable cognitive outcomes after surgery, while accounting for intra-tumour and supra-tumour features of the surgical resections. To achieve this objective, we leveraged a unique cohort of 400 patients with diffuse low-grade glioma who underwent surgery with awake cognitive mapping. Patients benefitted from a neuropsychological assessment consisting of 18 subtests administered before and 3 months after surgery. We analysed changes in performance and applied topography-focused and disconnection-focused multivariate lesion-symptom mapping using support vector regressions, in an attempt to capture resected cortico-subcortical structures less amenable to full cognitive compensation. The observed changes in performance were of a limited magnitude, suggesting an overall recovery (13 of 18 tasks recovered fully despite a mean resection extent of 92.4%). Nevertheless, lesion-symptom mapping analyses revealed that a lack of recovery in picture naming was linked to damage in the left inferior temporal gyrus and inferior longitudinal fasciculus. Likewise, for semantic fluency abilities, an association was established with damage to the left precuneus/posterior cingulate. For phonological fluency abilities, the left dorsomedial frontal cortex and the frontal aslant tract were implicated. Moreover, difficulties in spatial exploration were associated with injury to the right dorsomedial prefrontal cortex and its underlying connectivity. An exploratory analysis suggested that supra-tumour resections were associated with a less pronounced recovery following specific resection patterns, such as supra-tumour resections of the left uncinate fasciculus (picture naming), the left corticostriatal tract and the anterior corpus callosum (phonological fluency), the hippocampus and parahippocampus (episodic memory) and the right frontal-mesial areas (visuospatial exploration). Collectively, these patterns of results shed new light on both low-resilient neural systems and the prediction of cognitive recovery following glioma surgery. Furthermore, they indicate that supra-tumour resections were only occasionally less well tolerated from a cognitive viewpoint. In doing so, they have deep implications for surgical planning and rehabilitation strategies.
Collapse
Affiliation(s)
- Sam Ng
- Département de Neurochirurgie, Hôpital Gui de Chauliac, Centre Hospitalier Universitaire de Montpellier, 34090 Montpellier, France
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Sylvie Moritz-Gasser
- Département de Neurochirurgie, Hôpital Gui de Chauliac, Centre Hospitalier Universitaire de Montpellier, 34090 Montpellier, France
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Anne-Laure Lemaitre
- Département de Neurochirurgie, Hôpital Gui de Chauliac, Centre Hospitalier Universitaire de Montpellier, 34090 Montpellier, France
- Laboratoire Praxiling, UMR 5267, CNRS, Université Paul Valéry-Montpellier 3, Bâtiment de recherche Marc Bloch, 34090 Montpellier, France
| | - Hugues Duffau
- Département de Neurochirurgie, Hôpital Gui de Chauliac, Centre Hospitalier Universitaire de Montpellier, 34090 Montpellier, France
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Guillaume Herbet
- Département de Neurochirurgie, Hôpital Gui de Chauliac, Centre Hospitalier Universitaire de Montpellier, 34090 Montpellier, France
- Laboratoire Praxiling, UMR 5267, CNRS, Université Paul Valéry-Montpellier 3, Bâtiment de recherche Marc Bloch, 34090 Montpellier, France
- Faculté de médecine, campus ADV, Université de Montpellier, 34090 Montpellier, France
- Institut Universitaire de France, 75231 Paris CEDEX 05, France
| |
Collapse
|
4
|
Noll KR, Bradshaw M, Sheppard D, Wefel JS. Perioperative Neurocognitive Function in Glioma Surgery. Curr Oncol Rep 2024; 26:466-476. [PMID: 38573439 DOI: 10.1007/s11912-024-01522-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
PURPOSE OF REVIEW This review provides a concise overview of the recent literature regarding preoperative and postoperative neurocognitive functioning (NCF) in patients with glioma. Brief discussion also covers contemporary intraoperative brain mapping work, with a focus on potential influence of mapping upon NCF outcomes following awake surgery. RECENT FINDINGS Most patients with glioma exhibit preoperative NCF impairment, with severity varying by germ line and tumoral genetics, tumor grade, and lesion location, among other characteristics. Literature regarding postoperative NCF changes is mixed, though numerous studies indicate a majority of patients exhibit immediate and short-term worsening. This is often followed by recovery over several months; however, a substantial portion of patients harbor persisting declines. Decline appears related to surgically-induced structural and functional brain alterations, both local and distal to the tumor and resection cavity. Importantly, NCF decline may be mitigated to some extent by intraoperative brain mapping, including mapping of both language-mediated and nonverbal functions. Research regarding perioperative NCF in patients with glioma has flourished over recent years. While this has increased our understanding of contributors to NCF and risk of decline associated with surgical intervention, more work is needed to better preserve NCF throughout the disease course.
