1
|
Iacoban CG, Ramaglia A, Severino M, Tortora D, Resaz M, Parodi C, Piccardo A, Rossi A. Advanced imaging techniques and non-invasive biomarkers in pediatric brain tumors: state of the art. Neuroradiology 2024; 66:2093-2116. [PMID: 39382639 DOI: 10.1007/s00234-024-03476-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024]
Abstract
In the pediatric age group, brain neoplasms are the second most common tumor category after leukemia, with an annual incidence of 6.13 per 100,000. Conventional MRI sequences, complemented by CT whenever necessary, are fundamental for the initial diagnosis and surgical planning as well as for post-operative evaluations, assessment of response to treatment, and surveillance; however, they have limitations, especially concerning histopathologic or biomolecular phenotyping and grading. In recent years, several advanced MRI sequences, including diffusion-weighted imaging, diffusion tensor imaging, arterial spin labelling (ASL) perfusion, and MR spectroscopy, have emerged as a powerful aid to diagnosis as well as prognostication; furthermore, other techniques such as diffusion kurtosis, amide proton transfer imaging, and MR elastography are being translated from the research environment to clinical practice. Molecular imaging, especially PET with amino-acid tracers, complement MRI in several aspects, including biopsy targeting and outcome prediction. Finally, radiomics with radiogenomics are opening entirely new perspectives for a quantitative approach aiming at identifying biomarkers that can be used for personalized, precision management strategies.
Collapse
Affiliation(s)
| | - Antonia Ramaglia
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147, Genoa, Italy
| | - Mariasavina Severino
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147, Genoa, Italy
| | - Domenico Tortora
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147, Genoa, Italy
| | - Martina Resaz
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147, Genoa, Italy
| | - Costanza Parodi
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147, Genoa, Italy
| | - Arnoldo Piccardo
- Department of Nuclear Medicine, E.O. Ospedali Galliera, Genoa, Italy
| | - Andrea Rossi
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147, Genoa, Italy.
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy.
| |
Collapse
|
2
|
Silva RPDS, Monteiro LN, Dias LDS, Haddad JOD, Souza VBD, Oliveira VFLD, Fernandes AS, Olivera MFD, Rotta JM. Role of Neural Plasticity of Motor Cortex in Gliomas Evaluated by Brain Imaging and Mapping Techniques in Pre- and Postoperative Period: A Systematic Review. J Neurol Surg A Cent Eur Neurosurg 2024; 85:396-404. [PMID: 36808404 DOI: 10.1055/a-2037-5993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
BACKGROUND Resection of infiltrative neuroepithelial primary brain tumors, such as low-grade gliomas (LGGs) remains a neurosurgical challenge. Usual lack of clinical deficit despite LGGs growing in eloquent brain areas may be explained by reshaping and reorganization of functional networks. The development of modern diagnostic imaging techniques could disclose better understanding of the rearrangement of the brain cortex; however, mechanisms underlying such compensation and how it occurs in the motor cortex remain unclear. This systematic review aims to analyze the neuroplasticity of motor cortex in patients with LGGs, as determined by neuroimaging and functional techniques. METHODS Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, medical subject headings (MeSH) and the following terms related to neuroimaging, LGGs and neuroplasticity were used with the Boolean operators AND and OR to synonymous terms in the PubMed database. Among the 118 results, 19 studies were included in the systematic review. RESULTS Motor function in patients with LGG was characterized by a compensation in the contralateral and supplementary motor areas and premotor functional networks. Furthermore, ipsilateral activation in these types of gliomas was rarely described. Moreover, some studies did not reveal statistical significance in association between functional reorganization and the postoperative period, which can be explained by the low number of patients. CONCLUSION Our findings suggest a high pattern of reorganization per different eloquent motor areas and gliomas diagnosis. Understanding this process is useful to guide safe surgical resection and to develop protocols that assess the plasticity, even though functional network rearrangement needs to be better characterized by more studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jose Marcus Rotta
- Neurosurgery Department, Hospital do Servidor Público Estadual de São Paulo, Brazil
| |
Collapse
|
3
|
Hanihara M, Kawataki T, Kazama H, Ogiwara M, Yoshioka H, Kinouchi H. Maximal Resection of Gliomas Adjacent to the Corticospinal Tract Using 3-T Intraoperative Magnetic Resonance Imaging. World Neurosurg 2024; 185:e1207-e1215. [PMID: 38519017 DOI: 10.1016/j.wneu.2024.03.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 03/24/2024]
Abstract
BACKGROUND Gliomas adjacent to the corticospinal tract (CST) should be carefully resected to preserve motor function while achieving maximal surgical resection. Modern high-field intraoperative magnetic resonance imaging (iMRI) enables precise visualization of the residual tumor and intraoperative tractography. We prospectively evaluated the extent of resection and distance between the tumor resection cavity and CST using 3-T iMRI combined with motor evoked potentials (MEP) in glioma surgery. METHODS Participants comprised patients who underwent surgery for solitary supratentorial glioma located within 10 mm of the CST. All cases underwent surgery using neuronavigation with overlaid CST under MEP monitoring. The correlation between distance from CST and transcortical MEP amplitude was calculated using Spearman rank correlation. RESULTS Among the 63 patients who underwent surgery, 27 patients were enrolled in the study. Gross total resections were achieved in 26 of the 27 cases. Volumetric analysis showed the extent of resection was 98.6%. Motor function was stable or improved in 24 patients (Stable/Improved group) and deteriorated in 3 patients (Deteriorated group). All patients in the Deteriorated group showed motor deficit before surgery. Mean intraoperative minimal distance was significantly longer in the Stable/Improved group (7.3 mm) than in the Deteriorated group (1.1 mm; P < 0.05). MEP amplitude correlated with minimal distance between the resection cavity and CST (R = 0.64). CONCLUSIONS Resection of gliomas adjacent to CST with a navigation system using 3-T iMRI could result in an ultimate EOR >98%. The combination of intraoperative tractography and MEP contributes to maximal removal of motor-eloquent gliomas.
Collapse
Affiliation(s)
- Mitsuto Hanihara
- Department of Neurosurgery, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan.
| | - Tomoyuki Kawataki
- Department of Neurosurgery, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Hirofumi Kazama
- Department of Neurosurgery, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Masakazu Ogiwara
- Department of Neurosurgery, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Hideyuki Yoshioka
- Department of Neurosurgery, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Hiroyuki Kinouchi
- Department of Neurosurgery, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| |
Collapse
|
4
|
Li Y, Guo J, Zhang K, Wei H, Fan J, Yu S, Li T, Yang X. Diffusion tensor imaging versus intraoperative subcortical mapping for glioma resection: a systematic review and meta-analysis. Neurosurg Rev 2023; 46:154. [PMID: 37380888 PMCID: PMC10307847 DOI: 10.1007/s10143-023-02058-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023]
Abstract
Maintaining the integrity of crucial fiber tracts allows functional preservation and improved recovery in patients with glioma resection. Diffusion tensor imaging (DTI) and intraoperative subcortical mapping (ISM) are commonly required for pre- and intraoperative assessment of white matter fibers. This study investigated differences of clinical outcomes in glioma resection aided by DTI or ISM. A comprehensive literature retrieval of the PubMed and Embase databases identified several DTI or ISM studies in 2000-2022. Clinical data, including extent of resection (EOR) and postoperative neurological deficits, was collected and statistically analyzed. Heterogeneity was regressed by a random effect model and the Mann-Whitney U test was used to test statistical significance. Publication bias was assessed by Egger test. A total of 14 studies with a pooled cohort of 1837 patients were included. Patients undergoing DTI-navigated glioma surgery showed a higher rate of gross total resection (GTR) than ISM-assisted surgical resection (67.88%, [95% CI 0.55-0.79] vs. 45.73%, [95% CI 0.29-0.63], P = 0.032). The occurrence of early postoperative functional deficit (35.45%, [95% CI 0.13-0.61] vs. 35.60% [95% CI 0.20-0.53], P = 1.000), late postoperative functional deficit (6.00%, [95% CI 0.02-0.11] vs. 4.91% [95% CI 0.03-0.08], P = 1.000) and severe postoperative functional deficit (2.21%, [95% CI 0-0.08] vs. 5.93% [95% CI 0.01-0.16], P = 0.393) were similar between the DTI and ISM group, respectively. While DTI-navigation resulted in a higher rate of GTR, the occurrence of postoperative neurological deficits between DTI and ISM groups was comparable. Together, these data indicate that both techniques could safely facilitate glioma resection.
Collapse
Affiliation(s)
- Yiming Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Jiahe Guo
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Kai Zhang
- Institute for Intelligent Healthcare, Tsinghua University, Beijing, China
- Department of Neurosurgery, Tsinghua University Beijing Tsinghua Changgung Hospital, Beijing, China
| | - Huijie Wei
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Jikang Fan
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Shengping Yu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Tao Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.
| | - Xuejun Yang
- Institute for Intelligent Healthcare, Tsinghua University, Beijing, China.
- Department of Neurosurgery, Tsinghua University Beijing Tsinghua Changgung Hospital, Beijing, China.
| |
Collapse
|
5
|
Muscas G, Pisano A, Carrai R, Bianchi A, Capelli F, Montemurro VM, Martinelli C, Fainardi E, Grippo A, Della Puppa A. A Diffusion Tensor Imaging-Based Prognostic Classification for Surgery of Intrinsic Lesions Involving the Motor Pathways. World Neurosurg 2023; 172:e565-e573. [PMID: 36706980 DOI: 10.1016/j.wneu.2023.01.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023]
Abstract
BACKGROUND The critical role of different adjuncts in improving the neurological outcome in intrinsic brain lesions affecting eloquent areas is demonstrated by their more diffuse utilization. Neurosurgeons often rely on preoperative and intraoperative diffusion tensor imaging tractography to improve the operative strategy and prognosis. We aimed to identify and validate a diffusion tensor imaging-based classification considering the relationship between the brain lesion and the corticospinal tract to predict a >50% reduction of motor evoked potentials (MEPs) during surgical excision of lesions involving the motor pathways. METHODS We included patients consecutively enrolled at our institution between April 2020 and September 2022 with 3 patterns of increasing complexity according to the relationship between the lesion and the corticospinal tract as identified on preoperative diffusion tensor imaging. Outcome measures were >50% reduction in intraoperative MEPs and neurological outcome defined as unchanged, improved, or worsened. RESULTS The study included 83 patients. A statistically significant linear trend between higher rates of reduction of MEPs and higher classification grades was observed (P = 0.001), with sensitivity 0.60, specificity 0.88, accuracy 0.83, and area under the curve 0.75. Higher grades were associated with worse neurological outcomes (P = 0.02). CONCLUSIONS The classification proved reliable in anticipating reduction in intraoperative MEPs and in predicting neurological outcome. Using this classification in patients undergoing surgery for lesions involving the motor pathways could help in counseling the patient, surgical planning, enhancing teamwork of operating room personnel, and improving the patient's prognosis.
Collapse
Affiliation(s)
- Giovanni Muscas
- Neurosurgery Unit, Department of Neuroscience, Psychology, Pharmacology and Child Health, Careggi University Hospital and University of Florence, Florence, Italy.
| | - Antonio Pisano
- Neurosurgery Unit, Department of Neuroscience, Psychology, Pharmacology and Child Health, Careggi University Hospital and University of Florence, Florence, Italy
| | - Riccardo Carrai
- SODc Neurophysiopathology, Department Neuromuscolo-Scheletrico e degli Organi di Senso, Careggi University Hospital, Florence, Italy
| | - Andrea Bianchi
- Neuroradiology Unit, Department of Radiology, Careggi University Hospital, Florence, Italy
| | - Federico Capelli
- Neurosurgery Unit, Department of Neuroscience, Psychology, Pharmacology and Child Health, Careggi University Hospital and University of Florence, Florence, Italy
| | - Vita Maria Montemurro
- Neurosurgery Unit, Department of Neuroscience, Psychology, Pharmacology and Child Health, Careggi University Hospital and University of Florence, Florence, Italy
| | - Cristiana Martinelli
- SODc Neurophysiopathology, Department Neuromuscolo-Scheletrico e degli Organi di Senso, Careggi University Hospital, Florence, Italy
| | - Enrico Fainardi
- Neuroradiology Unit, Department of Radiology, Careggi University Hospital, Florence, Italy
| | - Antonello Grippo
- SODc Neurophysiopathology, Department Neuromuscolo-Scheletrico e degli Organi di Senso, Careggi University Hospital, Florence, Italy
| | - Alessandro Della Puppa
- Neurosurgery Unit, Department of Neuroscience, Psychology, Pharmacology and Child Health, Careggi University Hospital and University of Florence, Florence, Italy
| |
Collapse
|
6
|
Martucci M, Russo R, Schimperna F, D’Apolito G, Panfili M, Grimaldi A, Perna A, Ferranti AM, Varcasia G, Giordano C, Gaudino S. Magnetic Resonance Imaging of Primary Adult Brain Tumors: State of the Art and Future Perspectives. Biomedicines 2023; 11:364. [PMID: 36830900 PMCID: PMC9953338 DOI: 10.3390/biomedicines11020364] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 01/28/2023] Open
Abstract
MRI is undoubtedly the cornerstone of brain tumor imaging, playing a key role in all phases of patient management, starting from diagnosis, through therapy planning, to treatment response and/or recurrence assessment. Currently, neuroimaging can describe morphologic and non-morphologic (functional, hemodynamic, metabolic, cellular, microstructural, and sometimes even genetic) characteristics of brain tumors, greatly contributing to diagnosis and follow-up. Knowing the technical aspects, strength and limits of each MR technique is crucial to correctly interpret MR brain studies and to address clinicians to the best treatment strategy. This article aimed to provide an overview of neuroimaging in the assessment of adult primary brain tumors. We started from the basilar role of conventional/morphological MR sequences, then analyzed, one by one, the non-morphological techniques, and finally highlighted future perspectives, such as radiomics and artificial intelligence.
