1
|
Tabarestani TQ, Drossopoulos PN, Huang CC, Bartlett AM, Paturu MR, Shaffrey CI, Chi JH, Ray WZ, Goodwin CR, Amrhein TJ, Abd-El-Barr MM. The Importance of Planning Ahead: A Three-Dimensional Analysis of the Novel Trans-Facet Corridor for Posterior Lumbar Interbody Fusion Using Segmentation Technology. World Neurosurg 2024; 188:e247-e258. [PMID: 38777315 DOI: 10.1016/j.wneu.2024.05.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND The rise of minimally invasive lumbar fusions and advanced imaging technologies has facilitated the introduction of novel surgical techniques with the trans-facet approach being one of the newest additions. We aimed to quantify any pathology-driven anatomic changes to the trans-facet corridor, which could thereby alter the ideal laterality of approach to the disc space. METHODS In this retrospective cohort study, we measured the areas and maximum permissible cannula diameters of the trans-facet corridor using commercially available software (BrainLab, Munich, Germany). Exiting and traversing nerve roots, thecal sacs, and lumbar vertebrae were manually segmented on T2-SPACE magnetic resonance imaging. Spondylolisthesis, disc protrusions, and disc space heights were recorded. RESULTS A total of 118 trans-facet corridors were segmented bilaterally in 16 patients (65.6 ± 12.1 years, 43.8% female, body mass index 29.2 ± 5.1 kg/m2). The mean areas at L1-L2, L2-L3, L3-L4, and L4-L5 were 89.4 ± 24.9 mm2, 124 ± 39.4 mm2, 123 ± 26.6 mm2, and 159 ± 42.7 mm2, respectively. The mean permissible cannula diameter at the same levels were 7.85 ± 1.43 mm, 8.98 ± 1.72 mm, 8.93 ± 1.26 mm, and 10.2 ± 1.94 mm, respectively. Both parameters increased caudally. Higher degrees for spondylolisthesis were associated with larger areas and maximum cannula diameters on regression analysis (P < 0.001). CONCLUSIONS Our results illustrate that pathology, like spondylolisthesis, can increase the area of the trans-facet corridor. By understanding this effect, surgeons can better decide on the optimal approach to the disc while taking into consideration a patient's unique anatomy.
Collapse
Affiliation(s)
- Troy Q Tabarestani
- Department of Neurosurgery, Duke University School of Medicine, Durham, North Carolina, USA.
| | - Peter N Drossopoulos
- Department of Neurosurgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Chuan-Ching Huang
- Department of Neurosurgery, Duke University Hospital, Durham, North Carolina, USA
| | - Alyssa M Bartlett
- Department of Neurosurgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Mounica R Paturu
- Department of Neurosurgery, Duke University Hospital, Durham, North Carolina, USA
| | | | - John H Chi
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, North Carolina, USA
| | - Wilson Z Ray
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - C Rory Goodwin
- Department of Neurosurgery, Duke University Hospital, Durham, North Carolina, USA
| | - Timothy J Amrhein
- Department of Radiology, Duke University Hospital, Durham, North Carolina, USA
| | | |
Collapse
|
2
|
Tabarestani TQ, Salven DS, Sykes DAW, Bardeesi AM, Bartlett AM, Wang TY, Paturu MR, Dibble CF, Shaffrey CI, Ray WZ, Chi JH, Wiggins WF, Abd-El-Barr MM. Using Novel Segmentation Technology to Define Safe Corridors for Minimally Invasive Posterior Lumbar Interbody Fusion. Oper Neurosurg (Hagerstown) 2024; 27:14-22. [PMID: 38149852 DOI: 10.1227/ons.0000000000001046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/15/2023] [Indexed: 12/28/2023] Open
Abstract
BACKGROUND AND OBJECTIVES There has been a rise in minimally invasive methods to access the intervertebral disk space posteriorly given their decreased tissue destruction, lower blood loss, and earlier return to work. Two such options include the percutaneous lumbar interbody fusion through the Kambin triangle and the endoscopic transfacet approach. However, without accurate preoperative visualization, these approaches carry risks of damaging surrounding structures, especially the nerve roots. Using novel segmentation technology, our goal was to analyze the anatomic borders and relative sizes of the safe triangle, trans-Kambin, and the transfacet corridors to assist surgeons in planning a safe approach and determining cannula diameters. METHODS The areas of the safe triangle, Kambin, and transfacet corridors were measured using commercially available software (BrainLab, Munich, Germany). For each approach, the exiting nerve root, traversing nerve roots, theca, disk, and vertebrae were manually segmented on 3-dimensional T2-SPACE magnetic resonance imaging using a region-growing algorithm. The triangles' borders were delineated ensuring no overlap between the area and the nerves. RESULTS A total of 11 patients (65.4 ± 12.5 years, 33.3% female) were retrospectively reviewed. The Kambin, safe, and transfacet corridors were measured bilaterally at the operative level. The mean area (124.1 ± 19.7 mm 2 vs 83.0 ± 11.7 mm 2 vs 49.5 ± 11.4 mm 2 ) and maximum permissible cannula diameter (9.9 ± 0.7 mm vs 6.8 ± 0.5 mm vs 6.05 ± 0.7 mm) for the transfacet triangles were significantly larger than Kambin and the traditional safe triangles, respectively ( P < .001). CONCLUSION We identified, in 3-dimensional, the borders for the transfacet corridor: the traversing nerve root extending inferiorly until the caudal pedicle, the theca medially, and the exiting nerve root superiorly. These results illustrate the utility of preoperatively segmenting anatomic landmarks, specifically the nerve roots, to help guide decision-making when selecting the optimal operative approach.