Collapse
Affiliation(s)
- Kyle R Noll
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 431, Houston, TX, 77030, USA.
| | - Mariana Bradshaw
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 431, Houston, TX, 77030, USA
| | - David Sheppard
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA
| | - Jeffrey S Wefel
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 431, Houston, TX, 77030, USA
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
5
|
Ng S, Duffau H, Herbet G. Perspectives in human brain plasticity sparked by glioma invasion: from intraoperative (re)mappings to neural reconfigurations. Neural Regen Res 2024; 19:947-948. [PMID: 37862182 PMCID: PMC10749607 DOI: 10.4103/1673-5374.382246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/25/2023] [Accepted: 07/18/2023] [Indexed: 10/22/2023] Open
Affiliation(s)
- Sam Ng
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Guillaume Herbet
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
- Praxiling Laboratory, UMR5267, CNRS, Paul Valéry- Montpellier 3 University, Montpellier, France
| |
Collapse
|
6
|
Valdes PA, Ng S, Bernstock JD, Duffau H. Development of an educational method to rethink and learn oncological brain surgery in an "a la carte" connectome-based perspective. Acta Neurochir (Wien) 2023; 165:2489-2500. [PMID: 37199758 DOI: 10.1007/s00701-023-05626-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/03/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND Understanding the structural connectivity of white matter tracts (WMT) and their related functions is a prerequisite to implementing an "a la carte" "connectomic approach" to glioma surgery. However, accessible resources facilitating such an approach are lacking. Here we present an educational method that is readily accessible, simple, and reproducible that enables the visualization of WMTs on individual patient images via an atlas-based approach. METHODS Our method uses the patient's own magnetic resonance imaging (MRI) images and consists of three main steps: data conversion, normalization, and visualization; these are accomplished using accessible software packages and WMT atlases. We implement our method on three common cases encountered in glioma surgery: a right supplementary motor area tumor, a left insular tumor, and a left temporal tumor. RESULTS Using patient-specific perioperative MRIs with open-sourced and co-registered atlas-derived WMTs, we highlight the critical subnetworks requiring specific surgical monitoring identified intraoperatively using direct electrostimulation mapping with cognitive monitoring. The aim of this didactic method is to provide the neurosurgical oncology community with an accessible and ready-to-use educational tool, enabling neurosurgeons to improve their knowledge of WMTs and to better learn their oncologic cases, especially in glioma surgery using awake mapping. CONCLUSIONS Taking no more than 3-5 min per patient and irrespective of their resource settings, we believe that this method will enable junior surgeons to develop an intuition, and a robust 3-dimensional imagery of WMT by regularly applying it to their cases both before and after surgery to develop an "a la carte" connectome-based perspective to glioma surgery.
Collapse
Affiliation(s)
- Pablo A Valdes
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX, 77555, USA.
- Department of Neurosurgery, Hôpital Gui de Chauliac, CHU Montpellier, 80 Av Augustin Fliche, 34295, Montpellier, France.
| | - Sam Ng
- Department of Neurosurgery, Hôpital Gui de Chauliac, CHU Montpellier, 80 Av Augustin Fliche, 34295, Montpellier, France
- Team "Plasticity of Central Nervous System, Human Stem Cells and Glial Tumors", Institute of Functional Genomics, INSERM U1191, University of Montpellier, 141 Rue de la cardonille, 34091, Montpellier, France
| | - Joshua D Bernstock
- Department of Neurosurgery, Harvard Medical School/Brigham and Women's Hospital, Boston, MA, 02115, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hugues Duffau
- Department of Neurosurgery, Hôpital Gui de Chauliac, CHU Montpellier, 80 Av Augustin Fliche, 34295, Montpellier, France
- Team "Plasticity of Central Nervous System, Human Stem Cells and Glial Tumors", Institute of Functional Genomics, INSERM U1191, University of Montpellier, 141 Rue de la cardonille, 34091, Montpellier, France
| |
Collapse
|
7
|
Ng S, Duffau H. Brain Plasticity Profiling as a Key Support to Therapeutic Decision-Making in Low-Grade Glioma Oncological Strategies. Cancers (Basel) 2023; 15:3698. [PMID: 37509359 PMCID: PMC10378506 DOI: 10.3390/cancers15143698] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
The ability of neural circuits to compensate for damage to the central nervous system is called postlesional plasticity. In diffuse low-grade gliomas (LGGs), a crosstalk between the brain and the tumor activates modulations of plasticity, as well as tumor proliferation and migration, by means of paracrine and electrical intercommunications. Such adaptative mechanisms have a major impact on the benefits and risks of oncological treatments but are still disregarded by current neuro-oncological guidelines. In this review, the authors first aimed to highlight clinical, radiological, and oncological markers that robustly reflect the plasticity potentials and limitations in LGG patients, including the location of the tumor and the degree of critical white matter tract infiltration, the velocity of tumor expansion, and the reactional changes of neuropsychological performances over time. Second, the interactions between the potential/limitations of cerebral plasticity and the efficacy/tolerance of treatment options (i.e., surgery, chemotherapy, and radiotherapy) are reviewed. Finally, a longitudinal and multimodal treatment approach accounting for the evolutive profiles of brain plasticity is proposed. Such an approach integrates personalized predictive models of plasticity potentials with a step-by-step therapeutic decision making and supports onco-functional balanced strategies in patients with LGG, with the ultimate aim of optimizing overall survival and quality of life.