Collapse
Affiliation(s)
- Matia Martucci
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Rosellina Russo
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico “A. Gemelli” IRCCS, 00168 Rome, Italy
| | | | - Gabriella D’Apolito
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Marco Panfili
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Alessandro Grimaldi
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Alessandro Perna
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | | | - Giuseppe Varcasia
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Carolina Giordano
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Simona Gaudino
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico “A. Gemelli” IRCCS, 00168 Rome, Italy
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
7
|
Dmitriev AY, Dashyan VG. [Tractography in functional neuronavigation]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:12-18. [PMID: 37490660 DOI: 10.17116/jnevro202312307112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
The review addresses the combined use of tractography and neuronavigation. Fundamentals of diffusion tensor imaging are given, technical aspects of fiber tracking in general and in depicting separate subcortical tracts are described. Main advantages of the method and possible causes of errors are highlighted. Precision assessment of this technology is given by comparing with results of subcortical neurostimulation. Surgical tactics is described depending on distance between the tumor and subcortical pathways.
Collapse
Affiliation(s)
- A Yu Dmitriev
- Sklifosovsky Research Institute for Emergency, Moscow, Russia
- Yevdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - V G Dashyan
- Sklifosovsky Research Institute for Emergency, Moscow, Russia
- Yevdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia
| |
Collapse
|
8
|
Sakata T, Tanikawa M, Yamada H, Fujinami R, Nishikawa Y, Yamada S, Mase M. Minimally invasive treatment for glioblastoma through endoscopic surgery including tumor embolization when necessary: a technical note. Front Neurol 2023; 14:1170045. [PMID: 37153685 PMCID: PMC10160401 DOI: 10.3389/fneur.2023.1170045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/03/2023] [Indexed: 05/10/2023] Open
Abstract
Background Although there have been some reports on endoscopic glioblastoma surgery, the indication has been limited to deep-seated lesions, and the difficulty of hemostasis has been a concern. In that light, we attempted to establish an endoscopic procedure for excision of glioblastoma which could be applied even to hypervascular or superficial lesions, in combination with pre-operative endovascular tumor embolization. Methods Medical records of six consecutive glioblastoma patients who received exclusive endoscopic removal between September and November 2020 were analyzed. Preoperative tumor embolization was performed in cases with marked tumor stain and proper feeder arteries having an abnormal shape, for instance, tortuous or dilated, without passing through branches to the normal brain. Endoscopic tumor removal through a key-hole craniotomy was performed by using an inside-out excision for a deep-seated lesion, with the addition of an outside-in extirpation for a shallow portion when needed. Results Endoscopic removal was successfully performed in all six cases. Before resection, endovascular tumor embolization was performed in four cases with no resulting complications, including ischemia or brain swelling. Gross total resection was achieved in three cases, and near total resection in the other three cases. Intraoperative blood loss exceeded 1,000 ml in only one case, whose tumor showed a prominent tumor stain but no proper feeder artery for embolization. In all patients, a smooth transition to adjuvant therapy was possible with no surgical site infection. Conclusion Endoscopic removal for glioblastoma was considered to be a promising procedure with minimal invasiveness and a favorable impact on prognosis.
Collapse
|
9
|
Nguyen AM, Huynh NT, Nguyen TTP. Intraoperative cortical and subcortical stimulation for lesions related to eloquent motor cortex and corticospinal tract in a developing country. INTERDISCIPLINARY NEUROSURGERY 2022. [DOI: 10.1016/j.inat.2022.101601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
10
|
Muir M, Gadot R, Prinsloo S, Michener H, Traylor J, Athukuri P, Tummala S, Kumar VA, Prabhu SS. Comparative study of preoperative functional imaging combined with tractography for prediction of iatrogenic motor deficits. J Neurosurg 2022:1-8. [DOI: 10.3171/2022.10.jns221684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/07/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVE
Robust preoperative imaging can improve the extent of resection in patients with brain tumors while minimizing postoperative neurological morbidity. Both structural and functional imaging techniques can provide helpful preoperative information. A recent study found that transcranial magnetic stimulation (TMS) tractography has significant predictive value for permanent deficits. The present study directly compares the predictive value of TMS tractography and task-based functional MRI (fMRI) tractography in the same cohort of glioma patients.
METHODS
Clinical outcome data were collected from charts of patients with motor eloquent glioma and preoperative fMRI and TMS studies. The primary outcome was a new or worsened motor deficit present at the 3-month postoperative follow-up, which was termed a "permanent deficit." Postoperative MR images were overlaid onto preoperative plans to determine which imaging features were resected. Multiple fractional anisotropic thresholds (FATs) were screened for both TMS and fMRI tractography. The predictive value of the various thresholds was modeled using receiver operating characteristic curve analysis.
RESULTS
Forty patients were included in this study. Six patients (15%) sustained permanent postoperative motor deficits. A significantly greater predictive value was found for TMS tractography than for fMRI tractography regardless of the FAT. Despite 35% of patients showing clinically relevant neuroplasticity captured by TMS, only 2.5% of patients showed a blood oxygen level–dependent signal displaced from the precentral gyrus. Comparing the best-performing FAT for both modalities, TMS seeded tractography showed superior predictive value across all metrics: sensitivity, specificity, positive predictive value, and negative predictive value.
CONCLUSIONS
The results from this study indicate that the prediction of permanent deficits with TMS tractography is superior to that with fMRI tractography, possibly because TMS tractography captures clinically relevant neuroplasticity. However, future large-scale prospective studies are needed to fully illuminate the proper role of each modality in comprehensive presurgical workups for patients with motor-eloquent tumors.
Collapse
Affiliation(s)
| | | | | | | | - Jeffrey Traylor
- Department of Neurological Surgery, The University of Texas Southwestern Medical Center, Dallas, Texas
| | | | - Sudhakar Tummala
- Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston; and
| | | | | |
Collapse
|
11
|
García-García S, González-Sánchez JJ, Cepeda S, Mosteiro-Cadaval A, Ferres A, Arrese I, Sarabia R. Validation of Presurgical Simulation of White Matter Damage Using Diffusion Tensor Imaging. World Neurosurg 2022; 167:e846-e857. [PMID: 36049727 DOI: 10.1016/j.wneu.2022.08.092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 10/31/2022]
Abstract
BACKGROUND The understanding of white matter (WM) was revolutionized by the emergence of tractography based on diffusion tensor imaging (DTI). Currently, DTI simulations are implemented in preoperative planning to optimize surgical approaches. The reliability of these simulations has been questioned and investigated seeking for correlation between neurological performance and anomalies in DTI parameters. However, the ability of preoperative WM simulations to predict a surgical injury has not been thoroughly evaluated. Our objective was to assess the reliability of preoperatively simulated WM injuries for conventional neurosurgical procedures. METHODS WM surgical damage was preoperatively simulated by creating a 3-dimensional volume representing the endoscope or the surgical trajectory. This volume was used as an additional region of interest in the fascicle reconstruction to be subtracted from the original fascicle. Simulated, injured fascicles were compared in terms of the number of fibers and volume to those created from postoperative DTI studies. Reliability was assimilated into the correlation between the simulation and the postoperative reconstruction; evaluated using the intraclass correlation coefficient or Lin's Concordance correlation coefficient (CCC), and represented on Bland-Altman plots. RESULTS The preoperative and postoperative DTI studies of 30 patients undergoing various neurosurgical approaches were processed. The correlation between simulated injuries and postoperative studies was high in terms of fibers (Concordance correlation coefficient = Rho.C = 0.989 [95% confidence interval = 0.979-0.995]) and volume (intraclass correlation coefficient = 0.95 [95% CI = 0.89-0.97]). Bland-Altman plots demonstrated that the great majority of cases fell within the mean ± 2 Standard deviations. CONCLUSIONS Presurgical simulation of WM fascicles based on DTI is consistent with postoperative DTI studies. These findings require further validation by neurophysiological and clinical correlation.
Collapse
Affiliation(s)
| | | | - Santiago Cepeda
- Neurosurgery Department, Hospital Universitario Río Hortega, Valladolid, Spain
| | | | - Abel Ferres
- Neurosurgery Department, Hospital Clìnic, Barcelona, Spain
| | - Ignacio Arrese
- Neurosurgery Department, Hospital Universitario Río Hortega, Valladolid, Spain
| | - Rosario Sarabia
- Neurosurgery Department, Hospital Universitario Río Hortega, Valladolid, Spain
| |
Collapse
|
12
|
Yang Y, Neidert MC, Velz J, Kälin V, Sarnthein J, Regli L, Bozinov O. Mapping and Monitoring of the Corticospinal Tract by Direct Brainstem Stimulation. Neurosurgery 2022; 91:496-504. [DOI: 10.1227/neu.0000000000002065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 04/28/2022] [Indexed: 11/19/2022] Open
|
13
|
Advanced Neuroimaging Approaches to Pediatric Brain Tumors. Cancers (Basel) 2022; 14:cancers14143401. [PMID: 35884462 PMCID: PMC9318188 DOI: 10.3390/cancers14143401] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 07/08/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary After leukemias, brain tumors are the most common cancers in children, and early, accurate diagnosis is critical to improve patient outcomes. Beyond the conventional imaging methods of computed tomography (CT) and magnetic resonance imaging (MRI), advanced neuroimaging techniques capable of both structural and functional imaging are moving to the forefront to improve the early detection and differential diagnosis of tumors of the central nervous system. Here, we review recent developments in neuroimaging techniques for pediatric brain tumors. Abstract Central nervous system tumors are the most common pediatric solid tumors; they are also the most lethal. Unlike adults, childhood brain tumors are mostly primary in origin and differ in type, location and molecular signature. Tumor characteristics (incidence, location, and type) vary with age. Children present with a variety of symptoms, making early accurate diagnosis challenging. Neuroimaging is key in the initial diagnosis and monitoring of pediatric brain tumors. Conventional anatomic imaging approaches (computed tomography (CT) and magnetic resonance imaging (MRI)) are useful for tumor detection but have limited utility differentiating tumor types and grades. Advanced MRI techniques (diffusion-weighed imaging, diffusion tensor imaging, functional MRI, arterial spin labeling perfusion imaging, MR spectroscopy, and MR elastography) provide additional and improved structural and functional information. Combined with positron emission tomography (PET) and single-photon emission CT (SPECT), advanced techniques provide functional information on tumor metabolism and physiology through the use of radiotracer probes. Radiomics and radiogenomics offer promising insight into the prediction of tumor subtype, post-treatment response to treatment, and prognostication. In this paper, a brief review of pediatric brain cancers, by type, is provided with a comprehensive description of advanced imaging techniques including clinical applications that are currently utilized for the assessment and evaluation of pediatric brain tumors.
Collapse
|
14
|
Muir M, Prinsloo S, Traylor JI, Patel R, Ene C, Tummala S, Prabhu SS. Transcranial magnetic stimulation tractography and the facilitation of gross total resection in a patient with a motor eloquent glioblastoma: illustrative case. JOURNAL OF NEUROSURGERY: CASE LESSONS 2022; 3:CASE22128. [PMCID: PMC9379643 DOI: 10.3171/case22128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 03/21/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND
In patients with perieloquent tumors, neurosurgeons must use a variety of techniques to maximize survival while minimizing postoperative neurological morbidity. Recent publications have shown that conventional anatomical features may not always predict postoperative deficits. Additionally, scientific conceptualizations of complex brain function have shifted toward more dynamic, neuroplastic theories instead of traditional static, localizationist models. Functional imaging techniques have emerged as potential tools to incorporate these advances into modern neurosurgical care. In this case report, we describe our observations using preoperative transcranial magnetic stimulation data combined with tractography to guide a nontraditional surgical approach in a patient with a motor eloquent glioblastoma.
OBSERVATIONS
The authors detail the use of preoperative functional and structural imaging to perform a gross total resection despite tumor infiltration of conventionally eloquent anatomical structures. The authors resected the precentral gyrus, specifically the paracentral lobule, localized using intraoperative mapping techniques. The patient demonstrated mild transient postoperative weakness and made a full neurological recovery by discharge 1 week later.
LESSONS
Preoperative functional and structural imaging has potential to not only optimize patient selection and surgical planning, but also facilitate important intraoperative decisions. Innovative preoperative imaging techniques should be optimized and used to identify safely resectable structures.
Collapse
Affiliation(s)
- Matthew Muir
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Sarah Prinsloo
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Jeffrey I. Traylor
- Department of Neurological Surgery, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Rajan Patel
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas
| | - Chibawanye Ene
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Sudhakar Tummala
- Department of Neuro-Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas; and
| | - Sujit S. Prabhu
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| |
Collapse
|
15
|
Michele R, Ivana S, Maria DV, Luca B, Domenico L, Maria ZF, Alessandro DB, Silvio S, Khalid AO, Valeria M, Pietro A. Tracing in vivo the dorsal loop of the optic radiation: convergent perspectives from tractography and electrophysiology compared to a neuroanatomical ground truth. Brain Struct Funct 2022; 227:1357-1370. [PMID: 35320828 DOI: 10.1007/s00429-021-02430-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 11/12/2021] [Indexed: 01/18/2023]
Abstract
The temporo-parietal junction (TPJ) is a cortical area contributing to a multiplicity of visual, language-related, and cognitive functions. In line with this functional richness, also the organization of the underlying white matter is highly complex and includes several bundles. The few studies tackling the outcome and neurological burdens of surgical operations addressing TPJ document the presence of language disturbances and visual field damages, with the latter hardly recovered in time. This observation advocates for identifying and functionally monitoring the optic radiation (OR) bundles that cross the white matter below the TPJ. In the present study, we adopted a multimodal approach to address the anatomo-functional correlates of the OR's dorsal loop. In particular, we combined cadavers' dissection with tractographic and electrophysiological data collected in drug-resistant epileptic patients explored by stereoelectroencephalography (SEEG). Cadaver dissection allowed us to appreciate the course and topography of the dorsal loop. More surprisingly, both tractographic and electrophysiological observations converged on a unitary picture highly coherent with the data obtained by neuroanatomical observation. The combination of diverse and multimodal observations allows overcoming the limitations intrinsic to single methodologies, defining a unitary picture which makes it possible to investigate the dorsal loop both presurgically and at the individual patient level, ultimately contributing to limit the postsurgical damages. Notwithstanding, such a combined approach could serve as a model of investigation for future neuroanatomical inquiries tackling white matter fibers anatomy and function through SEEG-derived neurophysiological data.
