1
|
Szatmary Z, Mounier J, Janot K, Cortese J, Couquet C, Chaubet F, Kadirvel R, Bardet SM, Mounayer C, Rouchaud A. Bioactive refinement for endosaccular treatment of intracranial aneurysms. Neuroradiol J 2021; 34:534-541. [PMID: 34210195 DOI: 10.1177/19714009211024631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Endovascular treatment is the first-line therapy for most intracranial aneurysms; however, recanalisation remains a major limitation. Developments in bioengineering and material science have led to a novel generation of coil technologies for aneurysm embolisation that address clinical challenges of aneurysm recurrence. This review presents an overview of modified surface coil technologies and summarises the state of the art regarding their efficacy and limitations based on experimental and clinical results. We also present potential perspectives to develop biologically optimised devices.
Collapse
Affiliation(s)
- Zoltan Szatmary
- Department of Radiology, Dupuytren Hospital, Limoges University, France
- XLIM UMR CNRS No. 7252, Limoges University, France
| | | | - Kevin Janot
- XLIM UMR CNRS No. 7252, Limoges University, France
- Regional University Hospital Center Tours, Radiology, Diagnostic and Interventional Neuroradiology, France
| | - Jonathan Cortese
- XLIM UMR CNRS No. 7252, Limoges University, France
- Bicêtre Hospital, Interventionnel Neuroradiology, Paris, France
| | | | - Frédéric Chaubet
- Laboratory for Vascular Translational Science, UMRS 1148, INSERM, Université de Paris, France
- Université Sorbonne Paris Nord- Campus de Bobigny, France
| | | | | | - Charbel Mounayer
- Department of Radiology, Dupuytren Hospital, Limoges University, France
- XLIM UMR CNRS No. 7252, Limoges University, France
| | - Aymeric Rouchaud
- Department of Radiology, Dupuytren Hospital, Limoges University, France
- XLIM UMR CNRS No. 7252, Limoges University, France
| |
Collapse
|
2
|
Intra-aneurysmal embolization of cellulose porous beads to regenerate vessel wall: an experimental study. Neuroradiology 2020; 62:1169-1175. [PMID: 32358660 DOI: 10.1007/s00234-020-02440-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/16/2020] [Indexed: 10/24/2022]
Abstract
PURPOSE Although the treatment of intracranial cerebral aneurysms with detachable coils is now widely accepted, the problem of coil compaction and recanalization remains unsolved. If the vessel wall can be regenerated at the neck orifice of an aneurysm, thereby reducing the blood flow into the aneurysm, the recurrence rate of the aneurysm would decrease. Accordingly, we aimed to insert cellulose porous beads (CPBs) into rat models of external carotid artery (ECA) aneurysm and study their efficacy in promoting vessel wall regeneration. METHODS Using a rat aneurysm model, we examined the tissue response to CPBs that were inserted into the ligated ECA sac of rats. The sacs were removed on days 14, 42, 84, and 180 after insertion and subjected to conventional and immunohistochemical examination. We evaluated the tissue response in the ECA sacs and observed the vessel wall regeneration progress. RESULTS At the neck orifice of the aneurysm in which the CPB was inserted, a layer of regenerating α-smooth muscle actin-positive spindle cells was observed on day 14. The regenerative cell layer gradually thickened until day 42 and, thereafter, the thickness remained unchanged until day 180. A monolayer of factor VIII-positive cells also appeared at the neck orifice on day 14 and covered the entire orifice until day 180. The CPBs were stably localized in the sac without degradation or signs of inflammation. CONCLUSION CPBs may be promising as embolic materials that can induce stable vessel wall regeneration at the neck orifice of an aneurysm without surrounding inflammatory reactions.