Collapse
Affiliation(s)
- Sam Ng
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, 34295 Montpellier, France
- Institute of Functional Genomics, University of Montpellier, Centre National de le Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale 1191, 34094 Montpellier, France
| | - Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, 34295 Montpellier, France
- Institute of Functional Genomics, University of Montpellier, Centre National de le Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale 1191, 34094 Montpellier, France
| |
Collapse
|
8
|
Ng S, Valdes PA, Moritz-Gasser S, Lemaitre AL, Duffau H, Herbet G. Intraoperative functional remapping unveils evolving patterns of cortical plasticity. Brain 2023; 146:3088-3100. [PMID: 37029961 DOI: 10.1093/brain/awad116] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/18/2023] [Accepted: 03/23/2023] [Indexed: 04/09/2023] Open
Abstract
The efficiency with which the brain reorganizes following injury not only depends on the extent and the severity of the lesion, but also on its temporal features. It is established that diffuse low-grade gliomas (DLGG), brain tumours with a slow-growth rate, induce a compensatory modulation of the anatomo-functional architecture, making this kind of tumours an ideal lesion model to study the dynamics of neuroplasticity. Direct electrostimulation (DES) mapping is a well-tried procedure used during awake resection surgeries to identify and spare cortical epicentres which are critical for a range of functions. Because DLGG is a chronic disease, it inevitably relapses years after the initial surgery, and thus requires a second surgery to reduce tumour volume again. In this context, contrasting the cortical mappings obtained during two sequential neurosurgeries offers a unique opportunity to both identify and characterize the dynamic (i.e. re-evolving) patterns of cortical re-arrangements. Here, we capitalized on an unprecedented series of 101 DLGG patients who benefited from two DES-guided neurosurgeries usually spaced several years apart, resulting in a large DES dataset of 2082 cortical sites. All sites (either non-functional or associated with language, speech, motor, somatosensory and semantic processing) were recorded in Montreal Neurological Institute (MNI) space. Next, we used a multi-step approach to generate probabilistic neuroplasticity maps that reflected the dynamic rearrangements of cortical mappings from one surgery to another, both at the population and individual level. Voxel-wise neuroplasticity maps revealed regions with a relatively high potential of evolving reorganizations at the population level, including the supplementary motor area (SMA, Pmax = 0.63), the dorsolateral prefrontal cortex (dlPFC, Pmax = 0.61), the anterior ventral premotor cortex (vPMC, Pmax = 0.43) and the middle superior temporal gyrus (STG Pmax = 0.36). Parcel-wise neuroplasticity maps confirmed this potential for the dlPFC (Fisher's exact test, PFDR-corrected = 6.6 × 10-5), the anterior (PFDR-corrected = 0.0039) and the ventral precentral gyrus (PFDR-corrected = 0.0058). A series of clustering analyses revealed a topological migration of clusters, especially within the left dlPFC and STG (language sites); the left vPMC (speech arrest/dysarthria sites) and the right SMA (negative motor response sites). At the individual level, these dynamic changes were confirmed for the dlPFC (bilateral), the left vPMC and the anterior left STG (threshold free cluster enhancement, 5000 permutations, family-wise error-corrected). Taken as a whole, our results provide a critical insight into the dynamic potential of DLGG-induced continuing rearrangements of the cerebral cortex, with considerable implications for re-operations.