Collapse
Affiliation(s)
- Rizzi Michele
- "C.Munari" Epilepsy Surgery Centre, ASST GOM Niguarda, Piazza Dell'Ospedale Maggiore, 20162, Milan, Italy
| | - Sartori Ivana
- "C.Munari" Epilepsy Surgery Centre, ASST GOM Niguarda, Piazza Dell'Ospedale Maggiore, 20162, Milan, Italy.
| | - Del Vecchio Maria
- Institute of Neuroscience, National Research Council of Italy, Parma, Italy
| | - Berta Luca
- Department of Medical Physics, ASST GOM Niguarda, Milan, Italy
| | - Lizio Domenico
- Department of Medical Physics, ASST GOM Niguarda, Milan, Italy
| | - Zauli Flavia Maria
- "C.Munari" Epilepsy Surgery Centre, ASST GOM Niguarda, Piazza Dell'Ospedale Maggiore, 20162, Milan, Italy
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy
| | - De Benedictis Alessandro
- Department of Neurosciences, Neurosurgery Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Sarubbo Silvio
- Department of Neurosurgery, Ospedale Santa Chiara, Trento, Italy
| | - Al-Orabi Khalid
- "C.Munari" Epilepsy Surgery Centre, ASST GOM Niguarda, Piazza Dell'Ospedale Maggiore, 20162, Milan, Italy
| | - Mariani Valeria
- Neurology and Stroke Unit, ASST Sette Laghi-Ospedale di Circolo, Varese, Italy
| | - Avanzini Pietro
- Institute of Neuroscience, National Research Council of Italy, Parma, Italy
| |
Collapse
|
16
|
Gerritsen JKW, Broekman MLD, De Vleeschouwer S, Schucht P, Nahed BV, Berger MS, Vincent AJPE. Safe Surgery for Glioblastoma: Recent Advances and Modern Challenges. Neurooncol Pract 2022; 9:364-379. [PMID: 36127890 PMCID: PMC9476986 DOI: 10.1093/nop/npac019] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
One of the major challenges during glioblastoma surgery is balancing between maximizing extent of resection and preventing neurological deficits. Several surgical techniques and adjuncts have been developed to help identify eloquent areas both preoperatively (fMRI, nTMS, MEG, DTI) and intraoperatively (imaging (ultrasound, iMRI), electrostimulation (mapping), cerebral perfusion measurements (fUS)), and visualization (5-ALA, fluoresceine)). In this review, we give an update of the state-of-the-art management of both primary and recurrent glioblastomas. We will review the latest surgical advances, challenges, and approaches that define the onco-neurosurgical practice in a contemporary setting and give an overview of the current prospective scientific efforts.
Collapse
Affiliation(s)
| | | | | | - Philippe Schucht
- Department of Neurosurgery, University Hospital Bern, Switzerland
| | - Brian Vala Nahed
- Department of Neurosurgery, Massachusetts General Hospital/Harvard Medical School, Boston MA, USA
| | | | | |
Collapse
|
17
|
Gerritsen JKW, Broekman MLD, De Vleeschouwer S, Schucht P, Jungk C, Krieg SM, Nahed BV, Berger MS, Vincent AJPE. Decision making and surgical modality selection in glioblastoma patients: an international multicenter survey. J Neurooncol 2022; 156:465-482. [DOI: 10.1007/s11060-021-03894-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/05/2021] [Indexed: 10/19/2022]
|
18
|
Muir M, Prinsloo S, Michener H, Shetty A, de Almeida Bastos DC, Traylor J, Ene C, Tummala S, Kumar VA, Prabhu SS. Transcranial magnetic stimulation (TMS) seeded tractography provides superior prediction of eloquence compared to anatomic seeded tractography. Neurooncol Adv 2022; 4:vdac126. [PMID: 36128584 PMCID: PMC9476227 DOI: 10.1093/noajnl/vdac126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Background
For patients with brain tumors, maximizing the extent of resection while minimizing postoperative neurological morbidity requires accurate preoperative identification of eloquent structures. Recent studies have provided evidence that anatomy may not always predict eloquence. In this study, we directly compare transcranial magnetic stimulation (TMS) data combined with tractography to traditional anatomic grading criteria for predicting permanent deficits in patients with motor eloquent gliomas.
Methods
We selected a cohort of 42 glioma patients with perirolandic tumors who underwent preoperative TMS mapping with subsequent resection and intraoperative mapping. We collected clinical outcome data from their chart with the primary outcome being new or worsened motor deficit present at 3 month follow up, termed “permanent deficit”. We overlayed the postoperative resection cavity onto the preoperative MRI containing preoperative imaging features.
Results
Almost half of the patients showed TMS positive points significantly displaced from the precentral gyrus, indicating tumor induced neuroplasticity. In multivariate regression, resection of TMS points was significantly predictive of permanent deficits while the resection of the precentral gyrus was not. TMS tractography showed significantly greater predictive value for permanent deficits compared to anatomic tractography, regardless of the fractional anisotropic (FA) threshold. For the best performing FA threshold of each modality, TMS tractography provided both higher positive and negative predictive value for identifying true nonresectable, eloquent cortical and subcortical structures.
Conclusion
TMS has emerged as a preoperative mapping modality capable of capturing tumor induced plastic reorganization, challenging traditional presurgical imaging modalities.
Collapse
Affiliation(s)
- Matthew Muir
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center , Houston, Texas , USA
| | - Sarah Prinsloo
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center , Houston, Texas , USA
| | - Hayley Michener
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center , Houston, Texas , USA
| | - Arya Shetty
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center , Houston, Texas , USA
| | | | - Jeffrey Traylor
- Department of Neurological Surgery, The University of Texas Southwestern Medical Center , Dallas, Texas , USA
| | - Chibawanye Ene
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center , Houston, Texas , USA
| | - Sudhakar Tummala
- Department of Neuro-Oncology, The University of Texas M.D. Anderson Cancer Center , Houston, Texas, USA
| | - Vinodh A Kumar
- Department of Neuroradiology, The University of Texas M.D. Anderson Cancer Center , Houston, Texas , USA
| | - Sujit S Prabhu
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center , Houston, Texas , USA
| |
Collapse
|
19
|
Yeh FC, Irimia A, Bastos DCDA, Golby AJ. Tractography methods and findings in brain tumors and traumatic brain injury. Neuroimage 2021; 245:118651. [PMID: 34673247 PMCID: PMC8859988 DOI: 10.1016/j.neuroimage.2021.118651] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 10/05/2021] [Accepted: 10/11/2021] [Indexed: 12/31/2022] Open
Abstract
White matter fiber tracking using diffusion magnetic resonance imaging (dMRI) provides a noninvasive approach to map brain connections, but improving anatomical accuracy has been a significant challenge since the birth of tractography methods. Utilizing tractography in brain studies therefore requires understanding of its technical limitations to avoid shortcomings and pitfalls. This review explores tractography limitations and how different white matter pathways pose different challenges to fiber tracking methodologies. We summarize the pros and cons of commonly-used methods, aiming to inform how tractography and its related analysis may lead to questionable results. Extending these experiences, we review the clinical utilization of tractography in patients with brain tumors and traumatic brain injury, starting from tensor-based tractography to more advanced methods. We discuss current limitations and highlight novel approaches in the context of these two conditions to inform future tractography developments.
Collapse
Affiliation(s)
- Fang-Cheng Yeh
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| | - Andrei Irimia
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA; Corwin D. Denney Research Center, Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| | | | - Alexandra J Golby
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
20
|
Morales H. Current and Future Challenges of Functional MRI and Diffusion Tractography in the Surgical Setting: From Eloquent Brain Mapping to Neural Plasticity. Semin Ultrasound CT MR 2021; 42:474-489. [PMID: 34537116 DOI: 10.1053/j.sult.2021.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Decades ago, Spetzler (1986) and Sawaya (1998) provided a rough brain segmentation of the eloquent areas of the brain, aimed to help surgical decisions in cases of vascular malformations and tumors, respectively. Currently in clinical use, their criteria are in need of revision. Defining functions (eg, sensorimotor, language and visual) that should be preserved during surgery seems a straightforward task. In practice, locating the specific areas that could cause a permanent vs transient deficit is not an easy task. This is particularly true for the associative cortex and cognitive domains such as language. The old model, with Broca's and Wernicke's areas at the forefront, has been superseded by a dual-stream model of parallel language processing; named ventral and dorsal pathways. This complicated network of cortical hubs and subcortical white matter pathways needing preservation during surgery is a work in progress. Preserving not only cortical regions but most importantly preserving the connections, or white matter fiber bundles, of core regions in the brain is the new paradigm. For instance, the arcuate fascicululs and inferior fronto-occipital fasciculus are key components of the dorsal and ventral language pathways, respectively; and their damage result in permanent language deficits. Interestedly, the damage of the temporal portions of these bundles -where there is a crossroad with other multiple bundles-, appears to be more important (permanent) than the damage of the frontal portions - where plasticity and contralateral activation could help. Although intraoperative direct cortical and subcortical stimulation have contributed largely, advanced MR techniques such as functional MRI (fMRI) and diffusion tractography (DT), are at the epi-center of our current understanding. Nevertheless, these techniques posse important challenges: such as neurovascular uncoupling or venous bias on fMRI; and appropriate anatomical validation or accurate representation of crossing fibers on DT. These limitations should be well understood and taken into account in clinical practice. Unifying multidisciplinary research and clinical efforts is desirable, so these techniques could contribute more efficiently not only to locate eloquent areas but to improve outcomes and our understanding of neural plasticity. Finally, although there are constant anatomical and functional regions at the individual level, there is a known variability at the inter-individual level. This concept should strengthen the importance of a personalized approach when evaluating these regions on fMRI and DT. It should strengthen the importance of personalized treatments as well, aimed to meet tailored needs and expectations.
Collapse
Affiliation(s)
- Humberto Morales
- Section of Neuroradiology, University of Cincinnati Medical Center, Cincinnati, OH.
| |
Collapse
|
21
|
Petrovic BD, Burman D, Chowdhry S, Bailes JE, Meyer J. Pictorial essay: How co-registered BOLD fMRI and DTI data can improve diffusion tensor tractography. INTERDISCIPLINARY NEUROSURGERY 2021. [DOI: 10.1016/j.inat.2021.101258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
22
|
Yang JYM, Yeh CH, Poupon C, Calamante F. Diffusion MRI tractography for neurosurgery: the basics, current state, technical reliability and challenges. Phys Med Biol 2021; 66. [PMID: 34157706 DOI: 10.1088/1361-6560/ac0d90] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/22/2021] [Indexed: 01/20/2023]
Abstract
Diffusion magnetic resonance imaging (dMRI) tractography is currently the only imaging technique that allows for non-invasive delineation and visualisation of white matter (WM) tractsin vivo,prompting rapid advances in related fields of brain MRI research in recent years. One of its major clinical applications is for pre-surgical planning and intraoperative image guidance in neurosurgery, where knowledge about the location of WM tracts nearby the surgical target can be helpful to guide surgical resection and optimise post-surgical outcomes. Surgical injuries to these WM tracts can lead to permanent neurological and functional deficits, making the accuracy of tractography reconstructions paramount. The quality of dMRI tractography is influenced by many modifiable factors, ranging from MRI data acquisition through to the post-processing of tractography output, with the potential of error propagation based on decisions made at each and subsequent processing steps. Research over the last 25 years has significantly improved the anatomical accuracy of tractography. An updated review about tractography methodology in the context of neurosurgery is now timely given the thriving research activities in dMRI, to ensure more appropriate applications in the clinical neurosurgical realm. This article aims to review the dMRI physics, and tractography methodologies, highlighting recent advances to provide the key concepts of tractography-informed neurosurgery, with a focus on the general considerations, the current state of practice, technical challenges, potential advances, and future demands to this field.
Collapse
Affiliation(s)
- Joseph Yuan-Mou Yang
- Department of Neurosurgery, The Royal Children's Hospital, Melbourne, Australia.,Neuroscience Research, Murdoch Children's Research Institute, Melbourne, Australia.,Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - Chun-Hung Yeh
- Institute for Radiological Research, Chang Gung University and Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Child and Adolescent Psychiatry, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Cyril Poupon
- NeuroSpin, Frédéric Joliot Life Sciences Institute, CEA, CNRS, Paris-Saclay University, Gif-sur-Yvette, France
| | - Fernando Calamante
- The University of Sydney, Sydney Imaging, Sydney, Australia.,The University of Sydney, School of Biomedical Engineering, Sydney, Australia
| |
Collapse
|
23
|
Voets NL, Pretorius P, Birch MD, Apostolopoulos V, Stacey R, Plaha P. Diffusion tractography for awake craniotomy: accuracy and factors affecting specificity. J Neurooncol 2021; 153:547-557. [PMID: 34196915 PMCID: PMC8280000 DOI: 10.1007/s11060-021-03795-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/22/2021] [Indexed: 11/30/2022]
Abstract
Introduction Despite evidence of correspondence with intraoperative stimulation, there remains limited data on MRI diffusion tractography (DT)’s sensitivity to predict morbidity after neurosurgical oncology treatment. Our aims were: (1) evaluate DT against subcortical stimulation mapping and performance changes during and after awake neurosurgery; (2) evaluate utility of early post-operative DT to predict recovery from post-surgical deficits. Methods We retrospectively reviewed our first 100 awake neurosurgery procedures using DT- neuronavigation. Intra-operative stimulation and performance outcomes were assessed to classify DT predictions for sensitivity and specificity calculations. Post-operative DT data, available in 51 patients, were inspected for tract damage. Results 91 adult brain tumor patients (mean 49.2 years, 43 women) underwent 100 awake surgeries with subcortical stimulation between 2014 and 2019. Sensitivity and specificity of pre-operative DT predictions were 92.2% and 69.2%, varying among tracts. Post-operative deficits occurred after 41 procedures (39%), but were prolonged (> 3 months) in only 4 patients (4%). Post-operative DT in general confirmed surgical preservation of tracts. Post-operative DT anticipated complete recovery in a patient with supplementary motor area syndrome, and indicated infarct-related damage to corticospinal fibers associated with delayed, partial recovery in a second patient. Conclusions Pre-operative DT provided very accurate predictions of the spatial location of tracts in relation to a tumor. As expected, however, the presence of a tract did not inform its functional status, resulting in variable DT specificity among individual tracts. While prolonged deficits were rare, DT in the immediate post-operative period offered additional potential to monitor neurological deficits and anticipate recovery potential. Supplementary Information The online version contains supplementary material available at 10.1007/s11060-021-03795-7.
