1
|
Lemaire JJ, Chaix R, Dautkulova A, Sontheimer A, Coste J, Marques AR, Wohrer A, Chassain C, Ouachikh O, Ait-Aider O, Fontaine D. An MRI Deep Brain Adult Template With An Advanced Atlas-Based Tool For Diffusion Tensor Imaging Analysis. Sci Data 2024; 11:1189. [PMID: 39487161 PMCID: PMC11530659 DOI: 10.1038/s41597-024-04053-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024] Open
Abstract
Understanding the architecture of the human deep brain is especially challenging because of the complex organization of the nuclei and fascicles that support most sensorimotor and behaviour controls. There are scant dedicated tools to explore and analyse this region. Here we took a transdisciplinary approach to build a new deep-brain MRI architecture atlas drawing on advanced clinical experience of MRI-based deep brain mapping. This new tool comprises a young-male-adult MRI template spatially normalized to the ICBM152, containing T1, inversion-recovery, and diffusion MRI datasets (in vivo acquisition), and an MRI atlas of 118 labelled deep brain structures. It is open-source and gives users high resolution image datasets to describe nuclear-based and axonal architecture, combining pioneering and recent knowledge. It is a useful addition to current 3D atlases and clinical tools.
Collapse
Affiliation(s)
- Jean-Jacques Lemaire
- Université Clermont Auvergne, Clermont Auvergne INP, CHU Clermont-Ferrand, CNRS, Institut Pascal, F-63000, Clermont-Ferrand, France.
| | - Rémi Chaix
- Université Clermont Auvergne, Clermont Auvergne INP, CHU Clermont-Ferrand, CNRS, Institut Pascal, F-63000, Clermont-Ferrand, France
| | - Aigerim Dautkulova
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000, Clermont-Ferrand, France
| | - Anna Sontheimer
- Université Clermont Auvergne, Clermont Auvergne INP, CHU Clermont-Ferrand, CNRS, Institut Pascal, F-63000, Clermont-Ferrand, France
| | - Jérôme Coste
- Université Clermont Auvergne, Clermont Auvergne INP, CHU Clermont-Ferrand, CNRS, Institut Pascal, F-63000, Clermont-Ferrand, France
| | - Ana-Raquel Marques
- Université Clermont Auvergne, Clermont Auvergne INP, CHU Clermont-Ferrand, CNRS, Institut Pascal, F-63000, Clermont-Ferrand, France
| | - Adrien Wohrer
- Université Clermont Auvergne, Clermont Auvergne INP, CHU Clermont-Ferrand, CNRS, Institut Pascal, F-63000, Clermont-Ferrand, France
| | - Carine Chassain
- Université Clermont Auvergne, Clermont Auvergne INP, CHU Clermont-Ferrand, CNRS, Institut Pascal, F-63000, Clermont-Ferrand, France
| | - Omar Ouachikh
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000, Clermont-Ferrand, France
| | - Omar Ait-Aider
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000, Clermont-Ferrand, France
| | - Denys Fontaine
- Université Nice Côte d'Azur, CHU de Nice, F-06103, Nice, Cedex 2, France
| |
Collapse
|
2
|
Okelberry T, Lyons KE, Pahwa R. Updates in essential tremor. Parkinsonism Relat Disord 2024; 122:106086. [PMID: 38538475 DOI: 10.1016/j.parkreldis.2024.106086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 03/02/2024] [Indexed: 05/05/2024]
Abstract
Essential tremor (ET) is one of the most common tremor disorders and can be disabling in its affect on daily activities. There have been major breakthroughs in the treatment of tremor and ET is the subject of important ongoing research. This review will present recent advancements in the epidemiology, genetics, pathophysiology, diagnosis, comorbidities, and imaging of ET. Current and future treatment options in the management of ET will also be reviewed. The need for continued innovation and scientific inquiry to address the unmet needs of persons of ET will be highlighted.