Collapse
Affiliation(s)
- Sam Ng
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, F-34095 Montpellier, France
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, F-34094 Montpellier, France
| | - Pablo A Valdes
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX 78701-2982, USA
| | - Sylvie Moritz-Gasser
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, F-34095 Montpellier, France
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, F-34094 Montpellier, France
| | - Anne-Laure Lemaitre
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, F-34095 Montpellier, France
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, F-34094 Montpellier, France
| | - Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, F-34095 Montpellier, France
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, F-34094 Montpellier, France
| | - Guillaume Herbet
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, F-34095 Montpellier, France
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, F-34094 Montpellier, France
- Praxiling Laboratory, UMR 5267, CNRS, UPVM, F-34199 Montpellier, France
| |
Collapse
|
9
|
Fauvet C, Villain M, Gatignol P. Repeated awake surgery and quality of life in patients with diffuse glioma: a systematic review and meta-analysis. Neurosurg Rev 2023; 46:156. [PMID: 37382692 DOI: 10.1007/s10143-023-02073-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/12/2023] [Accepted: 06/20/2023] [Indexed: 06/30/2023]
Abstract
Diffuse gliomas significantly affect patients' daily lives. Because of the high risk of recurrence and anaplasic transformation, repeated surgery can be proposed in awake condition to prolongs overall survival by limiting and reducing residual tumour volume. However, oncological interest alone is no longer sufficient due to the consequent increase in median survival, and quality of life is becoming an important issue in clinical decision-making. This systematic review focuses on the effects of repeated surgery in awake condition on the quality of life of adults with diffuse glioma through three parameters: return to work, presence of postoperative neurocognitive disorders, and occurrence of epileptic seizures. A systematic review of the last 20 years was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) standards. Summarized data from selected studies were processed quantitatively, using a meta-analysis process, with the Review Manager 5.4 software. Five databases (PubMed, Web of Science, Science Direct, Dimensions, and Embase) were used. Fifteen articles were selected for qualitative analysis and 11 for meta-analysis. One hundred and fifty-one patients (85%) returned to an active socio-professional life after repeated surgery, and 78 (41%) presented neurocognitive disorders in the immediate postoperative period, only 3% (n = 4) of them suffering from permanent disorders. One hundred and forty-nine (78%) participants were free of epileptic seizure after repeated surgery. This systematic review of the literature highlights the benefit of repeated surgery on the quality of life of patients with adult diffuse glioma.
Collapse
Affiliation(s)
| | - Marie Villain
- AP-HP, Service MPR, Pitié-Salpêtrière University Hospital, Paris, France.
- Speech Therapy Department, Sorbonne Université, Paris, France.
- Sorbonne Université, GRC No. 24, Handicap Moteur Et Cognitif & Réadaptation (HaMCRe) AP-HP, Sorbonne Université, 75013, Paris, France.
| | - Peggy Gatignol
- AP-HP, Service MPR, Pitié-Salpêtrière University Hospital, Paris, France
- Speech Therapy Department, Sorbonne Université, Paris, France
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale Et Clinique, Paris, France
| |
Collapse
|
10
|
Zhu QH, Wu JK, Hou GL. Changes and significance of serum ubiquitin carboxyl-terminal hydrolase L1 and glial fibrillary acidic protein in patients with glioma. World J Clin Cases 2023; 11:3158-3166. [PMID: 37274029 PMCID: PMC10237134 DOI: 10.12998/wjcc.v11.i14.3158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/17/2023] [Accepted: 04/06/2023] [Indexed: 05/16/2023] Open
Abstract
BACKGROUND Brain gliomas are malignant tumors with high postoperative recurrence rates. Early prediction of prognosis using specific indicators is of great significance.
AIM To assess changes in ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) and glial fibrillary acidic protein (GFAP) levels in patients with glioma pre-and postoperatively.
METHODS Between June 2018 and June 2021, 91 patients with gliomas who underwent surgery at our hospital were enrolled in the glioma group. Sixty healthy volunteers were included in the control group. Serum UCH-L1 and GFAP levels were measured in peripheral blood collected from patients with glioma before and 3 d after surgery. UCH-L1 and GFAP levels in patients with glioma with different clinicopathological characteristics were compared before and after surgery. The patients were followed-up until February 2022. Postoperative glioma recurrence was recorded to determine the serum UCH-L1 and GFAP levels, which could assist in predicting postoperative glioma recurrence.
RESULTS UCH-L1 and GFAP levels in patients with glioma decreased significantly 3 d after surgery compared to those before therapy (P < 0.05). However, UCH-L1 and GFAP levels in the glioma group were significantly higher than those in the control group before and after surgery (P < 0.05). There were no statistically significant differences in preoperative serum UCH-L1 and GFAP levels among patients with glioma according to sex, age, pathological type, tumor location, or number of lesions (P > 0.05). Serum UCH-L1 and GFAP levels were significantly lower in the patients with WHO grade I-II tumors than in those with grade III-IV tumors (P < 0.05). Serum UCH-L1 and GFAP levels were lower in the patients with tumor diameter ≤ 5 cm than in those with diameter > 5 cm, in which the differences were statistically significant (P < 0.05). Glioma recurred in 22 patients. The preoperative and 3-d postoperative serum UCH-L1 and GFAP levels were significantly higher in the recurrence group than these in the non-recurrence group (P < 0.05). Receiver operating characteristic curves were plotted. The areas under the curves of preoperative serum UCH-L1 and GFAP levels for predicting postoperative glioma recurrence were 0.785 and 0.775, respectively. However, the efficacy of serum UCH-L1 and GFAP levels 3 d after surgery in predicting postoperative glioma recurrence was slightly lower compared with their preoperative levels.