Collapse
|
3
|
Arai D, Ishii A, Ikeda H, Abekura Y, Nishi H, Miyamoto S, Tabata Y. Development of a stent capable of the controlled release of basic fibroblast growth factor and argatroban to treat cerebral aneurysms: In vitro experiment and evaluation in a rabbit aneurysm model. J Biomed Mater Res B Appl Biomater 2019; 107:2185-2194. [PMID: 30653829 DOI: 10.1002/jbm.b.34314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 12/14/2018] [Accepted: 12/23/2018] [Indexed: 11/09/2022]
Abstract
An ideal stent to treat cerebral aneurysms should have an antithrombotic effect on the inner stent blood-facing side and a tissue organization effect on the outer aneurysmal side of the stent. The objective of this study is to evaluate the feasibility of a drug containing stent in the in vivo treatment of cerebral aneurysms. Argatroban, an antithrombotic drug, is encapsulated in biodegradable poly (d,l-lactide-co-glycolide) (PLGA) microspheres for the controlled release with an in vitro study conducted to evaluate the drug release and anticoagulation behavior of released drug. Basic fibroblast growth factor (bFGF), an organization drug, is released from gelatin hydrogels. The stents are coated with gelatin hydrogels incorporating bFGF and PLGA microspheres containing argatroban, and applied to the carotid artery aneurysm of an elastase-induced rabbit model. Most of the aneurysm cavity is occupied by loose connective tissues in the group treated with drug-coated stents, whereas extensive massive hematomas are observed in the group treated with drug-free stents. The occurrence rate of in-stent thrombus is small in the drug-coated stents. The stent incorporating bFGF and PLGA microspheres containing argatroban is an effective device for cerebral aneurysm treatment. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 2185-2194, 2019.
Collapse
Affiliation(s)
- Daisuke Arai
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Laboratory of Biomaterials, Institution for Frontier Life and Medicine Sciences, Kyoto University, Kyoto, Japan
| | - Akira Ishii
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroyuki Ikeda
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yu Abekura
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hidehisa Nishi
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Institution for Frontier Life and Medicine Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
4
|
Strobel HA, Qendro EI, Alsberg E, Rolle MW. Targeted Delivery of Bioactive Molecules for Vascular Intervention and Tissue Engineering. Front Pharmacol 2018; 9:1329. [PMID: 30519186 PMCID: PMC6259603 DOI: 10.3389/fphar.2018.01329] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 10/29/2018] [Indexed: 01/25/2023] Open
Abstract
Cardiovascular diseases are the leading cause of death in the United States. Treatment often requires surgical interventions to re-open occluded vessels, bypass severe occlusions, or stabilize aneurysms. Despite the short-term success of such interventions, many ultimately fail due to thrombosis or restenosis (following stent placement), or incomplete healing (such as after aneurysm coil placement). Bioactive molecules capable of modulating host tissue responses and preventing these complications have been identified, but systemic delivery is often harmful or ineffective. This review discusses the use of localized bioactive molecule delivery methods to enhance the long-term success of vascular interventions, such as drug-eluting stents and aneurysm coils, as well as nanoparticles for targeted molecule delivery. Vascular grafts in particular have poor patency in small diameter, high flow applications, such as coronary artery bypass grafting (CABG). Grafts fabricated from a variety of approaches may benefit from bioactive molecule incorporation to improve patency. Tissue engineering is an especially promising approach for vascular graft fabrication that may be conducive to incorporation of drugs or growth factors. Overall, localized and targeted delivery of bioactive molecules has shown promise for improving the outcomes of vascular interventions, with technologies such as drug-eluting stents showing excellent clinical success. However, many targeted vascular drug delivery systems have yet to reach the clinic. There is still a need to better optimize bioactive molecule release kinetics and identify synergistic biomolecule combinations before the clinical impact of these technologies can be realized.