Collapse
Affiliation(s)
- Natalie L Voets
- Department of Neurosurgery, Oxford University Hospital NHS Foundation Trust, John Radcliffe Hospital, West Wing, L3, Oxford, Oxfordshire, OX3 9DU, UK
| | - Pieter Pretorius
- Department of Neuroradiology, Oxford University Hospital NHS Foundation Trust, John Radcliffe Hospital, Oxford, Oxfordshire, UK
| | - Martin D Birch
- Nuffield Department of Anaesthesia, Oxford University Hospital NHS Foundation Trust, John Radcliffe Hospital, Oxford, Oxfordshire, UK
| | - Vasileios Apostolopoulos
- Department of Neurosurgery, Oxford University Hospital NHS Foundation Trust, John Radcliffe Hospital, West Wing, L3, Oxford, Oxfordshire, OX3 9DU, UK
| | - Richard Stacey
- Department of Neurosurgery, Oxford University Hospital NHS Foundation Trust, John Radcliffe Hospital, West Wing, L3, Oxford, Oxfordshire, OX3 9DU, UK
| | - Puneet Plaha
- Department of Neurosurgery, Oxford University Hospital NHS Foundation Trust, John Radcliffe Hospital, West Wing, L3, Oxford, Oxfordshire, OX3 9DU, UK. .,Nuffield Department of Surgery, University of Oxford, Oxford, Oxfordshire, UK.
| |
Collapse
|
24
|
Asimakidou E, Abut PA, Raabe A, Seidel K. Motor Evoked Potential Warning Criteria in Supratentorial Surgery: A Scoping Review. Cancers (Basel) 2021; 13:2803. [PMID: 34199853 PMCID: PMC8200078 DOI: 10.3390/cancers13112803] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 12/31/2022] Open
Abstract
During intraoperative monitoring of motor evoked potentials (MEP), heterogeneity across studies in terms of study populations, intraoperative settings, applied warning criteria, and outcome reporting exists. A scoping review of MEP warning criteria in supratentorial surgery was conducted in accordance with the Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR). Sixty-eight studies fulfilled the eligibility criteria. The most commonly used alarm criteria were MEP signal loss, which was always a major warning sign, followed by amplitude reduction and threshold elevation. Irreversible MEP alterations were associated with a higher number of transient and persisting motor deficits compared with the reversible changes. In almost all studies, specificity and Negative Predictive Value (NPV) were high, while in most of them, sensitivity and Positive Predictive Value (PPV) were rather low or modest. Thus, the absence of an irreversible alteration may reassure the neurosurgeon that the patient will not suffer a motor deficit in the short-term and long-term follow-up. Further, MEPs perform well as surrogate markers, and reversible MEP deteriorations after successful intervention indicate motor function preservation postoperatively. However, in future studies, a consensus regarding the definitions of MEP alteration, critical duration of alterations, and outcome reporting should be determined.
Collapse
Affiliation(s)
- Evridiki Asimakidou
- Department of Neurosurgery, Inselspital, Bern University Hospital, 3010 Bern, Switzerland; (E.A.); (P.A.A.); (A.R.)
| | - Pablo Alvarez Abut
- Department of Neurosurgery, Inselspital, Bern University Hospital, 3010 Bern, Switzerland; (E.A.); (P.A.A.); (A.R.)
- Department of Neurosurgery, Clínica 25 de Mayo, 7600 Mar del Plata, Argentina
| | - Andreas Raabe
- Department of Neurosurgery, Inselspital, Bern University Hospital, 3010 Bern, Switzerland; (E.A.); (P.A.A.); (A.R.)
| | - Kathleen Seidel
- Department of Neurosurgery, Inselspital, Bern University Hospital, 3010 Bern, Switzerland; (E.A.); (P.A.A.); (A.R.)
| |
Collapse
|
25
|
Gogos AJ, Young JS, Morshed RA, Avalos LN, Noss RS, Villanueva-Meyer JE, Hervey-Jumper SL, Berger MS. Triple motor mapping: transcranial, bipolar, and monopolar mapping for supratentorial glioma resection adjacent to motor pathways. J Neurosurg 2021; 134:1728-1737. [PMID: 32502996 DOI: 10.3171/2020.3.jns193434] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/31/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Maximal safe resection of gliomas near motor pathways is facilitated by intraoperative mapping. The authors and other groups have described the use of bipolar or monopolar direct stimulation to identify functional tissue, as well as transcranial or transcortical motor evoked potentials (MEPs) to monitor motor pathways. Here, the authors describe their initial experience using all 3 modalities to identify, monitor, and preserve cortical and subcortical motor systems during glioma surgery. METHODS Intraoperative mapping data were extracted from a prospective registry of glioma resections near motor pathways. Additional demographic, clinical, pathological, and imaging data were extracted from the electronic medical record. All patients with new or worsened postoperative motor deficits were followed for at least 6 months. RESULTS Between January 2018 and August 2019, 59 operations were performed in 58 patients. Overall, patients in 6 cases (10.2%) had new or worse immediate postoperative deficits. Patients with temporary deficits all had at least Medical Research Council grade 4/5 power. Only 2 patients (3.4%) had permanently worsened deficits after 6 months, both of which were associated with diffusion restriction consistent with ischemia within the corticospinal tract. One patient's deficit improved to 4/5 and the other to 4/5 proximally and 3/5 distally in the lower limb, allowing ambulation following rehabilitation. Subcortical motor pathways were identified in 51 cases (86.4%) with monopolar high-frequency stimulation, but only in 6 patients using bipolar stimulation. Transcranial or cortical MEPs were diminished in only 6 cases, 3 of which had new or worsened deficits, with 1 permanent deficit. Insula location (p = 0.001) and reduction in MEPs (p = 0.01) were the only univariate predictors of new or worsened postoperative deficits. Insula location was the only predictor of permanent deficits (p = 0.046). The median extent of resection was 98.0%. CONCLUSIONS Asleep triple motor mapping is safe and resulted in a low rate of deficits without compromising the extent of resection.
Collapse
Affiliation(s)
| | | | | | | | - Roger S Noss
- 3Neuromonitoring Service, University of California, San Francisco, California
| | | | | | | |
Collapse
|
26
|
Rossi M, Sciortino T, Conti Nibali M, Gay L, Viganò L, Puglisi G, Leonetti A, Howells H, Fornia L, Cerri G, Riva M, Bello L. Clinical Pearls and Methods for Intraoperative Motor Mapping. Neurosurgery 2021; 88:457-467. [PMID: 33476393 PMCID: PMC7884143 DOI: 10.1093/neuros/nyaa359] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/26/2020] [Indexed: 12/13/2022] Open
Abstract
Resection of brain tumors involving motor areas and pathways requires the identification and preservation of various cortical and subcortical structures involved in motor control at the time of the procedure, in order to maintain the patient's full motor capacities. The use of brain mapping techniques has now been integrated into clinical practice for many years, as they help the surgeon to identify the neural structures involved in motor functions. A common definition of motor function, as well as knowledge of its neural organization, has been continuously evolving, underlining the need for implementing intraoperative strategies at the time of the procedure. Similarly, mapping strategies have been subjected to continuous changes, enhancing the likelihood of preservation of full motor capacities. As a general rule, the motor mapping strategy should be as flexible as possible and adapted strictly to the individual patient and clinical context of the tumor. In this work, we present an overview of current knowledge of motor organization, indications for motor mapping, available motor mapping, and monitoring strategies, as well as their advantages and limitations. The use of motor mapping improves resection and outcomes in patients harboring tumors involving motor areas and pathways, and should be considered the gold standard in the resection of this type of tumor.
Collapse
Affiliation(s)
- Marco Rossi
- Neurosurgery , Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milano, Italy
| | - Tommaso Sciortino
- Neurosurgery , Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milano, Italy
| | - Marco Conti Nibali
- Neurosurgery , Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milano, Italy
| | - Lorenzo Gay
- Neurosurgery , Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milano, Italy
| | - Luca Viganò
- Neurosurgery , Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milano, Italy
| | - Guglielmo Puglisi
- Neurosurgery , Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milano, Italy.,Laboratory of Motor Control, Department of Biotechnology and Translational Medicine, Università degli Studi di Milano Milano, Italy
| | - Antonella Leonetti
- Neurosurgery , Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milano, Italy.,Laboratory of Motor Control, Department of Biotechnology and Translational Medicine, Università degli Studi di Milano Milano, Italy
| | - Henrietta Howells
- Laboratory of Motor Control, Department of Biotechnology and Translational Medicine, Università degli Studi di Milano Milano, Italy
| | - Luca Fornia
- Laboratory of Motor Control, Department of Biotechnology and Translational Medicine, Università degli Studi di Milano Milano, Italy
| | - Gabriella Cerri
- Laboratory of Motor Control, Department of Biotechnology and Translational Medicine, Università degli Studi di Milano Milano, Italy
| | - Marco Riva
- Neurosurgery , Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milano, Italy
| | - Lorenzo Bello
- Neurosurgery , Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
27
|
Mato D, Velasquez C, Gómez E, Marco de Lucas E, Martino J. Predicting the Extent of Resection in Low-Grade Glioma by Using Intratumoral Tractography to Detect Eloquent Fascicles Within the Tumor. Neurosurgery 2021; 88:E190-E202. [PMID: 33313812 DOI: 10.1093/neuros/nyaa463] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/12/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND An early maximal safe surgical resection is the current treatment paradigm for low-grade glioma (LGG). Nevertheless, there are no reliable methods to accurately predict the axonal intratumoral eloquent areas and, consequently, to predict the extent of resection. OBJECTIVE To describe the functional predictive value of eloquent white matter tracts within the tumor by using a pre- and postoperative intratumoral diffusion tensor imaging (DTI) tractography protocol in patients with LGG. METHODS A preoperative intratumoral DTI-based tractography protocol, using the tumor segmented volume as the only seed region, was used to assess the tracts within the tumor boundaries in 22 consecutive patients with LGG. The reconstructed tracts were correlated with intraoperative electrical stimulation (IES)-based language and motor subcortical mapping findings and the extent of resection was assessed by tumor volumetrics. RESULTS Identification of intratumoral language and motor tracts significantly predicted eloquent areas within the tumor during the IES mapping: the positive predictive value for the pyramidal tract, the inferior fronto-occipital fasciculus, the arcuate fasciculus and the inferior longitudinal fasciculus positive was 100%, 100%, 33%, and 80%, respectively, whereas negative predictive value was 100% for all of them. The reconstruction of at least one of these tracts within the tumor was significantly associated with a lower extent of resection (67%) as opposed to the extent of resection in the cases with a negative intratumoral tractography (100%) (P < .0001). CONCLUSION Intratumoral DTI-based tractography is a simple and reliable method, useful in assessing glioma resectability based on the analysis of intratumoral eloquent areas associated with motor and language tracts within the tumor.
Collapse
Affiliation(s)
- David Mato
- Department of Neurological Surgery, Hospital Universitario Marqués de Valdecilla and Fundación Instituto de Investigación Valdecilla, Santander, Spain
| | - Carlos Velasquez
- Department of Neurological Surgery, Hospital Universitario Marqués de Valdecilla and Fundación Instituto de Investigación Valdecilla, Santander, Spain
| | - Elsa Gómez
- Deparment of Psychiatry, Hospital Universitario Marqués de Valdecilla and Fundación Instituto de Investigación Valdecilla, Santander, Spain
| | - Enrique Marco de Lucas
- Deparment of Radiology, Hospital Universitario Marqués de Valdecilla and Fundación Instituto de Investigación Valdecilla, Santander, Spain
| | - Juan Martino
- Department of Neurological Surgery, Hospital Universitario Marqués de Valdecilla and Fundación Instituto de Investigación Valdecilla, Santander, Spain
| |
Collapse
|
28
|
Zoli M, Talozzi L, Martinoni M, Manners DN, Badaloni F, Testa C, Asioli S, Mitolo M, Bartiromo F, Rochat MJ, Fabbri VP, Sturiale C, Conti A, Lodi R, Mazzatenta D, Tonon C. From Neurosurgical Planning to Histopathological Brain Tumor Characterization: Potentialities of Arcuate Fasciculus Along-Tract Diffusion Tensor Imaging Tractography Measures. Front Neurol 2021; 12:633209. [PMID: 33716935 PMCID: PMC7952864 DOI: 10.3389/fneur.2021.633209] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/26/2021] [Indexed: 01/09/2023] Open
Abstract
Background: Tractography has been widely adopted to improve brain gliomas' surgical planning and guide their resection. This study aimed to evaluate state-of-the-art of arcuate fasciculus (AF) tractography for surgical planning and explore the role of along-tract analyses in vivo for characterizing tumor histopathology. Methods: High angular resolution diffusion imaging (HARDI) images were acquired for nine patients with tumors located in or near language areas (age: 41 ± 14 years, mean ± standard deviation; five males) and 32 healthy volunteers (age: 39 ± 16 years; 16 males). Phonemic fluency task fMRI was acquired preoperatively for patients. AF tractography was performed using constrained spherical deconvolution diffusivity modeling and probabilistic fiber tracking. Along-tract analyses were performed, dividing the AF into 15 segments along the length of the tract defined using the Laplacian operator. For each AF segment, diffusion tensor imaging (DTI) measures were compared with those obtained in healthy controls (HCs). The hemispheric laterality index (LI) was calculated from language task fMRI activations in the frontal, parietal, and temporal lobe parcellations. Tumors were grouped into low/high grade (LG/HG). Results: Four tumors were LG gliomas (one dysembryoplastic neuroepithelial tumor and three glioma grade II) and five HG gliomas (two grade III and three grade IV). For LG tumors, gross total removal was achieved in all but one case, for HG in two patients. Tractography identified the AF trajectory in all cases. Four along-tract DTI measures potentially discriminated LG and HG tumor patients (false discovery rate < 0.1): the number of abnormal MD and RD segments, median AD, and MD measures. Both a higher number of abnormal AF segments and a higher AD and MD measures were associated with HG tumor patients. Moreover, correlations (unadjusted p < 0.05) were found between the parietal lobe LI and the DTI measures, which discriminated between LG and HG tumor patients. In particular, a more rightward parietal lobe activation (LI < 0) correlated with a higher number of abnormal MD segments (R = −0.732) and RD segments (R = −0.724). Conclusions: AF tractography allows to detect the course of the tract, favoring the safer-as-possible tumor resection. Our preliminary study shows that along-tract DTI metrics can provide useful information for differentiating LG and HG tumors during pre-surgical tumor characterization.