CONCLUSION UCH-L1 and GFAP efficiently reflected the development and recurrence of gliomas and could be used as potential indicators for the recurrence and prognosis of glioma.
Collapse
Affiliation(s)
- Qing-Hua Zhu
- Department of Neurosurgery, Affiliated Hospital of Hebei Engineering University, Handan 056002, Hebei Province, China
| | - Jing-Kun Wu
- Department of Neurosurgery, Affiliated Hospital of Hebei Engineering University, Handan 056002, Hebei Province, China
| | - Gao-Lei Hou
- Department of Neurosurgery, Affiliated Hospital of Hebei Engineering University, Handan 056002, Hebei Province, China
| |
Collapse
|
11
|
Duffau H. Oncological and functional neurosurgery: Perspectives for the decade regarding diffuse gliomas. Rev Neurol (Paris) 2023; 179:437-448. [PMID: 36907710 DOI: 10.1016/j.neurol.2023.01.724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/17/2023] [Accepted: 01/22/2023] [Indexed: 03/12/2023]
Abstract
For decades, diffuse glioma (DG) studies mostly focused on oncological considerations, whereas functional outcomes received less attention. Currently, because overall survival has increased in DG, especially in low-grade glioma (overall survival > 15 years), quality of life including neurocognitive and behavioral aspects should be assessed and preserved more systematically, particularly regarding surgery. Indeed, early maximal tumor removal results in greater survival in both high-grade and low-grade gliomas, leading to propose "supra-marginal" resection, with excision of the peritumoral zone in diffuse neoplasms. To minimize functional risks while maximizing the extent of resection, traditional "tumor-mass resection" is replaced by "connectome-guided resection" conducted under awake mapping, taking into account inter-individual brain anatomo-functional variability. A better understanding of the dynamic interplay between DG progression and reactional neuroplastic mechanisms is critical to adapt a personalized multistage therapeutic strategy, with integration of functional neurooncological (re)operation(s) in a multimodal management scheme including repeated medical therapies. Because the therapeutic armamentarium remains limited, the aims of this paradigmatic shift are to predict one/several step(s) ahead glioma behavior, its modifications, and compensatory neural networks reconfiguration over time in order to optimize the onco-functional benefit of each treatment - either in isolation or in combination with others - in human beings bearing a chronic tumoral disease while enjoying an active familial and socio-professional life as close as possible to their expectations. Thus, new ecological endpoints such as return to work should be incorporated into future DG trials. "Preventive neurooncology" might also be envisioned, by proposing a screening policy to discover and treat incidental glioma earlier.
Collapse
Affiliation(s)
- H Duffau
- Department of Neurosurgery, Montpellier University Medical Center, Gui-de-Chauliac Hospital, 80, avenue Augustin-Fliche, 34295 Montpellier, France; Team "Plasticity of Central Nervous System, Stem Cells and Glial Tumors", National Institute for Health and Medical Research (Inserm), U1191 Laboratory, Institute of Functional Genomics, University of Montpellier, 34091 Montpellier, France.
| |
Collapse
|
12
|
Takami H, Venkatraghavan L, Chowdhury T, Bernstein M. Tolerability of Repeat Awake Craniotomy: A Propensity-Score-Matched Analysis on 607 Consecutive Cases. World Neurosurg 2022; 167:e922-e928. [PMID: 36113715 DOI: 10.1016/j.wneu.2022.08.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 10/31/2022]
Abstract
BACKGROUND Awake craniotomy is used for addressing lesions adjacent to eloquent brain regions to minimize damage to neurological functions, and to expedite postoperative recovery. Redo (i.e., repeat) awake surgery is not common, but always an option, especially for recurrent tumors. This study investigated the tolerability of redo awake surgery in terms of surgical characteristics and postoperative clinical course. METHODS Single-institution cohort study of 607 awake craniotomies by 1 surgeon at Toronto Western Hospital, 2006-2018. RESULTS Out of 607 surgeries, 501 surgeries were first-time, and 106 surgeries were redo. Between the 2 groups, surgery time was longer in redo cases than first-time cases and the rate of reoperation was higher in the former. Matched propensity cohort analysis included 104 cases each, based on adjustments for age, sex, tumor location, malignancy, and preoperative performance status. This revealed differences again in surgery time (128.0 vs. 111.9 minutes, P = 0.0004) and the reoperation rate (7.4 vs. 1.0%, P = 0.03). The causes of reoperation were infection (3 wound infection and 3 brain abscess) and wound dehiscence (n = 1). There was no significant difference in the length of hospital stay, the rates of postoperative hemorrhage, new postoperative neurological deficits, home discharge, or readmission. CONCLUSIONS Although redo surgery might increase the surgery time and the risk of reoperation due to postoperative infection, it was found to be well tolerated in other aspects overall. With extra care to infection and wound healing, redo awake surgery is a viable option to patients with the same surgical indication as for first-time surgery.