Collapse
Affiliation(s)
- Troy Q Tabarestani
- Department of Neurosurgery, Duke University School of Medicine, Durham , North Carolina , USA
| | - David S Salven
- Department of Neurosurgery, Duke University School of Medicine, Durham , North Carolina , USA
| | - David A W Sykes
- Department of Neurosurgery, Duke University School of Medicine, Durham , North Carolina , USA
| | - Anas M Bardeesi
- Department of Neurosurgery, Duke University Hospital, Durham , North Carolina , USA
| | - Alyssa M Bartlett
- Department of Neurosurgery, Duke University School of Medicine, Durham , North Carolina , USA
| | - Timothy Y Wang
- Department of Neurosurgery, Duke University Hospital, Durham , North Carolina , USA
| | - Mounica R Paturu
- Department of Neurosurgery, Duke University Hospital, Durham , North Carolina , USA
| | - Christopher F Dibble
- Department of Neurosurgery, Duke University Hospital, Durham , North Carolina , USA
| | | | - Wilson Z Ray
- Department of Neurosurgery, Washington University, St. Louis , Missouri , USA
| | - John H Chi
- Department of Neurosurgery, Brigham and Women's Hospital, Boston , Massachusetts , USA
| | - Walter F Wiggins
- Department of Radiology, Duke University Hospital, Durham , North Carolina , USA
| | | |
Collapse
|
3
|
Guo X, Jin J, Chen J, Liu J. Preoperative application of CT and MRI registration in lumbar disc herniation endoscopic surgery could improve the postoperative rehabilitation of patients. Am J Transl Res 2024; 16:2453-2463. [PMID: 39006261 PMCID: PMC11236630 DOI: 10.62347/wqkf7193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/22/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Percutaneous Endoscopic Lumbar Discectomy (PELD) has emerged as routine treatment for lumbar disc herniation (LDH) due to its minimal invasiveness and quick recovery. However, PELD demands high precision from the surgeon, as the risk of intraoperative complications is substantial, including potential damage to the nerve root and dura, and a higher likelihood of recurrence post-surgery. Thus, preoperative planning utilizing CT and MRI imaging is essential. METHODS In this study, the clinical data of 140 patients treated with PELD for LDH from January 2021 to December 2023 were retrospectively analyzed. Patients were categorized into two groups based on whether CT and MRI registration (CMR) was employed for surgical planning: a CMR group (n=68) and a control group (n=72). Data collected included surgery time, hospital stay duration, and scores from the Visual Analog Scale (VAS) for low back and leg pain, as well as the Japanese Orthopaedic Association Lumbar Spine Score (JOA). Differences between the two groups were assessed using the Student's t-test. RESULTS No significant difference was found in hospital stay length between the groups (P=0.277). Surgery time was significantly shorter in the CMR group (P<0.001). Prior to surgery, no significant differences in VAS scores for leg and low back pain were observed between the groups (P=0.341 and P=0.131, respectively); however, at 2 months postoperatively, both scores were significantly lower in the CMR group (P<0.001 and P=0.002, respectively). Similarly, no difference in preoperative JOA scores was noted (P=0.750), but at 2 months postoperative, the CMR group exhibited significantly higher scores (P<0.001). CONCLUSION Compared with the traditional PELD, the preoperative use of CMR has shown to reduce surgery time, alleviate leg and low back pain, and increase the lumbar JOA score at 2 months after surgery, underscoring its efficacy in enhancing surgical outcomes.