Collapse
Affiliation(s)
- Tyler Okelberry
- University of Kansas Medical Center, 3599 Rainbow Blvd, Kansas City, KS, 66160, USA.
| | - Kelly E Lyons
- University of Kansas Medical Center, 3599 Rainbow Blvd, Kansas City, KS, 66160, USA
| | - Rajesh Pahwa
- University of Kansas Medical Center, 3599 Rainbow Blvd, Kansas City, KS, 66160, USA
| |
Collapse
|
3
|
Tsolaki E, Kashanian A, Chiu K, Bari A, Pouratian N. Connectivity-based segmentation of the thalamic motor region for deep brain stimulation in essential tremor: A comparison of deterministic and probabilistic tractography. Neuroimage Clin 2024; 41:103587. [PMID: 38422832 PMCID: PMC10944185 DOI: 10.1016/j.nicl.2024.103587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
OBJECTIVE Deep brain stimulation (DBS) studies have shown that stimulation of the motor segment of the thalamus based on probabilistic tractography is predictive of improvement in essential tremor (ET). However, probabilistic methods are computationally demanding, requiring the need for alternative tractography methods for use in the clinical setting. The purpose of this study was to compare probabilistic vs deterministic tractography methods for connectivity-based targeting in patients with ET. METHODS Probabilistic and deterministic tractography methods were retrospectively applied to diffusion-weighted data sets in 36 patients with refractory ET. The thalamus and precentral gyrus were selected as regions of interest and fiber tracking was performed between these regions to produce connectivity-based thalamic segmentations, per prior methods. The resultant deterministic target maps were compared with those of thresholded probabilistic maps. The center of gravity (CG) of each connectivity map was determined and the differences in spatial distribution between the tractography methods were characterized. Furthermore, the intersection between the connectivity maps and CGs with the therapeutic volume of tissue activated (VTA) was calculated. A mixed linear model was then used to assess clinical improvement in tremor with volume of overlap. RESULTS Both tractography methods delineated the region of the thalamus with connectivity to the precentral gyrus to be within the posterolateral aspect of the thalamus. The average CG of deterministic maps was more medial-posterior in both the left (3.7 ± 1.3 mm3) and the right (3.5 ± 2.2 mm3) hemispheres when compared to 30 %-thresholded probabilistic maps. Mixed linear model showed that the volume of overlap between CGs of deterministic and probabilistic targeting maps and therapeutic VTAs were significant predictors of clinical improvement. CONCLUSIONS Deterministic tractography can reconstruct DBS thalamic target maps in approximately 5 min comparable to those produced by probabilistic methods that require > 12 h to generate. Despite differences in CG between the methods, both deterministic-based and probabilistic targeting were predictive of clinical improvement in ET.
Collapse
Affiliation(s)
- Evangelia Tsolaki
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| | - Alon Kashanian
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Kevin Chiu
- Brainlab, Inc., 5 Westbrook Corporate Center, Suite 1000, Westchester, IL 60154, USA
| | - Ausaf Bari
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Nader Pouratian
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
4
|
Liu B, Xu J, Feng Z, Hui R, Zhang Y, Liu D, Chang Q, Yu X, Mao Z. One-pass deep brain stimulation of subthalamic nucleus and ventral intermediate nucleus for levodopa-resistant tremor-dominant Parkinson's disease. Front Aging Neurosci 2023; 15:1289183. [PMID: 38187361 PMCID: PMC10768017 DOI: 10.3389/fnagi.2023.1289183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/29/2023] [Indexed: 01/09/2024] Open
Abstract
Objective Tremor-dominant Parkinson's disease (TD-PD) can be further separated into levodopa-responsive and levodopa-resistant types, the latter being considered to have a different pathogenesis. Previous studies indicated that deep brain stimulation (DBS) of the subthalamic nucleus (STN) or the globus pallidus internus (GPi) individually was not sufficient for tremor control, especially for the levodopa-resistant TD-PD (LRTD-PD). The thalamic ventral intermediate nucleus (VIM) has been regarded as a potent DBS target for different kinds of tremors. Therefore, we focused on the LRTD-PD subgroup and performed one-pass combined DBSs of STN and VIM to treat refractory tremors, aiming to investigate the safety and effectiveness of this one-trajectory dual-target DBS scheme. Methods We retrospectively collected five LRTD-PD patients who underwent a one-pass combined DBS of STN and VIM via a trans-frontal approach. The targeting of VIM was achieved by probabilistic tractography. Changes in severity of symptoms (measured by the Unified Parkinson Disease Rating Scale part III, UPDRS-III), levodopa equivalent daily doses (LEDD), and disease-specific quality of life (measured by the 39-item Parkinson's Disease Questionnaire, PDQ-39) were evaluated. Results Three-dimensional reconstruction of electrodes illustrated that all leads were successfully implanted into predefined positions. The mean improvement rates (%) were 53 ± 6.2 (UPDRS-III), 82.6 ± 11.4 (tremor-related items of UPDRS), and 52.1 ± 11.4 (PDQ-39), respectively, with a mean follow-up of 11.4 months. Conclusion One-pass combined DBS of STN and VIM via the trans-frontal approach is an effective and safe strategy to alleviate symptoms for LRTD-PD patients.