Collapse
Affiliation(s)
- Hirokazu Takami
- Division of Neurosurgery, Toronto Western Hospital, Toronto, Ontario, Canada.
| | | | - Tumul Chowdhury
- Department of Anesthesia, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Mark Bernstein
- Division of Neurosurgery, Toronto Western Hospital, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Ribeiro L, Ng S, Duffau H. Recurrent insular low-grade gliomas: factors guiding the decision to reoperate. J Neurosurg 2022; 138:1216-1226. [PMID: 36308479 DOI: 10.3171/2022.9.jns221286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/14/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE
Reoperation has been established as an effective therapeutic strategy in recurrent diffuse low-grade gliomas (LGGs). Insular gliomas represent a specific surgical challenge because of the surrounding vascular and functional structures. The aim of this study was to investigate the main clinicoradiological factors guiding the decision to reoperate on recurrent insular LGGs (ILGGs).
METHODS
In this retrospective consecutive series, the authors screened all patients operated on for an ILGG in their institution who further presented with a tumor regrowth without the development of contrast enhancement. They compared patients who were subsequently offered a reoperation under awake mapping at recurrence or who underwent reoperation after adjuvant treatment had reduced the volume of the initial tumor recurrence (with a proven pathological diagnosis of LGG after the second surgery) to patients who were not selected for a reoperation. The first group (reoperated group; n = 20) included all recurrent ILGG patients who underwent second resection, and the second group (nonreoperated group; n = 60) included patients who did not undergo reoperation but underwent adjuvant oncological treatment.
RESULTS
Factors significantly associated with reoperation were extent of resection (EOR) at first surgery (91.9% vs 89.7%, p = 0.014), residual tumor volume (9.5 ± 7.1 mL [range 0–30 mL] vs 6.3 ± 7.3 mL [range 0–30 mL], p = 0.02) at first surgery and left temporopolar infiltration at the time of tumor recurrence (Liebermeister statistical analysis, 4293 voxels survived false discovery rate correction with p < 0.05; maximal z-statistic = 6.50). Infiltration of the anterior perforated substance at tumor recurrence was significantly anticorrelated to reoperation (179 voxels survived false discovery rate correction with p < 0.05; minimal z-statistic = −4.33). The mean EOR was 83.7% at reoperation with a 90% survival rate at last follow-up (9.3 ± 3.8 years), low postsurgical morbidity (Karnofsky Performance Status score ≥ 80 in 95% of patients), a high rate of postoperative professional resumption (95%), and seizure control in 57.1% of patients.
CONCLUSIONS
In selected patients with recurrent ILGG without radiographic evidence of malignant transformation, reoperation with intraoperative awake mapping is associated with favorable oncological outcomes and a low postsurgical morbidity. A greater EOR and a lower residual tumor volume at first surgery were significantly associated with reoperation. Patients who benefited from a second surgery typically had a recurrent pattern within cortical areas (such as the temporopolar region), while other patients typically presented with a deeper infiltrative pattern within the anterior perforated substance and the surrounding white matter pathways. Such original findings may be helpful to select the optimal indications of reoperation in recurrent ILGG.
Collapse
Affiliation(s)
- Lucas Ribeiro
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier; and
| | - Sam Ng
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier; and
- Team "Plasticity of Central Nervous System, Stem Cells and Glial Tumors," Institute of Functional Genomics, INSERM U1191, University of Montpellier, France
| | - Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier; and
- Team "Plasticity of Central Nervous System, Stem Cells and Glial Tumors," Institute of Functional Genomics, INSERM U1191, University of Montpellier, France
| |
Collapse
|
14
|
Duffau H. A Personalized Longitudinal Strategy in Low-Grade Glioma Patients: Predicting Oncological and Neural Interindividual Variability and Its Changes over Years to Think One Step Ahead. J Pers Med 2022; 12:jpm12101621. [PMID: 36294760 PMCID: PMC9604939 DOI: 10.3390/jpm12101621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/15/2022] [Accepted: 09/22/2022] [Indexed: 11/09/2022] Open
Abstract
Diffuse low-grade glioma (LGG) is a rare cerebral cancer, mostly involving young adults with an active life at diagnosis. If left untreated, LGG widely invades the brain and becomes malignant, generating neurological worsening and ultimately death. Early and repeat treatments for this incurable tumor, including maximal connectome-based surgical resection(s) in awake patients, enable postponement of malignant transformation while preserving quality of life owing to constant neural network reconfiguration. Due to considerable interindividual variability in terms of LGG course and consecutive cerebral reorganization, a multistage longitudinal strategy should be tailored accordingly in each patient. It is crucial to predict how the glioma will progress (changes in growth rate and pattern of migration, genetic mutation, etc.) and how the brain will adapt (changes in patterns of spatiotemporal redistribution, possible functional consequences such as epilepsy or cognitive decline, etc.). The goal is to anticipate therapeutic management, remaining one step ahead in order to select the optimal (re-)treatment(s) (some of them possibly kept in reserve), at the appropriate time(s) in the evolution of this chronic disease, before malignization and clinical worsening. Here, predictive tumoral and non-tumoral factors, and their ever-changing interactions, are reviewed to guide individual decisions in advance based on patient-specific markers, for the treatment of LGG.