Collapse
Affiliation(s)
- Xiaobo Guo
- Department of Orthopedics, Jincheng General Hospital Jincheng 048006, Shanxi, China
| | - Jiangtao Jin
- Department of Orthopedics, Jincheng General Hospital Jincheng 048006, Shanxi, China
| | - Jinwei Chen
- Department of Orthopedics, Jincheng General Hospital Jincheng 048006, Shanxi, China
| | - Junyang Liu
- Department of Orthopedics, Jincheng General Hospital Jincheng 048006, Shanxi, China
| |
Collapse
|
4
|
Drossopoulos PN, Ononogbu-uche FC, Tabarestani TQ, Huang CC, Paturu M, Bardeesi A, Ray WZ, Shaffrey CI, Goodwin CR, Erickson M, Chi JH, Abd-El-Barr MM. Evolution of the Transforaminal Lumbar Interbody Fusion (TLIF): From Open to Percutaneous to Patient-Specific. J Clin Med 2024; 13:2271. [PMID: 38673544 PMCID: PMC11051479 DOI: 10.3390/jcm13082271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/04/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
The transforaminal lumbar interbody fusion (TLIF) has seen significant evolution since its early inception, reflecting advancements in surgical techniques, patient safety, and outcomes. Originally described as an improvement over the posterior lumbar interbody fusion (PLIF), the TLIF began as an open surgical procedure, that notably reduced the need for the extensive neural retractation that hindered the PLIF. In line with the broader practice of surgery, trending toward minimally invasive access, the TLIF was followed by the development of the minimally invasive TLIF (MIS-TLIF), a technique that further decreased tissue trauma and postoperative complications. Subsequent advancements, including Trans-Kambin's Triangle TLIF (percLIF) and transfacet LIF, have continued to refine surgical access, minimize surgical footprint, and reduce the risk of injury to the patient. The latest evolution, as we will describe it, the patient-specific TLIF, is a culmination of the aforementioned adaptations and incorporates advanced imaging and segmentation technologies into perioperative planning, allowing surgeons to tailor approaches based on individual patient anatomy and pathology. These developments signify a shift towards more precise methods in spine surgery. The ongoing evolution of the TLIF technique illustrates the dynamic nature of surgery and emphasizes the need for continued adaptation and refinement.
Collapse
Affiliation(s)
- Peter N. Drossopoulos
- Division of Spine, Department of Neurosurgery, Duke University, Durham, NC 27710, USA (T.Q.T.); (M.M.A.-E.-B.)
| | - Favour C. Ononogbu-uche
- Division of Spine, Department of Neurosurgery, Duke University, Durham, NC 27710, USA (T.Q.T.); (M.M.A.-E.-B.)
| | - Troy Q. Tabarestani
- Division of Spine, Department of Neurosurgery, Duke University, Durham, NC 27710, USA (T.Q.T.); (M.M.A.-E.-B.)
| | - Chuan-Ching Huang
- Division of Spine, Department of Neurosurgery, Duke University, Durham, NC 27710, USA (T.Q.T.); (M.M.A.-E.-B.)
| | - Mounica Paturu
- Division of Spine, Department of Neurosurgery, Duke University, Durham, NC 27710, USA (T.Q.T.); (M.M.A.-E.-B.)
| | - Anas Bardeesi
- Division of Spine, Department of Neurosurgery, Duke University, Durham, NC 27710, USA (T.Q.T.); (M.M.A.-E.-B.)
| | - Wilson Z. Ray
- Department of Neurological Surgery, Washington University, St Louis, MO 63110, USA
| | - Christopher I. Shaffrey
- Division of Spine, Department of Neurosurgery, Duke University, Durham, NC 27710, USA (T.Q.T.); (M.M.A.-E.-B.)
| | - C. Rory Goodwin
- Division of Spine, Department of Neurosurgery, Duke University, Durham, NC 27710, USA (T.Q.T.); (M.M.A.-E.-B.)
| | - Melissa Erickson
- Division of Spine, Department of Orthopedic Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - John H. Chi
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Muhammad M. Abd-El-Barr
- Division of Spine, Department of Neurosurgery, Duke University, Durham, NC 27710, USA (T.Q.T.); (M.M.A.-E.-B.)