Collapse
Affiliation(s)
- Bin Liu
- Medical School of Chinese PLA, Beijing, China
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Junpeng Xu
- Medical School of Chinese PLA, Beijing, China
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhebin Feng
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Rui Hui
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yanyang Zhang
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Di Liu
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Qing Chang
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xinguang Yu
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhiqi Mao
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
5
|
Andrews L, Keller SS, Osman-Farah J, Macerollo A. A structural magnetic resonance imaging review of clinical motor outcomes from deep brain stimulation in movement disorders. Brain Commun 2023; 5:fcad171. [PMID: 37304793 PMCID: PMC10257440 DOI: 10.1093/braincomms/fcad171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 04/05/2023] [Accepted: 05/30/2023] [Indexed: 06/13/2023] Open
Abstract
Patients with movement disorders treated by deep brain stimulation do not always achieve successful therapeutic alleviation of motor symptoms, even in cases where surgery is without complications. Magnetic resonance imaging (MRI) offers methods to investigate structural brain-related factors that may be predictive of clinical motor outcomes. This review aimed to identify features which have been associated with variability in clinical post-operative motor outcomes in patients with Parkinson's disease, dystonia, and essential tremor from structural MRI modalities. We performed a literature search for articles published between 1 January 2000 and 1 April 2022 and identified 5197 articles. Following screening through our inclusion criteria, we identified 60 total studies (39 = Parkinson's disease, 11 = dystonia syndromes and 10 = essential tremor). The review captured a range of structural MRI methods and analysis techniques used to identify factors related to clinical post-operative motor outcomes from deep brain stimulation. Morphometric markers, including volume and cortical thickness were commonly identified in studies focused on patients with Parkinson's disease and dystonia syndromes. Reduced metrics in basal ganglia, sensorimotor and frontal regions showed frequent associations with reduced motor outcomes. Increased structural connectivity to subcortical nuclei, sensorimotor and frontal regions was also associated with greater motor outcomes. In patients with tremor, increased structural connectivity to the cerebellum and cortical motor regions showed high prevalence across studies for greater clinical motor outcomes. In addition, we highlight conceptual issues for studies assessing clinical response with structural MRI and discuss future approaches towards optimizing individualized therapeutic benefits. Although quantitative MRI markers are in their infancy for clinical purposes in movement disorder treatments, structural features obtained from MRI offer the powerful potential to identify candidates who are more likely to benefit from deep brain stimulation and provide insight into the complexity of disorder pathophysiology.
Collapse
Affiliation(s)
- Luke Andrews
- The Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L3 9TA, UK
- Department of Neurology and Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool L97LJ, UK
| | - Simon S Keller
- The Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L3 9TA, UK
| | - Jibril Osman-Farah
- Department of Neurology and Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool L97LJ, UK
| | - Antonella Macerollo
- The Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L3 9TA, UK
- Department of Neurology and Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool L97LJ, UK
| |
Collapse
|
6
|
Holcomb JM, Chopra R, Feltrin FS, Elkurd M, El-Nazer R, McKenzie L, O’Suilleabhain P, Maldjian JA, Dauer W, Shah BR. Improving tremor response to focused ultrasound thalamotomy. Brain Commun 2023; 5:fcad165. [PMID: 37533544 PMCID: PMC10390385 DOI: 10.1093/braincomms/fcad165] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/18/2023] [Accepted: 05/19/2023] [Indexed: 08/04/2023] Open
Abstract