Collapse
Affiliation(s)
- Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, 80 Av. Augustin Fliche, 34295 Montpellier, France; ; Tel.: +33-4-67-33-66-12; Fax: +33-4-67-33-69-12
- Team “Plasticity of Central Nervous System, Stem Cells and Glial Tumors”, National Institute for Health and Medical Research (INSERM), U1191 Laboratory, Institute of Functional Genomics, University of Montpellier, 34091 Montpellier, France
| |
Collapse
|
15
|
Duffau H. Repeated Awake Surgical Resection(s) for Recurrent Diffuse Low-Grade Gliomas: Why, When, and How to Reoperate? Front Oncol 2022; 12:947933. [PMID: 35865482 PMCID: PMC9294369 DOI: 10.3389/fonc.2022.947933] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Early maximal surgical resection is the first treatment in diffuse low-grade glioma (DLGG), because the reduction of tumor volume delays malignant transformation and extends survival. Awake surgery with intraoperative mapping and behavioral monitoring enables to preserve quality of life (QoL). However, because of the infiltrative nature of DLGG, relapse is unavoidable, even after (supra)total resection. Therefore, besides chemotherapy and radiotherapy, the question of reoperation(s) is increasingly raised, especially because patients with DLGG usually enjoy a normal life with long-lasting projects. Here, the purpose is to review the literature in the emerging field of iterative surgeries in DLGG. First, long-term follow-up results showed that patients with DLGG who underwent multiple surgeries had an increased survival (above 17 years) with preservation of QoL. Second, the criteria guiding the decision to reoperate and defining the optimal timing are discussed, mainly based on the dynamic intercommunication between the glioma relapse (including its kinetics and pattern of regrowth) and the reactional cerebral reorganization—i.e., mechanisms underpinning reconfiguration within and across neural networks to enable functional compensation. Third, how to adapt medico-surgical strategy to this individual spatiotemporal brain tumor interplay is detailed, by considering the perpetual changes in connectome. These data support early reoperation in recurrent DLGG, before the onset of symptoms and before malignant transformation. Repeat awake resection(s) should be integrated in a global management including (neo)adjuvant medical treatments, to enhance long-lasting functional and oncological outcomes. The prediction of potential and limitation of neuroplasticity at each step of the disease must be improved to anticipate personalized multistage therapeutic attitudes.
Collapse
Affiliation(s)
- Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
- Team “Plasticity of Central Nervous System, Stem Cells and Glial Tumors”, National Institute for Health and Medical Research (INSERM), U1191 Laboratory, Institute of Functional Genomics, University of Montpellier, Montpellier, France
- *Correspondence: Hugues Duffau,
| |
Collapse
|
16
|
Duffau H, Ng S, Lemaitre AL, Moritz-Gasser S, Herbet G. Constant Multi-Tasking With Time Constraint to Preserve Across-Network Dynamics Throughout Awake Surgery for Low-Grade Glioma: A Necessary Step to Enable Patients Resuming an Active Life. Front Oncol 2022; 12:924762. [PMID: 35712489 PMCID: PMC9196728 DOI: 10.3389/fonc.2022.924762] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 12/18/2022] Open
Abstract
Awake surgery for brain gliomas improves resection while minimizing morbidity. Although intraoperative mapping was originally used to preserve motor and language functions, the considerable increase of life expectancy, especially in low-grade glioma, resulted in the need to enhance patients’ long-term quality of life. If the main goal of awake surgery is to resume normal familial and socio-professional activities, preventing hemiparesis and aphasia is not sufficient: cognitive and emotional functions must be considered. To monitor higher-order functions, e.g., executive control, semantics or mentalizing, further tasks were implemented into the operating theater. Beyond this more accurate investigation of function-specific neural networks, a better exploration of the inter-system communication is required. Advances in brain connectomics led to a meta-network perspective of neural processing, which emphasizes the pivotal role of the dynamic interplay between functional circuits to allow complex and flexible, goal-directed behaviors. Constant multi-tasking with time constraint in awake patients may be proposed during intraoperative mapping, since it provides a mirror of the (dys)synchronization within and across neural networks and it improves the sensitivity of behavioral monitoring by increasing cognitive demand throughout the resection. Electrical mapping may hamper the patient to perform several tasks simultaneously whereas he/she is still capable to achieve each task in isolation. Unveiling the meta-network organization during awake mapping by using a more ecological multi-demand testing, more representative of the real-life conditions, constitutes a reliable way to tailor the surgical onco-functional balance based upon the expectations of each patient, enabling him/her to resume an active life with long-lasting projects.