Collapse
Affiliation(s)
- Hannah A. Strobel
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, United States
| | - Elisabet I. Qendro
- Graduate School of Biomedical Sciences, University of Massachusetts Medical School, Worcester, MA, United States
| | - Eben Alsberg
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Marsha W. Rolle
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, United States
| |
Collapse
|
5
|
Hoh BL, Fazal HZ, Hourani S, Li M, Lin L, Hosaka K. Temporal cascade of inflammatory cytokines and cell-type populations in monocyte chemotactic protein-1 (MCP-1)-mediated aneurysm healing. J Neurointerv Surg 2017; 10:301-305. [PMID: 28450456 DOI: 10.1136/neurintsurg-2017-013063] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 03/17/2017] [Accepted: 03/25/2017] [Indexed: 02/01/2023]
Abstract
BACKGROUND We have previously shown that monocyte chemotactic protein-1 (MCP-1) promotes aneurysm healing. OBJECTIVE To determine the temporal cascade and durability of aneurysm healing. METHODS Murine carotid aneurysms were treated with MCP-1-releasing or poly(lactic-co-glycolic) acid (PLGA)-only coils. Aneurysm healing was assessed by quantitative measurements of intraluminal tissue ingrowth on 5 μm sections by blinded observers. RESULTS Aneurysm healing occurred in stages characteristic of normal wound healing. The 1st stage (day 3) was characterized by a spike in neutrophils and T cells. The 2nd stage (week 1) was characterized by an influx of macrophages and CD45+ cells significantly greater with MCP-1 than with PLGA (p<0.05). The third stage (week 2-3) was characterized by proliferation of smooth muscle cells and fibroblasts (greater with MCP-1 than with PLGA, p<0.05). The fourth stage (3-6 months) was characterized by leveling off of smooth muscle cells and fibroblasts. M1 macrophages were greater at week 1, whereas M2 macrophages were greater at weeks 2 and 3 with MCP-1 than with PLGA. Interleukin 6 was present early and increased through week 2 (p<0.05 compared with PLGA) then decreased and leveled off through 6 months. Tumour necrosis factor α was present early and remained constant through 6 months. MCP-1 and PLGA treatment had similar rates of tissue ingrowth at early time points, but MCP-1 had a significantly greater tissue ingrowth at week 3 (p<0.05), which persisted for 6 months. CONCLUSIONS The sequential cascade is consistent with an inflammatory model of injury, repair, and remodeling.
Collapse
Affiliation(s)
- Brian L Hoh
- Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Hanain Z Fazal
- Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Siham Hourani
- Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Mengchen Li
- Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Li Lin
- Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Koji Hosaka
- Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
6
|
Wang Q, Gao Y, Sun X, Ji B, Cui X, Liu Y, Zheng T, Chen C, Jiang X, Zhu A, Quan D. Acceleration of aneurysm healing by P(DLLA-co-TMC)-coated coils enabling the controlled release of vascular endothelial growth factor. Biomed Mater 2014; 9:045004. [PMID: 24945939 DOI: 10.1088/1748-6041/9/4/045004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Since the introduction of the detachable coil in endovascular treatment of intracranial aneurysms, the in-hospital mortality rate has been significantly decreased. Recurrence of the aneurysm remains the major drawback of using detachable coils. We prepared a bioactive coil coated with poly(d,l-lactide)-7co-(1,3-trimethylene carbonate) (P(DLLA-co-TMC)), a novel copolymer for controlling the release of vascular endothelial growth factor (VEGF). Platinum coils were prepared by successive coating with cationic P(DLLA-co-TMC) and anionic heparin. Then, recombinant human VEGF-165 (rhVEGF) was immobilized by affinity binding to heparin. The morphological characteristics and sustained in vitro release of rhVEGF were examined using scanning electron microscopy and enzyme-linked immunosorbent assay, respectively. The efficacy of these novel coils modified by P(DLLA-co-TMC)/rhVEGF was tested using a common carotid artery aneurysm model in rats. Experimental aneurysms were embolized with unmodified, P(DLLA-co-TMC)/heparin-coated or P(DLLA-co-TMC)/rhVEGF-coated platinum coils (n = 18). The coils were removed on days 15, 30 and 90 after insertion, and the histological and immunohistochemical analysis of factor VIII was performed to confirm the presence of endothelial cells in the organized area. In addition, the controlled in vivo release of VEGF was confirmed by Western blotting analysis. The release of VEGF tended to increase during the whole period and no burst release was observed. In the group treated with P(DLLA-co-TMC)/rhVEGF-coated platinum coils, clot organization and endothelial cell proliferation were accelerated. The immunohistochemistry study showed that the expression of factor VIII was found in the P(DLLA-co-TMC)/rhVEGF-coated coil group but not in the other two groups. Furthermore, Western blotting analysis confirmed that the major released VEGF in the aneurysm sac was from the P(DLLA-co-TMC)/VEGF-coated coil. P(DLLA-co-TMC)/rhVEGF-coated platinum coils can promote clot organization and endothelial cell proliferation in a rat aneurysm model.