| |
Collapse
|
5
|
Huang CC, Fitts J, Huie D, Bhowmick DA, Abd-El-Barr MM. Evolution of Cervical Endoscopic Spine Surgery: Current Progress and Future Directions-A Narrative Review. J Clin Med 2024; 13:2122. [PMID: 38610887 PMCID: PMC11012719 DOI: 10.3390/jcm13072122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Cervical endoscopic spine surgery is rapidly evolving and gaining popularity for the treatment of cervical radiculopathy and myelopathy. This approach significantly reduces muscular damage and blood loss by minimizing soft tissue stripping, leading to less postoperative pain and a faster postoperative recovery. As scientific evidence accumulates, the efficacy and safety of cervical endoscopic spine surgery are continually affirmed. Both anterior and posterior endoscopic approaches have surfaced as viable alternative treatments for various cervical spine pathologies. Newer techniques, such as endoscopic-assisted fusion, the anterior transcorporeal approach, and unilateral laminotomy for bilateral decompression, have been developed to enhance clinical outcomes and broaden surgical indications. Despite its advantages, this approach faces challenges, including a steep learning curve, increased radiation exposure for both surgeons and patients, and a relative limitation in addressing multi-level pathologies. However, the future of cervical endoscopic spine surgery is promising, with potential enhancements in clinical outcomes and safety on the horizon. This progress is fueled by integrating advanced imaging and navigation technologies, applying regional anesthesia for improved and facilitated postoperative recovery, and incorporating cutting-edge technologies, such as augmented reality. With these advancements, cervical endoscopic spine surgery is poised to broaden its scope in treating cervical spine pathologies while maintaining the benefits of minimized tissue damage and rapid recovery.
Collapse
Affiliation(s)
- Chuan-Ching Huang
- Division of Spine, Department of Neurosurgery, Duke University Hospital, Durham, NC 27710, USA
- Department of Orthopedic Surgery, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Jamal Fitts
- Division of Spine, Department of Neurosurgery, Duke University Hospital, Durham, NC 27710, USA
| | - David Huie
- Division of Spine, Department of Neurosurgery, Duke University Hospital, Durham, NC 27710, USA
| | - Deb A. Bhowmick
- Division of Spine, Department of Neurosurgery, Duke University Hospital, Durham, NC 27710, USA
| | - Muhammad M. Abd-El-Barr
- Division of Spine, Department of Neurosurgery, Duke University Hospital, Durham, NC 27710, USA
| |
Collapse
|
6
|
Jitpakdee K, Boadi B, Härtl R. Image-Guided Spine Surgery. Neurosurg Clin N Am 2024; 35:173-190. [PMID: 38423733 DOI: 10.1016/j.nec.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The realm of spine surgery is undergoing a transformative shift, thanks to the integration of image-guided navigation technology. This innovative system seamlessly blends real-time imaging data with precise location tracking. While the indispensable expertise of experienced spine surgeons remains irreplaceable, navigation systems bring a host of valuable advantages to the operating room. By offering a comprehensive view of the surgical anatomy, these systems empower surgeons to conduct procedures with accuracy, while minimizing radiation exposure for both patients and medical professionals. Moreover, image-guided navigation paves the way for integration of other state-of-the-art technologies, such as augmented reality and robotics. These innovations promise to further revolutionize the field, providing greater precision and expanding the horizons of what is possible in the world of spinal procedures. This article explores the evolution, classification, and impact of image-guided spine surgery, underscoring its pivotal role in enhancing efficacy and safety while setting the stage for the incorporation of future technological advancements.
Collapse
Affiliation(s)
- Khanathip Jitpakdee
- Department of Orthopedics, Queen Savang Vadhana Memorial Hospital, Thai Red Cross Society, 290 Jermjompol, Si Racha, Chonburi 20110, Thailand
| | - Blake Boadi
- Department of Neurosurgery, Weill Cornell Medicine, New York-Presbyterian - Och Spine, 525 East 68th Street, Box 99, New York, NY 10021, USA
| | - Roger Härtl
- Department of Neurosurgery, Weill Cornell Medicine, New York-Presbyterian - Och Spine, 525 East 68th Street, Box 99, New York, NY 10021, USA.
