1
|
Felisaz PF, Belatti E, Deligianni X, Bergsland N, Santini F, Paoletti M, Solazzo F, Germani G, Cortese A, Vegezzi E, Bieri O, Bastianello S, Pichiecchio A. Variable echo time imaging for detecting the short T2* components of the sciatic nerve: a validation study. MAGMA (NEW YORK, N.Y.) 2021; 34:411-419. [PMID: 32964300 PMCID: PMC8154754 DOI: 10.1007/s10334-020-00886-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/27/2020] [Accepted: 09/01/2020] [Indexed: 12/02/2022]
Abstract
OBJECTIVE The aim of this study was to develop and validate an MRI protocol based on a variable echo time (vTE) sensitive to the short T2* components of the sciatic nerve. MATERIALS AND METHODS 15 healthy subjects (M/F: 9/6; age: 21-62) were scanned at 3T targeting the sciatic nerve at the thigh bilaterally, using a dual echo variable echo time (vTE) sequence (based on a spoiled gradient echo acquisition) with echo times of 0.98/5.37 ms. Apparent T2* (aT2*) values of the sciatic nerves were calculated with a mono-exponential fit and used for data comparison. RESULTS There were no significant differences in aT2* related to side, sex, age, and BMI, even though small differences for side were reported. Good-to-excellent repeatability and reproducibility were found for geometry of ROIs (Dice indices: intra-rater 0.68-0.7; inter-rater 0.70-0.72) and the related aT2* measures (intra-inter reader ICC 0.95-0.97; 0.66-0.85) from two different operators. Side-related signal-to-noise-ratio non-significant differences were reported, while contrast-to-noise-ratio measures were excellent both for side and echo. DISCUSSION Our study introduces a novel MR sequence sensitive to the short T2* components of the sciatic nerve and may be used for the study of peripheral nerve disorders.
Collapse
Affiliation(s)
- Paolo Florent Felisaz
- Department of Neuroradiology, IRCCS Mondino Foundation, Pavia, Italy
- Department of Radiology, Desio Hospital, ASST Monza, Desio, Italy
| | - Eugenio Belatti
- Department of Neuroradiology, IRCCS Mondino Foundation, Pavia, Italy
| | - Xeni Deligianni
- Department of Radiology, Division of Radiological Physics, University Hospital Basel, Basel, Switzerland.
- Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland.
| | - Niels Bergsland
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
- IRCCS, Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Francesco Santini
- Department of Radiology, Division of Radiological Physics, University Hospital Basel, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Matteo Paoletti
- Department of Neuroradiology, IRCCS Mondino Foundation, Pavia, Italy
| | - Francesca Solazzo
- Department of Neuroradiology, IRCCS Mondino Foundation, Pavia, Italy
| | - Giancarlo Germani
- Department of Neuroradiology, IRCCS Mondino Foundation, Pavia, Italy
| | - Andrea Cortese
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, PV, Italy
- Department for Neuromuscular Disease, UCL Queen Square Institute of Neurology and The National Hospital for Neurology, London, UK
| | - Elisa Vegezzi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, PV, Italy
| | - Oliver Bieri
- Department of Radiology, Division of Radiological Physics, University Hospital Basel, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Stefano Bastianello
- Department of Neuroradiology, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, PV, Italy
| | - Anna Pichiecchio
- Department of Neuroradiology, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, PV, Italy
| |
Collapse
|
2
|
Anthropometric Factors on Safe Distances between Popliteal Vessels to the Femur for Cerclage Wiring of the Distal Femoral Fracture: A Magnetic Resonance Imaging Study. ACTA ACUST UNITED AC 2020; 56:medicina56120655. [PMID: 33260736 PMCID: PMC7761162 DOI: 10.3390/medicina56120655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/16/2020] [Accepted: 11/26/2020] [Indexed: 11/23/2022]
Abstract
Background and Objectives: The proximity of the popliteal vessels in the distal femur may increase the risk of iatrogenic vascular injury during cerclage wiring. In this study, the closest location and distance of the popliteal vessels to the femur was examined using magnetic resonance imaging (MRI). The associations between anthropometric factors and the distance that would guide the placement of wires safely during surgery were also identified. Materials and Methods: We reviewed adult knee magnetic resonance images and recorded: (1) the relation and the shortest horizontal distance (d-H) from the femoral cortex to the popliteal vessels in axial images and (2) the vertical distance (d-V) from the adductor tubercle to the axial level of the d-H values in coronal images. The effects of anthropometric factors (sex, age, body height, body weight, body mass index, thigh circumference, femoral length and femoral width) on these distances were analysed. Results: Analysis of 206 knee magnetic resonance images revealed that the closet locations of popliteal vessels were at the posteromedial aspect of the femur. The d-H and d-V were 7.38 ± 3.22 mm and 57.01 ± 11.14 mm, respectively, and were both shorter in women than in men (p < 0.001). Multivariate analysis identified thigh circumference and femoral length as the most influential factors for the d-H and d-V, respectively (p < 0.001). Linear regression demonstrated a strong positive linear correlation between the thigh circumference and the d-H and between the femoral length and the d-V (Pearson’s r = 0.891 and 0.806, respectively (p < 0.001)). Conclusions: The closet location and distance of the popliteal vessels to the femur provide useful information for wire placement during distal femoral fracture surgery while minimising the risk of vascular injury. Given that patients with a smaller thigh circumference and a shorter femoral length are more likely to have a smaller d-H and a shorter d-V, respectively, cautious measures should be taken in such cases.
Collapse
|