MRI-guided high-intensity focused ultrasound thalamotomy is an incisionless therapy for essential tremor. To reduce adverse effects, the field has migrated to treating at 2 mm above the anterior commissure-posterior commissure plane. We perform MRI-guided high-intensity focused ultrasound with an advanced imaging targeting technique, four-tract tractography. Four-tract tractography uses diffusion tensor imaging to identify the critical white matter targets for tremor control, the decussating and non-decussating dentatorubrothalamic tracts, while the corticospinal tract and medial lemniscus are identified to be avoided. In some patients, four-tract tractography identified a risk of damaging the medial lemniscus or corticospinal tract if treated at 2 mm superior to the anterior commissure-posterior commissure plane. In these patients, we chose to target 1.2-1.5 mm superior to the anterior commissure-posterior commissure plane. In these patients, post-operative imaging revealed that the focused ultrasound lesion extended into the posterior subthalamic area. This study sought to determine if patients with focused ultrasound lesions that extend into the posterior subthalamic area have a differnce in tremor improvement than those without. Twenty essential tremor patients underwent MRI-guided high-intensity focused ultrasound and were retrospectively classified into two groups. Group 1 included patients with an extension of the thalamic-focused ultrasound lesion into the posterior subthalamic area. Group 2 included patients without extension of the thalamic-focused ultrasound lesion into the posterior subthalamic area. For each patient, the percent change in postural tremor, kinetic tremor and Archimedes spiral scores were calculated between baseline and a 3-month follow-up. Two-tailed Wilcoxon rank-sum tests were used to compare the improvement in tremor scores, the total number of sonications, thermal dose to achieve initial tremor response, and skull density ratio between groups. Group 1 had significantly greater postural, kinetic, and Archimedes spiral score percent improvement than Group 2 (P values: 5.41 × 10-5, 4.87 × 10-4, and 5.41 × 10-5, respectively). Group 1 also required significantly fewer total sonications to control the tremor and a significantly lower thermal dose to achieve tremor response (P values: 6.60 × 10-4 and 1.08 × 10-5, respectively). No significant group differences in skull density ratio were observed (P = 1.0). We do not advocate directly targeting the posterior subthalamic area with MRI-guided high-intensity focused ultrasound because the shape of the focused ultrasound lesion can result in a high risk of adverse effects. However, when focused ultrasound lesions naturally extend from the thalamus into the posterior subthalamic area, they provide greater tremor control than those that only involve the thalamus.
Collapse
Affiliation(s)
- James M Holcomb
- Focused Ultrasound Lab and Program, Department of Radiology, UTSW Medical Center, Dallas, TX 75235, USA
| | - Rajiv Chopra
- Focused Ultrasound Lab and Program, Department of Radiology, UTSW Medical Center, Dallas, TX 75235, USA
| | - Fabricio S Feltrin
- Focused Ultrasound Lab and Program, Department of Radiology, UTSW Medical Center, Dallas, TX 75235, USA
| | - Mazen Elkurd
- Department of Neurology, UTSW Medical Center, Dallas, TX 75235, USA
| | - Rasheda El-Nazer
- Department of Neurology, UTSW Medical Center, Dallas, TX 75235, USA
| | - Lauren McKenzie
- Focused Ultrasound Lab and Program, Department of Radiology, UTSW Medical Center, Dallas, TX 75235, USA
| | | | - Joseph A Maldjian
- Focused Ultrasound Lab and Program, Department of Radiology, UTSW Medical Center, Dallas, TX 75235, USA
| | - William Dauer
- Department of Neurology, UTSW Medical Center, Dallas, TX 75235, USA
- O’Donnell Brain Institute, UTSW Medical Center, Dallas, TX 75235, USA
| | - Bhavya R Shah
- Correspondence to: Bhavya R. Shah Department of Radiology, UTSW Medical Center, 1801 Inwood Rd Dallas, TX 75235, USA E-mail:
| |
Collapse
|
7
|
Feltrin FS, Chopra R, Pouratian N, Elkurd M, El-Nazer R, Lanford L, Dauer W, Shah BR. Focused ultrasound using a novel targeting method four-tract tractography for magnetic resonance-guided high-intensity focused ultrasound targeting. Brain Commun 2022; 4:fcac273. [PMID: 36751499 PMCID: PMC9897190 DOI: 10.1093/braincomms/fcac273] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/03/2022] [Accepted: 10/21/2022] [Indexed: 11/13/2022] Open
Abstract
Magnetic resonance-guided high-intensity focused ultrasound thalamotomy is a Food and Drug Administration-approved treatment for essential tremor. The target, the ventral intermediate nucleus of the thalamus, is not visualized on standard, anatomic MRI sequences. Several recent reports have used diffusion tensor imaging to target the dentato-rubro-thalamic-tract. There is considerable variability in fibre tracking algorithms and what fibres are tracked. Targeting discrete white matter tracts with magnetic resonance-guided high-intensity focused ultrasound is an emerging precision medicine technique that has the promise to improve patient outcomes and reduce treatment times. We provide a technical overview and clinical benefits of our novel, easily implemented advanced tractography method: four-tract tractography. Our method is novel because it targets both the decussating and non-decussating dentato-rubro-thalamic-tracts while avoiding the medial lemniscus and corticospinal tracts. Our method utilizes Food and Drug Administration-approved software and is easily implementable into existing workflows. Initial experience using this approach suggests that it improves patient outcomes by reducing the incidence of adverse effects.