Collapse
Affiliation(s)
- Matteo Zoli
- Pituitary Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Lia Talozzi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Matteo Martinoni
- Neurosurgery Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - David N Manners
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Filippo Badaloni
- Neurosurgery Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Claudia Testa
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | - Sofia Asioli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,Anatomic Pathology Unit, Azienda USL di Bologna, Bologna, Italy
| | - Micaela Mitolo
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Fiorina Bartiromo
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Magali Jane Rochat
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Viscardo Paolo Fabbri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Carmelo Sturiale
- Neurosurgery Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Alfredo Conti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,Neurosurgery Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Raffaele Lodi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Diego Mazzatenta
- Pituitary Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Caterina Tonon
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| |
Collapse
|
29
|
Przybylowski CJ, Hervey-Jumper SL, Sanai N. Surgical strategy for insular glioma. J Neurooncol 2021; 151:491-497. [PMID: 33611715 DOI: 10.1007/s11060-020-03499-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/13/2020] [Indexed: 01/12/2023]
Abstract
PURPOSE The goal of this article is to review the outcomes of insular glioma surgery and discuss strategies to minimize postoperative morbidity. METHODS The authors reviewed the published literature on low- and high-grade insular gliomas with a focus on glioma biology, insular anatomy, and surgical technique. RESULTS Maximal safe resection of insular gliomas is associated with improved survival and is the primary goal of surgery. Protecting patient speech and motor function during insular glioma resection requires versatile integration of insular anatomy, cortical mapping, and microsurgical technique. Both the transsylvian and transcortical corridors to the insula are associated with low morbidity profiles, but the transcortical approach with intraoperative mapping is more favorable for gliomas within the posterior insular region. CONCLUSIONS Surgical strategy for insular gliomas is dependent on biological, anatomical, and clinical factors. Technical mastery integrated with intraoperative technologies can optimize surgical results.
Collapse
Affiliation(s)
- Colin J Przybylowski
- Department of Neurosurgery, Ivy Brain Tumor Research Center, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Shawn L Hervey-Jumper
- Department of Neurosurgery, University of California San Francisco, San Francisco, CA, USA
| | - Nader Sanai
- Department of Neurosurgery, Ivy Brain Tumor Research Center, Barrow Neurological Institute, Phoenix, AZ, USA.
| |
Collapse
|
30
|
Henderson F, Abdullah KG, Verma R, Brem S. Tractography and the connectome in neurosurgical treatment of gliomas: the premise, the progress, and the potential. Neurosurg Focus 2021; 48:E6. [PMID: 32006950 DOI: 10.3171/2019.11.focus19785] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/13/2019] [Indexed: 12/21/2022]
Abstract
The ability of diffusion tensor MRI to detect the preferential diffusion of water in cerebral white matter tracts enables neurosurgeons to noninvasively visualize the relationship of lesions to functional neural pathways. Although viewed as a research tool in its infancy, diffusion tractography has evolved into a neurosurgical tool with applications in glioma surgery that are enhanced by evolutions in crossing fiber visualization, edema correction, and automated tract identification. In this paper the current literature supporting the use of tractography in brain tumor surgery is summarized, highlighting important clinical studies on the application of diffusion tensor imaging (DTI) for preoperative planning of glioma resection, and risk assessment to analyze postoperative outcomes. The key methods of tractography in current practice and crucial white matter fiber bundles are summarized. After a review of the physical basis of DTI and post-DTI tractography, the authors discuss the methodologies with which to adapt DT image processing for surgical planning, as well as the potential of connectomic imaging to facilitate a network approach to oncofunctional optimization in glioma surgery.
Collapse
Affiliation(s)
- Fraser Henderson
- 1Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania.,3Department of Neurosurgery, The Medical University of South Carolina, Charleston, South Carolina; and
| | - Kalil G Abdullah
- 4Department of Neurosurgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ragini Verma
- 1Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania.,2DiCIPHR (Diffusion and Connectomics in Precision Healthcare Research) Lab, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Steven Brem
- 1Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania
| |
Collapse
|
31
|
Bander ED, Shelkov E, Modik O, Kandula P, Karceski SC, Ramakrishna R. Use of the train-of-five bipolar technique to provide reliable, spatially accurate motor cortex identification in asleep patients. Neurosurg Focus 2021; 48:E4. [PMID: 32006941 DOI: 10.3171/2019.11.focus19776] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/13/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Intraoperative cortical and subcortical mapping techniques have become integral for achieving a maximal safe resection of tumors that are in or near regions of eloquent brain. The recent literature has demonstrated successful motor/language mapping with lower rates of stimulation-induced seizures when using monopolar high-frequency stimulation compared to traditional low-frequency bipolar stimulation mapping. However, monopolar stimulation carries with it disadvantages that include more radiant spread of electrical stimulation and a theoretically higher potential for tissue damage. The authors report on the successful use of bipolar stimulation with a high-frequency train-of-five (TOF) pulse physiology for motor mapping. METHODS Between 2018 and 2019, 13 patients underwent motor mapping with phase-reversal and both low-frequency and high-frequency bipolar stimulation. A retrospective chart review was conducted to determine the success rate of motor mapping and to acquire intraoperative details. RESULTS Thirteen patients underwent both high- and low-frequency bipolar motor mapping to aid in tumor resection. Of the lesions treated, 69% were gliomas, and the remainder were metastases. The motor cortex was identified at a significantly greater rate when using high-frequency TOF bipolar stimulation (n = 13) compared to the low-frequency bipolar stimulation (n = 4) (100% vs 31%, respectively; p = 0.0005). Intraoperative seizures and afterdischarges occurred only in the group of patients who underwent low-frequency bipolar stimulation, and none occurred in the TOF group (31% vs 0%, respectively; p = 0.09). CONCLUSIONS Using a bipolar wand with high-frequency TOF stimulation, the authors achieved a significantly higher rate of successful motor mapping and a low rate of intraoperative seizure compared to traditional low-frequency bipolar stimulation. This preliminary study suggests that high-frequency TOF stimulation provides a reliable additional tool for motor cortex identification in asleep patients.
Collapse
Affiliation(s)
| | - Evgeny Shelkov
- 2Neurology, NewYork-Presbyterian/Weill Cornell Medicine, New York, New York
| | - Oleg Modik
- 2Neurology, NewYork-Presbyterian/Weill Cornell Medicine, New York, New York
| | - Padmaja Kandula
- 2Neurology, NewYork-Presbyterian/Weill Cornell Medicine, New York, New York
| | - Steven C Karceski
- 2Neurology, NewYork-Presbyterian/Weill Cornell Medicine, New York, New York
| | | |
Collapse
|
32
|
Xiao X, Kong L, Pan C, Zhang P, Chen X, Sun T, Wang M, Qiao H, Wu Z, Zhang J, Zhang L. The role of diffusion tensor imaging and tractography in the surgical management of brainstem gliomas. Neurosurg Focus 2021; 50:E10. [PMID: 33386023 DOI: 10.3171/2020.10.focus20166] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 10/23/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Diffusion tensor imaging (DTI) and diffusion tensor tractography (DTT) have the ability to noninvasively visualize changes in white matter tracts, as well as their relationships with lesions and other structures. DTI/DTT has been increasingly used to improve the safety and results of surgical treatment for lesions in eloquent areas, such as brainstem cavernous malformations. This study aimed to investigate the application value of DTI/DTT in brainstem glioma surgery and to validate the spatial accuracy of reconstructed corticospinal tracts (CSTs). METHODS A retrospective analysis was performed on 54 patients with brainstem gliomas who had undergone surgery from January 2016 to December 2018 at Beijing Tiantan Hospital. All patients underwent preoperative DTI and tumor resection with the assistance of DTT-merged neuronavigation and electrophysiological monitoring. Preoperative conventional MRI and DTI data were collected, and the muscle strength and modified Rankin Scale (mRS) score before and after surgery were measured. The surgical plan was created with the assistance of DTI/DTT findings. The accuracy of DTI/DTT was validated by performing direct subcortical stimulation (DsCS) intraoperatively. Multiple linear regression was used to investigate the relationship between quantitative parameters of DTI/DTT (such as the CST score and tumor-to-CST distance [TCD]) and postoperative muscle strength and mRS scores. RESULTS Among the 54 patients, 6 had normal bilateral CSTs, 12 patients had unilateral CST impairments, and 36 had bilateral CSTs involved. The most common changes in the CSTs were deformation (n = 29), followed by deviation (n = 28) and interruption (n = 27). The surgical approach was changed in 18 cases (33.3%) after accounting for the DTI/DTT results. Among 55 CSTs on which DsCS was performed, 46 (83.6%) were validated as spatially accurate by DsCS. The CST score and TCD were significantly correlated with postoperative muscle strength (r = -0.395, p < 0.001, and r = 0.275, p = 0.004, respectively) and postoperative mRS score (r = 0.430, p = 0.001, and r = -0.329, p = 0.015, respectively). The CST score was independently linearly associated with postoperative muscle strength (t = -2.461, p = 0.016) and the postoperative mRS score (t = 2.052, p = 0.046). CONCLUSIONS DTI/DTT is a valuable tool in the surgical management of brainstem gliomas. With good accuracy, it can help optimize surgical planning, guide tumor resection, and predict the postoperative muscle strength and postoperative quality of life of patients.
Collapse
Affiliation(s)
| | - Lu Kong
- Departments of1Neurosurgery and
| | | | | | | | - Tao Sun
- Departments of1Neurosurgery and
| | - Mingran Wang
- 2Beijing Neurosurgical Institute, Capital Medical University; and.,3Neuroelectrophysiology, Beijing Tiantan Hospital, Capital Medical University
| | - Hui Qiao
- 2Beijing Neurosurgical Institute, Capital Medical University; and.,3Neuroelectrophysiology, Beijing Tiantan Hospital, Capital Medical University
| | - Zhen Wu
- Departments of1Neurosurgery and
| | | | - Liwei Zhang
- Departments of1Neurosurgery and.,4China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China
| |
Collapse
|
33
|
Farrell C, Shi W, Bodman A, Olson JJ. Congress of neurological surgeons systematic review and evidence-based guidelines update on the role of emerging developments in the management of newly diagnosed glioblastoma. J Neurooncol 2020; 150:269-359. [PMID: 33215345 DOI: 10.1007/s11060-020-03607-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/23/2020] [Indexed: 12/12/2022]
Abstract
TARGET POPULATION These recommendations apply to adult patients with newly diagnosed or suspected glioblastoma. IMAGING Question What imaging modalities are in development that may be able to provide improvements in diagnosis, and therapeutic guidance for individuals with newly diagnosed glioblastoma? RECOMMENDATION Level III: It is suggested that techniques utilizing magnetic resonance imaging for diffusion weighted imaging, and to measure cerebral blood and magnetic spectroscopic resonance imaging of N-acetyl aspartate, choline and the choline to N-acetyl aspartate index to assist in diagnosis and treatment planning in patients with newly diagnosed or suspected glioblastoma. SURGERY Question What new surgical techniques can be used to provide improved tumor definition and resectability to yield better tumor control and prognosis for individuals with newly diagnosed glioblastoma? RECOMMENDATIONS Level II: The use of 5-aminolevulinic acid is recommended to improve extent of tumor resection in patients with newly diagnosed glioblastoma. Level II: The use of 5-aminolevulinic acid is recommended to improve median survival and 2 year survival in newly diagnosed glioblastoma patients with clinical characteristics suggesting poor prognosis. Level III: It is suggested that, when available, patients be enrolled in properly designed clinical trials assessing the value of diffusion tensor imaging in improving the safety of patients with newly diagnosed glioblastoma undergoing surgery. NEUROPATHOLOGY Question What new pathology techniques and measurement of biomarkers in tumor tissue can be used to provide improved diagnostic ability, and determination of therapeutic responsiveness and prognosis for patients with newly diagnosed glioblastomas? RECOMMENDATIONS Level II: Assessment of tumor MGMT promoter methylation status is recommended as a significant predictor of a longer progression free survival and overall survival in patients with newly diagnosed with glioblastoma. Level II: Measurement of tumor expression of neuron-glia-2, neurofilament protein, glutamine synthetase and phosphorylated STAT3 is recommended as a predictor of overall survival in patients with newly diagnosed with glioblastoma. Level III: Assessment of tumor IDH1 mutation status is suggested as a predictor of longer progression free survival and overall survival in patients with newly diagnosed with glioblastoma. Level III: Evaluation of tumor expression of Phosphorylated Mitogen-Activated Protein Kinase protein, EGFR protein, and Insulin-like Growth Factor-Binding Protein-3 is suggested as a predictor of overall survival in patients with newly diagnosed with glioblastoma. RADIATION Question What radiation therapy techniques are in development that may be used to provide improved tumor control and prognosis for individuals with newly diagnosed glioblastomas? RECOMMENDATIONS Level III: It is suggested that patients with newly diagnosed glioblastoma undergo pretreatment radio-labeled amino acid tracer positron emission tomography to assess areas at risk for tumor recurrence to assist in radiation treatment planning. Level III: It is suggested that, when available, patients be with newly diagnosed glioblastomas be enrolled in properly designed clinical trials of radiation dose escalation, altered fractionation, or new radiation delivery techniques. CHEMOTHERAPY Question What emerging chemotherapeutic agents or techniques are available to provide better tumor control and prognosis for patients with newly diagnosed glioblastomas? RECOMMENDATION Level III: As no emerging chemotherapeutic agents or techniques were identified in this review that improved tumor control and prognosis it is suggested that, when available, patients with newly diagnosed glioblastomas be enrolled in properly designed clinical trials of chemotherapy. MOLECULAR AND TARGETED THERAPY Question What new targeted therapy agents are available to provide better tumor control and prognosis for individuals with newly diagnosed glioblastomas? RECOMMENDATION Level III: As no new molecular and targeted therapies have clearly provided better tumor control and prognosis it is suggested that, when available, patients with newly diagnosed glioblastomas be enrolled in properly designed clinical trials of molecular and targeted therapies IMMUNOTHERAPY: Question What emerging immunotherapeutic agents or techniques are available to provide better tumor control and prognosis for patients with newly diagnosed glioblastomas? RECOMMENDATION Level III: As no immunotherapeutic agents have clearly provided better tumor control and prognosis it is suggested that, when available, patients with newly diagnosed glioblastomas be enrolled in properly designed clinical trials of immunologically-based therapies. NOVEL THERAPIES Question What novel therapies or techniques are in development to provide better tumor control and prognosis for individuals with newly diagnosed glioblastomas? RECOMMENDATIONS Level II: The use of tumor-treating fields is recommended for patients with newly diagnosed glioblastoma who have undergone surgical debulking and completed concurrent chemoradiation without progression of disease at the time of tumor-treating field therapy initiation. Level II: It is suggested that, when available, enrollment in properly designed studies of vector containing herpes simplex thymidine kinase gene and prodrug therapies be considered in patients with newly diagnosed glioblastoma.