Collapse
Affiliation(s)
- Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France.,Team "Plasticity of Central Nervous System, Stem Cells and Glial Tumors", U1191 Laboratory, Institute of Functional Genomics, National Institute for Health and Medical Research (INSERM), University of Montpellier, Montpellier, France
| | - Sam Ng
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France.,Team "Plasticity of Central Nervous System, Stem Cells and Glial Tumors", U1191 Laboratory, Institute of Functional Genomics, National Institute for Health and Medical Research (INSERM), University of Montpellier, Montpellier, France
| | - Anne-Laure Lemaitre
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France.,Team "Plasticity of Central Nervous System, Stem Cells and Glial Tumors", U1191 Laboratory, Institute of Functional Genomics, National Institute for Health and Medical Research (INSERM), University of Montpellier, Montpellier, France
| | - Sylvie Moritz-Gasser
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France.,Team "Plasticity of Central Nervous System, Stem Cells and Glial Tumors", U1191 Laboratory, Institute of Functional Genomics, National Institute for Health and Medical Research (INSERM), University of Montpellier, Montpellier, France.,Department of Speech-Language Pathology, University of Montpellier, Montpellier, France
| | - Guillaume Herbet
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France.,Team "Plasticity of Central Nervous System, Stem Cells and Glial Tumors", U1191 Laboratory, Institute of Functional Genomics, National Institute for Health and Medical Research (INSERM), University of Montpellier, Montpellier, France.,Department of Speech-Language Pathology, University of Montpellier, Montpellier, France
| |
Collapse
|
17
|
Ng S, Duffau H. Factors Associated With Long-term Survival in Women Who Get Pregnant After Surgery for WHO Grade II Glioma. Neurology 2022; 99:e89-e97. [PMID: 35410899 DOI: 10.1212/wnl.0000000000200523] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 03/01/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Women with a WHO grade II glioma (GIIG) often question clinicians on the effects of pregnancy on their disease. Previous reports have indicated a higher risk of glioma progression during and after pregnancy. Here, the aim was to investigate post-pregnancy outcomes and predictive factors impacting overall survival in female patients who underwent GIIG surgery. METHODS Inclusion criteria were adult women who have been pregnant after a GIIG resection and with a stable oncological status at the time of pregnancy (no ongoing oncological treatment, no contrast enhancement, no debilitating clinical condition). Relevant cases were identified from a databank (1998-2021) of patients who underwent surgical resection for a histologically-confirmed GIIG in our department. RESULTS Among 345 GIIG women within their reproductive years (age<45y), 16 patients (4.6%, mean age at delivery: 30.9±5.1 years) were pregnant (twice in 5 cases). The mean interval between the last oncological treatment (surgery alone in 11 patients while followed by chemotherapy and/or radiotherapy in 5 patients) and pregnancy was 3.5 years (range 0.75-10 years). Two patients experienced seizures during pregnancy. The delivery was vaginal and uneventful in all cases but one (1 caesarean). All children had normal mental and physical development. The glioma behavior changed in 7 patients (43.7%), with an acceleration of the velocity of diameter expansion (VDE) and/or the occurrence of a contrast enhancement during or within the 3 months after pregnancy, resulting in medical treatment and/or reoperation in the early post-partum period in 7 cases. The median clinical follow-up from delivery was 5.3 years (range 1.25-11.6 years). Four other patients received delayed adjuvant therapy for glioma progression. Seven patients (43.7%) died at a median time from delivery of 3.9 years (range 1.25-5.9 years). Overall, the median survival from delivery was 5.75 years. Crucially, patients who underwent a complete surgical resection and patients with stable lesions before pregnancy lived longer (log rank, p=0.046 and p=0.0026, respectively). CONCLUSIONS Tumor residual volume and tumor speed growth are strong predictive factors conditioning post-pregnancy long-term survival in patients with GIIG. Identifying patients at risk is critical to provide relevant counsel to GIIG women with a desire for motherhood.
Collapse
Affiliation(s)
- Sam Ng
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France.,Team "Neuroplasticity, Stem Cells and Low-grade Gliomas," INSERM U1191, Institute of Functional Genomics, University of Montpellier, Montpellier, France
| | - Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France.,Team "Neuroplasticity, Stem Cells and Low-grade Gliomas," INSERM U1191, Institute of Functional Genomics, University of Montpellier, Montpellier, France
| |
Collapse
|