Collapse
Affiliation(s)
- Qiujing Wang
- Department of Neurosurgery, Zhujiang Hospital, The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical University, Guangzhou 510282, Guangdong Province, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Hamada K, Miura Y, Toma N, Miyamoto K, Imanaka-Yoshida K, Matsushima S, Yoshida T, Taki W, Suzuki H. Gellan sulfate core platinum coil with tenascin-C promotes intra-aneurysmal organization in rats. Transl Stroke Res 2014; 5:595-603. [PMID: 24939607 DOI: 10.1007/s12975-014-0352-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 05/11/2014] [Accepted: 06/04/2014] [Indexed: 10/25/2022]
Abstract
The aims of this study were to develop a new coil, gellan sulfate core platinum coil (GSCC), that delivers tenascin-C (TNC) to an aneurysm (GSCC-TNC) and to evaluate the effects on intra-aneurysmal organization. We performed in vitro adsorption tests of TNC to gellan sulfate (GS). GSCC-TNC was produced by immersing GSCC in TNC solution under the following conditions (TNC concentration 10, 50, or 100 μg/mL; TNC immersion time 15, 30, or 60 min) by monitoring intra-aneurysmal organization in a rat blind-ended aneurysm model. In addition, 20 rats randomly underwent implantation of a platinum coil or the GSCC-TNC produced under optimum conditions into an aneurysm, whose organization effects were compared in a blind fashion at 2 weeks post-surgery. GS demonstrated a high affinity to TNC in a dose-dependent fashion (affinity constant = 1.79 × 10(10) (M(-1))). GSCC immersed in 10 μg/mL of TNC solution for 30 and 60 min induced similar and better organization of aneurysmal cavity compared with that for 15 min (the ratio of the organized areas in an aneurysmal cavity-15 min, 27.2 ± 11.8 %; 30 min, 75.6 ± 11.9 %; 60 min, 82.6 ± 19.7 %, respectively) with the preservation of the aneurysmal wall structure, while higher TNC concentrations caused the destruction of the aneurysmal wall. GSCC-TNC produced under 10 μg/mL of TNC solution for 30 min showed a significantly better organization of aneurysms compared with bare platinum coils in rats. A newly developed coil, GSCC-TNC, may be effective for improving intra-aneurysmal organization after coil embolization.
Collapse
Affiliation(s)
- Kazuhide Hamada
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Kodama T, Iwata H. Comparison of bare metal and statin-coated coils on rates of intra-aneurysmal tissue organization in a rat model of aneurysm. J Biomed Mater Res B Appl Biomater 2013; 101:656-62. [PMID: 23359484 DOI: 10.1002/jbm.b.32869] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 06/23/2012] [Accepted: 11/18/2012] [Indexed: 11/10/2022]
Abstract
Endovascular treatment of intracranial aneurysms with detachable coils has been accepted widely. Problems of coil compaction, recanalization and rare endothelialization at the aneurysm orifice are not yet solved. We investigated the efficacy of a simvastatin coating applied without any additional matrix to coils to accelerate thrombus organization in the cavity in a rat model of aneurysm. Twelve metal coils coated with simvastatin and 12 bare coils were inserted into the ligated external carotid arterial (ECA) sacs of rats. The ECA sacs were removed 2 or 4 weeks after the coils were implanted and examined by histology and immunohistochemical assay. The organized areas in the ECA sacs in the simvastatin group (73.6 ± 19.4%, 2 wk; 83.4 ± 11.1%, 4 wk) was significantly higher p = 0.003, 2 wk; p = 0.0004, 4 wk than the bare metal group at 2 and 4 weeks (20.5 ± 10.7%, 2 wk, p < 0.003; 37.4 ± 20.6%, 4 wk, p < 0.0004). Organized tissues that formed around the coils coated with simvastatin were characterized by an accumulation of cells positive for αSMA and collagen connective matrix. Tissues also were accompanied by marked formation of endothelium at the orifice of the ECA sac. We suggest that coating coils with simvastatin effectively accelerated organization within the aneurysms and endothelialization over the coil.
Collapse
Affiliation(s)
- Tomonobu Kodama
- Department of Reparative Materials, Institute for Frontier Medical Sciences, Kyoto University, Kyoto-city, Kyoto, Japan
| | | |
Collapse
|