Collapse
Affiliation(s)
- Christopher Farrell
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Wenyin Shi
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Jeffrey J Olson
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
34
|
Ille S, Krieg SM. Functional Mapping for Glioma Surgery, Part 1: Preoperative Mapping Tools. Neurosurg Clin N Am 2020; 32:65-74. [PMID: 33223027 DOI: 10.1016/j.nec.2020.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although intraoperative mapping of brain areas was shown to promote greater extent of resection and reduce functional deficits, this was shown only recently for some noninvasive techniques. Yet, proper surgical planning, indication, and patient consultation require reliable noninvasive techniques. Because functional magnetic resonance imaging, tractography, and neurophysiologic methods like navigated transcranial magnetic stimulation and magnetoencephalography allow identifying eloquent areas prior to resective surgery and tailor the surgical approach, this article provides an overview on the individual strengths and limitations of each modality.
Collapse
Affiliation(s)
- Sebastian Ille
- Department of Neurosurgery, Technical University of Munich, Germany, School of Medicine, Klinikum rechts der Isar, Ismaninger Strasse 22, Munich 81675, Germany
| | - Sandro M Krieg
- Department of Neurosurgery, Technical University of Munich, Germany, School of Medicine, Klinikum rechts der Isar, Ismaninger Strasse 22, Munich 81675, Germany.
| |
Collapse
|
35
|
Kosyrkova AV, Goryainov SA, Ogurtsova AA, Okhlopkov VA, Kravchuk AD, Batalov AI, Afandiev RM, Bayev AA, Pogosbekyan EL, Pronin IN, Zakharova NE, Danilov GV, Strunina YV, Potapov AA. [Comparative analysis of mono- and bipolar pyramidal tract mapping in patients with supratentorial tumors adjacent to motor areas: comparison of data at 64 stimulation points]. ZHURNAL VOPROSY NEĬROKHIRURGII IMENI N. N. BURDENKO 2020; 84:29-40. [PMID: 33095531 DOI: 10.17116/neiro20208405129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To compare monopolar and bipolar mapping in point-by-point fashion by using of threshold amperage, frequency of positive motor responses and the number of muscles involved in response. MATERIAL AND METHODS A prospective non-randomized study included 14 patients with supratentorial tumors who underwent surgery in 2018-2019. All neoplasms were localized within 2 cm from the motor cortex and pyramidal tract. Age of patients ranged from 25 to 74 years. There were 9 women and 5 men. Eight patients had malignant glioma (grade III - 4, grade IV - 4), 6 patients - meningioma. Motor functions were assessed in all patients before and after surgery (1, 7 days and 3 months later) by using of a 5-point scale. In addition to routine neurophysiological monitoring, comparative mono- and bipolar mapping of the pyramidal tract within the bed of excised tumor was carried out at the end of surgery. The points of motor responses were marked. Comparative analysis of mono- and bipolar stimulation at identical points included threshold amperage, frequency of positive motor responses and the number of muscles involved in response (leg, forearm, hand, facial muscles). Brain MRI was performed in early postoperative period for assessment of resection quality. RESULTS There were 64 points of motor responses in 14 patients. The number of these points ranged from 2 to 8 per a patient (mean 5 points). Motor responses were recorded in 57 points during monopolar and bipolar stimulation, in other 7 points - only during monopolar stimulation. Amperage of monopolar stimulation was 3-15 mA, bipolar stimulation - 2.5-25 mA. Threshold amperage (7.37 mA for monopolar stimulation and 8.88 mA for bipolar stimulation; p=0.12), frequency of positive motor responses and the number of muscles involved in response (p=0.1 and p=0.73) were similar. Seven (50%) patients had neurological deterioration in early postoperative period (4 patients with glial tumors and 3 patients with meningiomas). At the same time, only 2 patients (14.3%) had persistent neurological deficit (both patients with infiltrative meningioma). According to postoperative MRI in T1+C mode, resection volume was 100% in 1 patient with contrast-enhanced glioma and 94% in another one. According to FLAIR MRI data, resection volume exceeded 70% in 2 patients with non-enhancing glioma and less than 70% in 2 patients. Meningioma resection volume was estimated according to postoperative T1+C MRI data and made up over 90% in 4 patients. CONCLUSION Monopolar stimulation is a reliable method of pyramidal tract identification in supratentorial brain tumor surgery.
Collapse
Affiliation(s)
| | | | | | | | | | - A I Batalov
- Burdenko Neurosurgical Center, Moscow, Russia
| | | | - A A Bayev
- Burdenko Neurosurgical Center, Moscow, Russia
| | | | - I N Pronin
- Burdenko Neurosurgical Center, Moscow, Russia
| | | | - G V Danilov
- Burdenko Neurosurgical Center, Moscow, Russia
| | | | - A A Potapov
- Burdenko Neurosurgical Center, Moscow, Russia
| |
Collapse
|
36
|
Diffusion- and Perfusion-Weighted Magnetic Resonance Imaging Methods in Nonenhancing Gliomas. World Neurosurg 2020; 141:123-130. [DOI: 10.1016/j.wneu.2020.05.278] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/29/2020] [Accepted: 05/30/2020] [Indexed: 12/21/2022]
|
37
|
Buch VP, McShane BJ, Beatson N, Yang A, Blanke A, Tilden D, Korn M, Chaibainou H, Ramayya A, Wombacher K, Maier S, Marashlian T, Wolf R, Baltuch GH. Focused Ultrasound Thalamotomy with Dentato-Rubro-Thalamic Tractography in Patients with Spinal Cord Stimulators and Cardiac Pacemakers. Stereotact Funct Neurosurg 2020; 98:263-269. [PMID: 32403106 DOI: 10.1159/000507031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 02/27/2020] [Indexed: 11/19/2022]
Abstract
Magnetic resonance image-guided high-intensity focused ultrasound (MRgFUS)-based thermal ablation of the ventral intermediate nucleus of the thalamus (VIM) is a minimally invasive treatment modality for essential tremor (ET). Dentato-rubro-thalamic tractography (DRTT) is becoming increasingly popular for direct targeting of the presumed VIM ablation focus. It is currently unclear if patients with implanted pulse generators (IPGs) can safely undergo MRgFUS ablation and reliably acquire DRTT suitable for direct targeting. We present an 80-year-old male with a spinal cord stimulator (SCS) and an 88-year-old male with a cardiac pacemaker who both underwent MRgFUS for medically refractory ET. Clinical outcomes were measured using the Clinical Rating Scale for Tremor (CRST). DRTT was successfully created and imaging parameter adjustments did not result in any delay in procedural time in either case. In the first case, 7 therapeutic sonications were delivered. The patient improved immediately and durably with a 90% CRST-disability improvement at 6-week follow-up. In our second case, 6 therapeutic sonications were delivered with durable, 75% CRST-disability improvement at 6 weeks. These are the first cases of MRgFUS thalamotomy in patients with IPGs. DRTT targeting and MRgFUS-based thermal ablation can be safely performed in these patients using a 1.5-T MRI.
Collapse
Affiliation(s)
- Vivek P Buch
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA,
| | - Brendan J McShane
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nathan Beatson
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Andrew Yang
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | - Hanane Chaibainou
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ashwin Ramayya
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kirsten Wombacher
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Shannon Maier
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tigran Marashlian
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ronald Wolf
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gordon H Baltuch
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
38
|
Wende T, Hoffmann KT, Meixensberger J. Tractography in Neurosurgery: A Systematic Review of Current Applications. J Neurol Surg A Cent Eur Neurosurg 2020; 81:442-455. [PMID: 32176926 DOI: 10.1055/s-0039-1691823] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The ability to visualize the brain's fiber connections noninvasively in vivo is relatively young compared with other possibilities of functional magnetic resonance imaging. Although many studies showed tractography to be of promising value for neurosurgical care, the implications remain inconclusive. An overview of current applications is presented in this systematic review. A search was conducted for (("tractography" or "fiber tracking" or "fibre tracking") and "neurosurgery") that produced 751 results. We identified 260 relevant articles and added 20 more from other sources. Most publications concerned surgical planning for resection of tumors (n = 193) and vascular lesions (n = 15). Preoperative use of transcranial magnetic stimulation was discussed in 22 of these articles. Tractography in skull base surgery presents a special challenge (n = 29). Fewer publications evaluated traumatic brain injury (TBI) (n = 25) and spontaneous intracranial bleeding (n = 22). Twenty-three articles focused on tractography in pediatric neurosurgery. Most authors found tractography to be a valuable addition in neurosurgical care. The accuracy of the technique has increased over time. There are articles suggesting that tractography improves patient outcome after tumor resection. However, no reliable biomarkers have yet been described. The better rehabilitation potential after TBI and spontaneous intracranial bleeding compared with brain tumors offers an insight into the process of neurorehabilitation. Tractography and diffusion measurements in some studies showed a correlation with patient outcome that might help uncover the neuroanatomical principles of rehabilitation itself. Alternative corticofugal and cortico-cortical networks have been implicated in motor recovery after ischemic stroke, suggesting more complex mechanisms in neurorehabilitation that go beyond current models. Hence tractography may potentially be able to predict clinical deficits and rehabilitation potential, as well as finding possible explanations for neurologic disorders in retrospect. However, large variations of the results indicate a lack of data to establish robust diagnostical concepts at this point. Therefore, in vivo tractography should still be interpreted with caution and by experienced surgeons.
Collapse
Affiliation(s)
- Tim Wende
- Department of Neurosurgery, University Hospital Leipzig, Leipzig, Germany
| | | | | |
Collapse
|
39
|
Vanderweyen DC, Theaud G, Sidhu J, Rheault F, Sarubbo S, Descoteaux M, Fortin D. The role of diffusion tractography in refining glial tumor resection. Brain Struct Funct 2020; 225:1413-1436. [PMID: 32180019 DOI: 10.1007/s00429-020-02056-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 02/28/2020] [Indexed: 12/14/2022]
Abstract
Primary brain tumors are notoriously hard to resect surgically. Due to their infiltrative nature, finding the optimal resection boundary without damaging healthy tissue can be challenging. One potential tool to help make this decision is diffusion-weighted magnetic resonance imaging (dMRI) tractography. dMRI exploits the diffusion of water molecule along axons to generate a 3D modelization of the white matter bundles in the brain. This feature is particularly useful to visualize how a tumor affects its surrounding white matter and plan a surgical path. This paper reviews the different ways in which dMRI can be used to improve brain tumor resection, its benefits and also its limitations. We expose surgical tools that can be paired with dMRI to improve its impact on surgical outcome, such as loading the 3D tractography in the neuronavigation system and direct electrical stimulation to validate the position of the white matter bundles of interest. We also review articles validating dMRI findings using other anatomical investigation techniques, such as postmortem dissections, manganese-enhanced MRI, electrophysiological stimulations, and phantom studies with known ground truth. We will be discussing the areas of the brain where dMRI performs well and where the future challenges are. We will conclude this review with suggestions and take home messages for neurosurgeons, tractographers, and vendors for advancing the field and on how to benefit from tractography's use in clinical practice.