| |
Collapse
|
7
|
Bardeesi A, Tabarestani TQ, Bergin SM, Huang CC, Shaffrey CI, Wiggins WF, Abd-El-Barr MM. Using Augmented Reality Technology to Optimize Transfacet Lumbar Interbody Fusion: A Case Report. J Clin Med 2024; 13:1513. [PMID: 38592365 PMCID: PMC10934424 DOI: 10.3390/jcm13051513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 04/10/2024] Open
Abstract
The transfacet minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF) is a novel approach available for the management of lumbar spondylolisthesis. It avoids the need to manipulate either of the exiting or traversing nerve roots, both protected by the bony boundaries of the approach. With the advancement in operative technologies such as navigation, mapping, segmentation, and augmented reality (AR), surgeons are prompted to utilize these technologies to enhance their surgical outcomes. A 36-year-old male patient was complaining of chronic progressive lower back pain. He was found to have grade 2 L4/5 spondylolisthesis. We studied the feasibility of a trans-Kambin or a transfacet MIS-TLIF, and decided to proceed with the latter given the wider corridor it provides. Preoperative trajectory planning and level segmentation in addition to intraoperative navigation and image merging were all utilized to provide an AR model to guide us through the surgery. The use of AR can build on the safety and learning of novel surgical approaches to spine pathologies. However, larger high-quality studies are needed to further objectively analyze its impact on surgical outcomes and to expand on its application.
Collapse
Affiliation(s)
- Anas Bardeesi
- Department of Neurosurgery, Duke University Hospital, Durham, NC 27710, USA
| | | | - Stephen M. Bergin
- Department of Neurosurgery, Duke University Hospital, Durham, NC 27710, USA
| | - Chuan-Ching Huang
- Department of Neurosurgery, Duke University Hospital, Durham, NC 27710, USA
| | | | - Walter F. Wiggins
- Department of Radiology, Duke University Hospital, Durham, NC 27710, USA
| | | |
Collapse
|
8
|
Tabarestani TQ, Sykes DAW, Kouam RW, Salven DS, Wang TY, Mehta VA, Shaffrey CI, Wiggins WF, Chi JH, Abd-El-Barr MM. Novel Approach to Percutaneous Lumbar Surgeries via Kambin's Triangle-Radiographic and Surgical Planning Analysis with Nerve Segmentation Technology. World Neurosurg 2023; 177:e385-e396. [PMID: 37355168 DOI: 10.1016/j.wneu.2023.06.061] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/26/2023]
Abstract
OBJECTIVE While Kambin's Triangle has become an ever more important anatomic window given its proximity to the exiting nerve root, there have been limited studies examining the effect of disease on the corridor. Our goal was to better understand how pathology can affect Kambin's Triangle, thereby altering the laterality of approach for percutaneous lumbar interbody fusion (percLIF). METHODS The authors performed a single-center retrospective review of patients evaluated for percLIF. The areas of Kambin's Triangle were measured without and with nerve segmentation. For the latter, the lumbosacral nerve roots on 3-dimensional T2 magnetic resonance imaging were manually segmented. Next, the borders of Kambin's Triangle were delineated, ensuring no overlap between the area and nerve above. RESULTS Fifteen patients (67.5 ± 9.7 years, 46.7% female) were retrospectively reviewed. We measured 150 Kambin's Triangles. The mean areas from L1-S1 were 50.0 ± 12.3 mm2, 73.8 ± 12.5 mm2, 83.8 ± 12.2 mm2, 88.5 ± 19.0 mm2, and 116 ± 29.3 mm2, respectively. When pathology was present, the areas significantly decreased at L4-L5 (P = 0.046) and L5-S1 (P = 0.049). Higher spondylolisthesis and smaller posterior disk heights were linked with decreased areas via linear regression analysis (P < 0.05). When nerve segmentation was used, the areas were significantly smaller from L1-L5 (P < 0.05). Among 11 patients who underwent surgery, none suffered from postoperative neuropathies. CONCLUSIONS These results illustrate the feasibility of preoperatively segmenting lumbosacral nerves and measuring Kambin's Triangle to help guide surgical planning and determine the ideal laterality of approach for percLIF.
Collapse
Affiliation(s)
| | - David A W Sykes
- Duke University School of Medicine, Durham, North Carolina, USA
| | - Romaric W Kouam
- Campbell University School of Osteopathic Medicine, Lillington, North Carolina, USA
| | - David S Salven
- Duke University School of Medicine, Durham, North Carolina, USA
| | - Timothy Y Wang
- Department of Neurosurgery, Duke University Hospital, Durham, North Carolina, USA
| | - Vikram A Mehta
- Department of Neurosurgery, Duke University Hospital, Durham, North Carolina, USA
| | | | - Walter F Wiggins
- Department of Radiology, Duke University Hospital, Durham, North Carolina, USA
| | - John H Chi
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | |
Collapse
|