Collapse
Affiliation(s)
- Fabricio S Feltrin
- Focused Ultrasound Lab and Program, Department of Radiology, UTSW Medical Center, Dallas, TX 75235, USA
| | - Rajiv Chopra
- Focused Ultrasound Lab and Program, Department of Radiology, UTSW Medical Center, Dallas, TX 75235, USA
| | - Nader Pouratian
- Department of Neurological Surgery, UTSW Medical Center, Dallas, TX 75235, USA,O’Donnell Brain Institute, UTSW Medical Center, Dallas, TX 75235, USA
| | - Mazen Elkurd
- O’Donnell Brain Institute, UTSW Medical Center, Dallas, TX 75235, USA,Department of Neurology, UTSW Medical Center, Dallas, TX 75235, USA
| | - Rasheda El-Nazer
- O’Donnell Brain Institute, UTSW Medical Center, Dallas, TX 75235, USA,Department of Neurology, UTSW Medical Center, Dallas, TX 75235, USA
| | - Lauren Lanford
- Focused Ultrasound Lab and Program, Department of Radiology, UTSW Medical Center, Dallas, TX 75235, USA
| | - William Dauer
- O’Donnell Brain Institute, UTSW Medical Center, Dallas, TX 75235, USA,Department of Neurology, UTSW Medical Center, Dallas, TX 75235, USA
| | - Bhavya R Shah
- Correspondence to: Bhavya R. Shah UTSW Medical Center 1801 Inwood Rd, Dallas, TX 75235, USA E-mail:
| |
Collapse
|
8
|
Hitti FL, Parker D, Yang AI, Brem S, Verma R. Laterality and Sex Differences of Human Lateral Habenula Afferent and Efferent Fiber Tracts. Front Neurosci 2022; 16:837624. [PMID: 35784832 PMCID: PMC9243380 DOI: 10.3389/fnins.2022.837624] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/27/2022] [Indexed: 11/26/2022] Open
Abstract
Introduction The lateral habenula (LHb) is an epithalamic nucleus associated with negative valence and affective disorders. It receives input via the stria medullaris (SM) and sends output via the fasciculus retroflexus (FR). Here, we use tractography to reconstruct and characterize this pathway. Methods Multi-shell human diffusion magnetic resonance imaging (dMRI) data was obtained from the human connectome project (HCP) (n = 20, 10 males) and from healthy controls (n = 10, 6 males) scanned at our institution. We generated LHb afferents and efferents using probabilistic tractography by selecting the pallidum as the seed region and the ventral tegmental area as the output target. Results We were able to reconstruct the intended streamlines in all individuals from the HCP dataset and our dataset. Our technique also aided in identification of the LHb. In right-handed individuals, the streamlines were significantly more numerous in the left hemisphere (mean ratio 1.59 ± 0.09, p = 0.04). In left-handed individuals, there was no hemispheric asymmetry on average (mean ratio 1.00 ± 0.09, p = 1.0). Additionally, these streamlines were significantly more numerous in females than in males (619.9 ± 159.7 vs. 225.9 ± 66.03, p = 0.04). Conclusion We developed a method to reconstruct the SM and FR without manual identification of the LHb. This technique enables targeting of these fiber tracts as well as the LHb. Furthermore, we have demonstrated that there are sex and hemispheric differences in streamline number. These findings may have therapeutic implications and warrant further investigation.
Collapse
Affiliation(s)
- Frederick L. Hitti
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, United States
- *Correspondence: Frederick L. Hitti,
| | - Drew Parker
- Diffusion and Connectomics in Precision Healthcare Research Lab, Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Andrew I. Yang
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, United States
| | - Steven Brem
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, United States
| | - Ragini Verma
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, United States
- Diffusion and Connectomics in Precision Healthcare Research Lab, Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|