Collapse
Affiliation(s)
- Davy Charles Vanderweyen
- Department of Surgery, Division of Neurosurgery, Faculty of Medicine, University of Sherbrooke, 3001 12 Ave N, Sherbrooke, QC, J1H 5H3, Canada.
| | - Guillaume Theaud
- Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science Department, University of Sherbrooke, 2500 Boulevard Université, Sherbrooke, QC, J1K2R1, Canada
| | - Jasmeen Sidhu
- Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science Department, University of Sherbrooke, 2500 Boulevard Université, Sherbrooke, QC, J1K2R1, Canada
| | - François Rheault
- Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science Department, University of Sherbrooke, 2500 Boulevard Université, Sherbrooke, QC, J1K2R1, Canada
| | - Silvio Sarubbo
- Division of Neurosurgery, Emergency Area, Structural and Functional Connectivity Lab Project, "S. Chiara" Hospital, Azienda Provinciale Per I Servizi Sanitari (APSS), Trento, Italy
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science Department, University of Sherbrooke, 2500 Boulevard Université, Sherbrooke, QC, J1K2R1, Canada
| | - David Fortin
- Department of Surgery, Division of Neurosurgery, Faculty of Medicine, University of Sherbrooke, 3001 12 Ave N, Sherbrooke, QC, J1H 5H3, Canada
| |
Collapse
|
40
|
Hameed NUF, Qiu T, Zhuang D, Lu J, Yu Z, Wu S, Wu B, Zhu F, Song Y, Chen H, Wu J. Transcortical insular glioma resection: clinical outcome and predictors. J Neurosurg 2019; 131:706-716. [PMID: 30485243 DOI: 10.3171/2018.4.jns18424] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/23/2018] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Insular lobe gliomas continue to challenge neurosurgeons due to their complex anatomical position. Transcortical and transsylvian corridors remain the primary approaches for reaching the insula, but the adoption of one technique over the other remains controversial. The authors analyzed the transcortical approach of resecting insular gliomas in the context of patient tumor location based on the Berger-Sinai classification, achievable extents of resection (EORs), overall survival (OS), and postsurgical neurological outcome. METHODS The authors studied 255 consecutive cases of insular gliomas that underwent transcortical tumor resection in their division. Tumor molecular pathology, location, EOR, postoperative neurological outcome for each insular zone, and the accompanying OS were incorporated into the analysis to determine the value of this surgical approach. RESULTS Lower-grade insular gliomas (LGGs) were more prevalent (63.14%). Regarding location, giant tumors (involving all insular zones) were most prevalent (58.82%) followed by zone I+IV (anterior) tumors (20.39%). In LGGs, tumor location was an independent predictor of survival (p = 0.003), with giant tumors demonstrating shortest patient survival (p = 0.003). Isocitrate dehydrogenase 1 (IDH1) mutation was more likely to be associated with giant tumors (p < 0.001) than focal tumors located in a regional zone. EOR correlated with survival in both LGG (p = 0.001) and higher-grade glioma (HGG) patients (p = 0.008). The highest EORs were achieved in anterior-zone LGGs (p = 0.024). In terms of developing postoperative neurological deficits, patients with giant tumors were more susceptible (p = 0.038). Postoperative transient neurological deficit was recorded in 12.79%, and permanent deficit in 15.70% of patients. Patients who developed either transient or permanent postsurgical neurological deficits exhibited poorer survival (p < 0.001). CONCLUSIONS The transcortical surgical approach can achieve maximal tumor resection in all insular zones. In addition, the incorporation of adjunct technologies such as multimodal brain imaging and mapping of cortical and subcortical eloquent brain regions into the transcortical approach favors postoperative neurological outcomes, and prolongs patient survival.
Collapse
Affiliation(s)
- N U Farrukh Hameed
- 1Glioma Surgery Division, Neurosurgery Department of Huashan Hospital, Fudan University
| | - Tianming Qiu
- 1Glioma Surgery Division, Neurosurgery Department of Huashan Hospital, Fudan University
| | - Dongxiao Zhuang
- 1Glioma Surgery Division, Neurosurgery Department of Huashan Hospital, Fudan University
| | - Junfeng Lu
- 1Glioma Surgery Division, Neurosurgery Department of Huashan Hospital, Fudan University
| | - Zhengda Yu
- 1Glioma Surgery Division, Neurosurgery Department of Huashan Hospital, Fudan University
| | - Shuai Wu
- 1Glioma Surgery Division, Neurosurgery Department of Huashan Hospital, Fudan University
| | - Bin Wu
- 1Glioma Surgery Division, Neurosurgery Department of Huashan Hospital, Fudan University
| | - Fengping Zhu
- 1Glioma Surgery Division, Neurosurgery Department of Huashan Hospital, Fudan University
| | - Yanyan Song
- 2Department of Biostatistics, Medical School of Shanghai Jiaotong University; and
| | - Hong Chen
- 3Department of Pathology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinsong Wu
- 1Glioma Surgery Division, Neurosurgery Department of Huashan Hospital, Fudan University
| |
Collapse
|
41
|
Garcia-Garcia S, Kakaizada S, Oleaga L, Benet A, Rincon-Toroella J, González-Sánchez JJ. Presurgical simulation for neuroendoscopic procedures: Virtual study of the integrity of neurological pathways using diffusion tensor imaging tractography. Neurol India 2019; 67:763-769. [PMID: 31347551 PMCID: PMC6746412 DOI: 10.4103/0028-3886.263199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Background: White matter (WM) transgression is an unexplored concept in neuroendoscopy. Diffusion tensor image (DTI) tractography could be implemented as a planning and postoperative evaluation tool in functional disconnection procedures (FDPs), which are, currently, the subject of technological innovations. We intend to prove the usefulness of this planning method focused on the assessment of WM injury that is suitable for planning FDPs. Methods: Ten cranial magnetic resonance studies (20 sides) without pathological findings were processed. Fascicles were defined by two regions of interest (ROIs) using the fiber assignment method by the continuous tracking approach. Using three-dimensional (3D) simulation and DTI tractography, we created an 8-mm virtual endoscope and an uninjured inferior fronto-occipital fasciculus (IFOF) from two ROIs. The injured tract was generated using a third ROI built from the 3D model of the intersection of the oriented trajectory of the endoscope with the fascicle. Data and images were quantitatively and qualitatively analyzed. Results: The average percentage of the injured fibers was 32.0% (range: 12.4%–70%). The average intersected volume was 1.1 cm3 (range: 0.3–2.3 cm3). Qualitative analysis showed the inferior medial quadrant of the inferior fronto-occipital fasciculus (IFOF) as the most frequently injured region. No hemispherical asymmetry was found (P > 0.5). Conclusion: DTI tractography is a useful surgical planning tool that could be implemented in several endoscopic procedures. Together with a functional atlas, the presented technique provides a noninvasive method to assess the potential sequelae and thus to optimize the surgical route. The suggested method could be implemented to analyze pathological WM fascicles and to assess the surgical results of FDP such as hemispherotomy or amygdalohippocampectomy. More studies are needed to overcome the limitations of the tractography based information and to develop more anatomically and functionally reliable planning systems.
Collapse
Affiliation(s)
| | - Sofia Kakaizada
- Department of Neurosurgery, University of California, San Francisco, California, USA
| | - Laura Oleaga
- Department of Radiology, Hospital Clinic, Barcelona, Spain
| | - Arnau Benet
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, Arizona, USA
| | | | | |
Collapse
|
42
|
Han SJ, Morshed RA, Troncon I, Jordan KM, Henry RG, Hervey-Jumper SL, Berger MS. Subcortical stimulation mapping of descending motor pathways for perirolandic gliomas: assessment of morbidity and functional outcome in 702 cases. J Neurosurg 2019; 131:201-208. [PMID: 30117770 DOI: 10.3171/2018.3.jns172494] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 03/19/2018] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Herein, the authors report their experience with intraoperative stimulation mapping to locate the descending subcortical motor pathways in patients undergoing surgery for hemispheric gliomas within or adjacent to the rolandic cortex, with particular description of the morbidity and functional outcomes associated with this technique. METHODS This is a retrospective analysis of patients who, in the period between 1997 and 2016, had undergone resection of hemispheric perirolandic gliomas within or adjacent to descending motor pathways. Data regarding intraoperative stimulation mapping and patient postoperative neurological status were collected. RESULTS Of 702 patients, stimulation mapping identified the descending motor pathways in 300 cases (43%). A new or worsened motor deficit was seen postoperatively in 210 cases (30%). Among these 210 cases, there was improvement in motor function to baseline levels by 3 months postoperatively in 161 cases (77%), whereas the deficit remained in 49 cases (23%). The majority (65%) of long-term deficits (persisting beyond 3 months) were mild or moderate (antigravity strength or better). On multivariate analysis, patients in whom the subcortical motor pathways had been identified with stimulation mapping during surgery were more likely to develop an additional and/or worsened motor deficit postoperatively than were those in whom the subcortical pathways had not been found (45% vs 19%, respectively, p < 0.001). This difference remained when considering the likelihood of a long-term deficit (i.e., persisting > 3 months; 12% vs 3.2%, p < 0.001). A higher tumor grade and the presence of a preoperative motor deficit were also associated with higher rates of motor deficits persisting long-term. A region of restricted diffusion adjacent to the resection cavity was seen in 20 patients with long-term deficits (41%) and was more common in cases in which the motor pathways were not identified (69%). Long-term deficits that occur in settings in which the subcortical motor pathways are not identified seem in large part due to ischemic injury to descending tracts. CONCLUSIONS Stimulation mapping allows surgeons to identify the descending motor pathways during resection of tumors in perirolandic regions and to attain an acceptable rate of morbidity in these high-risk cases.
Collapse
Affiliation(s)
- Seunggu J Han
- 1Department of Neurological Surgery, University of California, San Francisco, California
- 2Department of Neurological Surgery, Oregon Health and Science University, Portland, Oregon
| | - Ramin A Morshed
- 1Department of Neurological Surgery, University of California, San Francisco, California
| | - Irene Troncon
- 3Department of Neurological Surgery, Padua University Hospital, Padua, Italy; and
| | - Kesshi M Jordan
- 4Department of Neurology, University of California, San Francisco, California
| | - Roland G Henry
- 4Department of Neurology, University of California, San Francisco, California
| | - Shawn L Hervey-Jumper
- 1Department of Neurological Surgery, University of California, San Francisco, California
| | - Mitchel S Berger
- 1Department of Neurological Surgery, University of California, San Francisco, California
| |
Collapse
|
43
|
Costabile JD, Alaswad E, D'Souza S, Thompson JA, Ormond DR. Current Applications of Diffusion Tensor Imaging and Tractography in Intracranial Tumor Resection. Front Oncol 2019; 9:426. [PMID: 31192130 PMCID: PMC6549594 DOI: 10.3389/fonc.2019.00426] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 05/07/2019] [Indexed: 01/01/2023] Open
Abstract
In the treatment of brain tumors, surgical intervention remains a common and effective therapeutic option. Recent advances in neuroimaging have provided neurosurgeons with new tools to overcome the challenge of differentiating healthy tissue from tumor-infiltrated tissue, with the aim of increasing the likelihood of maximizing the extent of resection volume while minimizing injury to functionally important regions. Novel applications of diffusion tensor imaging (DTI), and DTI-derived tractography (DDT) have demonstrated that preoperative, non-invasive mapping of eloquent cortical regions and functionally relevant white matter tracts (WMT) is critical during surgical planning to reduce postoperative deficits, which can decrease quality of life and overall survival. In this review, we summarize the latest developments of applying DTI and tractography in the context of resective surgery and highlight its utility within each stage of the neurosurgical workflow: preoperative planning and intraoperative management to improve postoperative outcomes.
Collapse
Affiliation(s)
- Jamie D Costabile
- Department of Neurosurgery, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Elsa Alaswad
- Department of Neurosurgery, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Shawn D'Souza
- Department of Neurosurgery, School of Medicine, University of Colorado, Aurora, CO, United States
| | - John A Thompson
- Department of Neurosurgery, School of Medicine, University of Colorado, Aurora, CO, United States
| | - D Ryan Ormond
- Department of Neurosurgery, School of Medicine, University of Colorado, Aurora, CO, United States
| |
Collapse
|
44
|
Conti Nibali M, Rossi M, Sciortino T, Riva M, Gay LG, Pessina F, Bello L. Preoperative surgical planning of glioma: limitations and reliability of fMRI and DTI tractography. J Neurosurg Sci 2018; 63:127-134. [PMID: 30290696 DOI: 10.23736/s0390-5616.18.04597-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Brain mapping techniques (intraoperative neurophysiology and neuropsychology) represent the gold standard in glioma surgery, and particularly in glioma resection. Since the introduction of MRI in the clinical practice, several advanced applications have been developed, like functional MRI (fMRI) and diffusion imaging-based tractography (DTI), which both have an application in glioma surgery. fMRI allows to identify cortical areas related to a specific function, DTI allows to reconstruct a model of the sub-cortical connectivity. This paper describes the clinical application of fMRI and DTI, enlightening sensitivity and specificity in comparison to gold standard and underlining their limitations in surgical decision making.
Collapse
Affiliation(s)
- Marco Conti Nibali
- Unit of Neurosurgical Oncology, Department of Oncology and Hemato-Oncology, Humanitas Research Hospital, IRCCS, University of Milan, Milan, Italy -
| | - Marco Rossi
- Unit of Neurosurgical Oncology, Department of Oncology and Hemato-Oncology, Humanitas Research Hospital, IRCCS, University of Milan, Milan, Italy
| | - Tommaso Sciortino
- Unit of Neurosurgical Oncology, Department of Oncology and Hemato-Oncology, Humanitas Research Hospital, IRCCS, University of Milan, Milan, Italy
| | - Marco Riva
- Unit of Neurosurgical Oncology, Department of Oncology and Hemato-Oncology, Humanitas Research Hospital, IRCCS, University of Milan, Milan, Italy.,Department of Medical Biotechnology and Translational Medicine, Humanitas Research Hospital, IRCCS, University of Milan, Milan, Italy
| | - Lorenzo G Gay
- Unit of Neurosurgical Oncology, Department of Oncology and Hemato-Oncology, Humanitas Research Hospital, IRCCS, University of Milan, Milan, Italy
| | - Federico Pessina
- Unit of Neurosurgical Oncology, Department of Oncology and Hemato-Oncology, Humanitas Research Hospital, IRCCS, University of Milan, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Lorenzo Bello
- Unit of Neurosurgical Oncology, Department of Oncology and Hemato-Oncology, Humanitas Research Hospital, IRCCS, University of Milan, Milan, Italy
| |
Collapse
|
45
|
Advances in Glioblastoma Operative Techniques. World Neurosurg 2018; 116:529-538. [DOI: 10.1016/j.wneu.2018.04.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 02/13/2018] [Indexed: 11/24/2022]
|
46
|
Zhang N, Yu Z, Hameed NUF, Xu G, Song Y, Wu B, Zhang J, Qiu T, Zhuang D, Lu J, Wu J. Long-Term Functional and Oncologic Outcomes of Glioma Surgery with and without Intraoperative Neurophysiologic Monitoring: A Retrospective Cohort Study in a Single Center. World Neurosurg 2018; 119:e94-e105. [PMID: 30026163 DOI: 10.1016/j.wneu.2018.07.051] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 07/04/2018] [Accepted: 07/05/2018] [Indexed: 01/22/2023]
Abstract
OBJECTIVE To evaluate long-term functional and survival outcomes of patients with glioma after intraoperative neurophysiologic monitoring (IONM) application. METHODS A total of 856 patients with glioma, who underwent tumor resection between October 2010 and March 2016, were included in this retrospective cohort study. All patients were stratified into IONM (439 patients) and non-IONM groups (417 patients). The primary outcome measured was overall survival (OS), and the secondary outcome measured was rate of late neurologic deficits. Analyses were performed using univariate tests and multivariate logistic regression and Cox proportional hazard model. RESULTS The 2 cohorts were well balanced with respect to baseline characteristics. Univariate survival analysis showed longer OS in the IONM group than that in the non-IONM group (P = 0.036), especially in patients with high-grade astrocytic tumor (P = 0.034). The IONM group showed a lower rate of neurologic deficits than did the non-IONM group. Multivariate analysis showed that IONM was a favorable factor of OS (odds ratio, 0.776; P = 0.046) and late neurologic function (odds ratio, 0.583; P = 0.039). Dominant hemispheric and eloquent location of glioma had no association with OS. CONCLUSIONS Application of IONM is beneficial to long-term functional and oncologic outcomes of patients with glioma.
Collapse
Affiliation(s)
- Nan Zhang
- Glioma Surgery Division, Neurological Surgery Department of Huashan Hospital, Fudan University, Shanghai, China
| | - Zhengda Yu
- Glioma Surgery Division, Neurological Surgery Department of Huashan Hospital, Fudan University, Shanghai, China
| | - N U Farrukh Hameed
- Glioma Surgery Division, Neurological Surgery Department of Huashan Hospital, Fudan University, Shanghai, China
| | - Geng Xu
- Glioma Surgery Division, Neurological Surgery Department of Huashan Hospital, Fudan University, Shanghai, China
| | - Yanyan Song
- Department of Biostatistics, Institute of Medical Sciences, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bin Wu
- Glioma Surgery Division, Neurological Surgery Department of Huashan Hospital, Fudan University, Shanghai, China
| | - Jie Zhang
- Glioma Surgery Division, Neurological Surgery Department of Huashan Hospital, Fudan University, Shanghai, China
| | - Tianming Qiu
- Glioma Surgery Division, Neurological Surgery Department of Huashan Hospital, Fudan University, Shanghai, China
| | - Dongxiao Zhuang
- Glioma Surgery Division, Neurological Surgery Department of Huashan Hospital, Fudan University, Shanghai, China
| | - Junfeng Lu
- Glioma Surgery Division, Neurological Surgery Department of Huashan Hospital, Fudan University, Shanghai, China.
| | - Jinsong Wu
- Glioma Surgery Division, Neurological Surgery Department of Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
47
|
Javadi SA, Nabavi A, Giordano M, Faghihzadeh E, Samii A. Evaluation of Diffusion Tensor Imaging-Based Tractography of the Corticospinal Tract: A Correlative Study With Intraoperative Magnetic Resonance Imaging and Direct Electrical Subcortical Stimulation. Neurosurgery 2018; 80:287-299. [PMID: 28175893 DOI: 10.1227/neu.0000000000001347] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 05/07/2016] [Indexed: 11/19/2022] Open
Abstract
Background The accuracy of intraoperative diffusion tensor imaging (DTI)–based tractography of the corticospinal tract (CST) is crucial for its use in neurosurgical planning and its implementation in image-guided surgery. To the best of our knowledge, this is the largest prospective correlative study of the intraoperative DTI tractography of the CST and intraoperative direct electrical subcortical stimulation (DESS) of the CST, with application of intraoperative magnetic resonance imaging (iMR). Objective To evaluate intraoperatively acquired DTI-based tractography of the CST in correlation with DESS. Methods Twenty patients with gliomas (grades II-IV) adjacent to the CST were included in this prospective study. Bilateral DTI tractography of the CST was performed pre- and intraoperatively with application of 1.5-T iMRI and the results correlated and compared with the prevailing gold standard of DESS. Sensitivity, specificity, positive predictive value, and negative predictive value were considered to quantify the correlation of DTI tractography with DESS. The intensity of DESS was correlated with the distance from the CST. Moreover, the tissue quality of stimulation points at the wall of the resection cavity was evaluated with 5-aminolevulinic acid. The clinical and volumetric outcomes at postoperative and follow-up periods were also analyzed. Results The mean ± SD age of the patients was 54.9 ± 12 years. A total of 40 CSTs were reconstructed and 36 stimulations were included at 20 pathological CSTs, resulting in 18 true-positive, 5 false-positive, and 13 true-negative responses. The sensitivity, specificity, positive predictive value, and negative predictive value of DTI tractography to localize the CST were 100%, 72%, 78%, and 100%, respectively. DTI-based tractography correlated well at 86% of DESSs, and a linear correlation was detected between the intensity of DESS and the distance. All of the patients improved clinically, and the mean extent of resection was 97.2%. 5-Aminolevulinic acid was valuable in visualizing tumor infiltration in the false-positive cases, suggesting an infiltration of the CST at stimulation points. Conclusion CST visualization in the iMRI setting appears to have a high sensitivity in accurately localizing the area of the CST adjacent to the resection cavity in glioma surgery. More prospective studies with a large sample size are needed to further support the results.
Collapse
Affiliation(s)
- Seyed A Javadi
- Department of Neurosurgery, Interna-tional Neuroscience Institute, Hannover, Germany
| | - Arya Nabavi
- Brain and Spinal Injury Research Center (BASIR), Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mario Giordano
- Brain and Spinal Injury Research Center (BASIR), Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Faghihzadeh
- Department of Biostatistics, School of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Samii
- Brain and Spinal Injury Research Center (BASIR), Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
48
|
Meyer EJ, Gaggl W, Gilloon B, Swan B, Greenstein M, Voss J, Hussain N, Holdsworth RL, Nair VA, Meyerand ME, Kuo JS, Baskaya MK, Field AS, Prabhakaran V. The Impact of Intracranial Tumor Proximity to White Matter Tracts on Morbidity and Mortality: A Retrospective Diffusion Tensor Imaging Study. Neurosurgery 2018; 80:193-200. [PMID: 28173590 DOI: 10.1093/neuros/nyw040] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 11/18/2016] [Indexed: 02/02/2023] Open
Abstract
Background Using diffusion tensor imaging (DTI) in neurosurgical planning allows identification of white matter tracts and has been associated with a reduction in postoperative functional deficits. Objective This study explores the relationship between the lesion-to-tract distance (LTD) and postoperative morbidity and mortality in patients with brain tumors in order to evaluate the role of DTI in predicting postoperative outcomes. Methods Adult patients with brain tumors (n = 60) underwent preoperative DTI. Three major white matter pathways (superior longitudinal fasciculi [SLF], cingulum, and corticospinal tract) were identified using DTI images, and the shortest LTD was measured for each tract. Postoperative morbidity and mortality information was collected from electronic medical records. Results The ipsilesional corticospinal tract LTD and left SLF LTD were significantly associated with the occurrence rate of total postoperative motor (P = .018) and language (P < .001) deficits, respectively. The left SLF LTD was also significantly associated with the occurrence rate of new postoperative language deficits (P = .003), and the LTD threshold that best predicted this occurrence was 1 cm (P < .001). Kaplan–Meier log-rank survival analyses in patients having high-grade tumors demonstrated a significantly higher mortality for patients with a left SLF LTD <1 cm (P = .01). Conclusion Measuring tumor proximity to major white matter tracts using DTI can inform clinicians of the likelihood of postoperative functional deficits. A distance of 1 cm or less from eloquent white matter structures most significantly predicts the occurrence of new deficits with current surgical and imaging techniques.
Collapse
Affiliation(s)
- Erin J Meyer
- Departments of Radiology, Case Western Reserve Medical School Cleveland, Ohio, USA.,School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Wolfgang Gaggl
- Departments of Radiology, Case Western Reserve Medical School Cleveland, Ohio, USA
| | - Benjamin Gilloon
- Departments of Radiology, Case Western Reserve Medical School Cleveland, Ohio, USA
| | - Benjamin Swan
- Departments of Radiology, Case Western Reserve Medical School Cleveland, Ohio, USA
| | - Max Greenstein
- Departments of Radiology, Case Western Reserve Medical School Cleveland, Ohio, USA
| | - Jed Voss
- Departments of Radiology, Case Western Reserve Medical School Cleveland, Ohio, USA
| | - Namath Hussain
- Department of Neurosurgery, Penn State Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Ryan L Holdsworth
- Departments of Radiology, Case Western Reserve Medical School Cleveland, Ohio, USA.,University of Wisconsin Madison Hospital and Clinics, Madison, Wisconsin, USA
| | - Veena A Nair
- Departments of Radiology, Case Western Reserve Medical School Cleveland, Ohio, USA
| | - M Elizabeth Meyerand
- Medical Physics, School of Health, University of Wisconsin, Madison, USA.,Biomedical Engineering, University of Wisconsin, Madison, USA
| | - John S Kuo
- Neurological Surgery, University of Wisconsin Medical School, Madison, Wisconsin, USA
| | - Mustafa K Baskaya
- University of Wisconsin Madison Hospital and Clinics, Madison, Wisconsin, USA.,Neurological Surgery, University of Wisconsin Medical School, Madison, Wisconsin, USA
| | - Aaron S Field
- Departments of Radiology, Case Western Reserve Medical School Cleveland, Ohio, USA.,Biomedical Engineering, University of Wisconsin, Madison, USA
| | - Vivek Prabhakaran
- Departments of Radiology, Case Western Reserve Medical School Cleveland, Ohio, USA.,Medical Physics, School of Health, University of Wisconsin, Madison, USA
| |
Collapse
|
49
|
Hou Z, Cai X, Li H, Zeng C, Wang J, Gao Z, Zhang M, Dou W, Zhang N, Zhang L, Xie J. Quantitative Assessment of Invasion of High-Grade Gliomas Using Diffusion Tensor Magnetic Resonance Imaging. World Neurosurg 2018; 113:e561-e567. [PMID: 29482009 DOI: 10.1016/j.wneu.2018.02.095] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/14/2018] [Accepted: 02/15/2018] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To determine heterogeneity of high-grade glioma (HGG) and its surrounding area and explore quantitative analysis of invasion of HGG using diffusion tensor imaging. METHODS This study included 14 patients with HGG and preoperative magnetic resonance imaging and diffusion tensor imaging examinations. Three regions of interest were placed. Apparent diffusion coefficient (ADC) and fractional anisotropy (FA) values of these regions of interest were measured, and specimens from the 3 regions of interest were obtained under navigation guidance. Postoperative examinations of specimens were carried out. Correlations between ADC and FA values and tumor cell density were evaluated. RESULTS Median survival was 36.7 months. As distance from the tumor increased, the number of tumor cells significantly decreased. Regarding levels of matrix metalloproteinase-9 and Ki-67, only the differences between tumor and distances of 1 cm and 2 cm away from the tumor were statistically significant. For analysis of the relationship between tumor cell density and ADC and FA values, the discriminant formulas were as follows: G1 = -13.678 + 14984.791 (X) + 14443.847 (Y) (tumor cell density ≥10%); G2 = -11.649 + 14443.847 (X) + 33.285 (Y) (tumor cell density <10%). CONCLUSIONS We verified the heterogeneity of HGG and its surrounding area and found that patients with extensive resection may have longer survival. We also found a few formulas using FA and ADC values to predict tumor cell density.
Collapse
Affiliation(s)
- Zonggang Hou
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xu Cai
- Department of Neurosurgery, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Huan Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Chun Zeng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jiangfei Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Zhixian Gao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Mingyu Zhang
- Department of Radiology, Beijing Neurosurgical Institute, Beijing, China
| | - Weibei Dou
- Department of Electronic Engineering, Tsinghua University, Beijing, China
| | - Ning Zhang
- Health Management and Education Institute, Capital Medical University, Beijing, China
| | - Liwei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jian Xie
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China.
| |
Collapse
|
50
|
Salama GR, Heier LA, Patel P, Ramakrishna R, Magge R, Tsiouris AJ. Diffusion Weighted/Tensor Imaging, Functional MRI and Perfusion Weighted Imaging in Glioblastoma-Foundations and Future. Front Neurol 2018; 8:660. [PMID: 29403420 PMCID: PMC5786563 DOI: 10.3389/fneur.2017.00660] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/22/2017] [Indexed: 01/20/2023] Open
Abstract
In this article, we review the basics of diffusion tensor imaging and functional MRI, their current utility in preoperative neurosurgical mapping, and their limitations. We also discuss potential future applications, including implementation of resting state functional MRI. We then discuss perfusion and diffusion-weighted imaging and their application in advanced neuro-oncologic practice. We explain how these modalities can be helpful in guiding surgical biopsies and differentiating recurrent tumor from treatment related changes.
Collapse
Affiliation(s)
- Gayle R Salama
- Department of Neuroradiology, Weill Cornell Medical College, New York, NY, United States
| | - Linda A Heier
- Department of Neuroradiology, Weill Cornell Medical College, New York, NY, United States
| | - Praneil Patel
- Department of Neuroradiology, Weill Cornell Medical College, New York, NY, United States
| | - Rohan Ramakrishna
- Department of Neurological Surgery, Weill Cornell Medical College, New York, NY, United States
| | - Rajiv Magge
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | | |
Collapse
|