1
|
Arnan C, Ullrich S, Pulido-Quetglas C, Nurtdinov R, Esteban A, Blanco-Fernandez J, Aparicio-Prat E, Johnson R, Pérez-Lluch S, Guigó R. Paired guide RNA CRISPR-Cas9 screening for protein-coding genes and lncRNAs involved in transdifferentiation of human B-cells to macrophages. BMC Genomics 2022; 23:402. [PMID: 35619054 PMCID: PMC9137126 DOI: 10.1186/s12864-022-08612-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 05/09/2022] [Indexed: 11/21/2022] Open
Abstract
CRISPR-Cas9 screening libraries have arisen as a powerful tool to identify protein-coding (pc) and non-coding genes playing a role along different processes. In particular, the usage of a nuclease active Cas9 coupled to a single gRNA has proven to efficiently impair the expression of pc-genes by generating deleterious frameshifts. Here, we first demonstrate that targeting the same gene simultaneously with two guide RNAs (paired guide RNAs, pgRNAs) synergistically enhances the capacity of the CRISPR-Cas9 system to knock out pc-genes. We next design a library to target, in parallel, pc-genes and lncRNAs known to change expression during the transdifferentiation from pre-B cells to macrophages. We show that this system is able to identify known players in this process, and also predicts 26 potential novel ones, of which we select four (two pc-genes and two lncRNAs) for deeper characterization. Our results suggest that in the case of the candidate lncRNAs, their impact in transdifferentiation may be actually mediated by enhancer regions at the targeted loci, rather than by the lncRNA transcripts themselves. The CRISPR-Cas9 coupled to a pgRNAs system is, therefore, a suitable tool to simultaneously target pc-genes and lncRNAs for genomic perturbation assays.
Collapse
Affiliation(s)
- Carme Arnan
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona (BIST), Dr. Aiguader 88, 08003, Barcelona, Catalonia, Spain
| | - Sebastian Ullrich
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona (BIST), Dr. Aiguader 88, 08003, Barcelona, Catalonia, Spain
| | - Carlos Pulido-Quetglas
- Department of Medical Oncology, Bern University Hospital, University of Bern, Inselspital, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Ramil Nurtdinov
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona (BIST), Dr. Aiguader 88, 08003, Barcelona, Catalonia, Spain
| | - Alexandre Esteban
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona (BIST), Dr. Aiguader 88, 08003, Barcelona, Catalonia, Spain
- Present address: Department of Research and Innovation, "la Caixa" Foundation, Barcelona, Catalonia, Spain
| | - Joan Blanco-Fernandez
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona (BIST), Dr. Aiguader 88, 08003, Barcelona, Catalonia, Spain
- Present address: Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Estel Aparicio-Prat
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona (BIST), Dr. Aiguader 88, 08003, Barcelona, Catalonia, Spain
| | - Rory Johnson
- Department of Medical Oncology, Bern University Hospital, University of Bern, Inselspital, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Sílvia Pérez-Lluch
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona (BIST), Dr. Aiguader 88, 08003, Barcelona, Catalonia, Spain.
| | - Roderic Guigó
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona (BIST), Dr. Aiguader 88, 08003, Barcelona, Catalonia, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain.
| |
Collapse
|
2
|
Capon SJ, Uribe V, Dominado N, Ehrlich O, Smith KA. Endocardial identity is established during early somitogenesis by Bmp signalling acting upstream of npas4l and etv2. Development 2022; 149:275317. [PMID: 35531980 PMCID: PMC9148566 DOI: 10.1242/dev.190421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 03/28/2022] [Indexed: 12/28/2022]
Abstract
The endocardium plays important roles in the development and function of the vertebrate heart; however, few molecular markers of this tissue have been identified and little is known about what regulates its differentiation. Here, we describe the Gt(SAGFF27C); Tg(4xUAS:egfp) line as a marker of endocardial development in zebrafish. Transcriptomic comparison between endocardium and pan-endothelium confirms molecular distinction between these populations and time-course analysis suggests differentiation as early as eight somites. To investigate what regulates endocardial identity, we employed npas4l, etv2 and scl loss-of-function models. Endocardial expression is lost in npas4l mutants, significantly reduced in etv2 mutants and only modestly affected upon scl loss-of-function. Bmp signalling was also examined: overactivation of Bmp signalling increased endocardial expression, whereas Bmp inhibition decreased expression. Finally, epistasis experiments showed that overactivation of Bmp signalling was incapable of restoring endocardial expression in etv2 mutants. By contrast, overexpression of either npas4l or etv2 was sufficient to rescue endocardial expression upon Bmp inhibition. Together, these results describe the differentiation of the endocardium, distinct from vasculature, and place npas4l and etv2 downstream of Bmp signalling in regulating its differentiation. Summary: A zebrafish transgenic reporter of the endocardium is identified, permitting transcriptomic analysis and identification of new endocardial markers. Epistasis experiments demonstrate npas4l and etv2 act downstream of Bmp signalling to regulate endocardial differentiation.
Collapse
Affiliation(s)
- Samuel J Capon
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Veronica Uribe
- Department of Anatomy & Physiology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Nicole Dominado
- Department of Anatomy & Physiology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Ophelia Ehrlich
- Department of Anatomy & Physiology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Kelly A Smith
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia.,Department of Anatomy & Physiology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
3
|
The zebrafish grime mutant uncovers an evolutionarily conserved role for Tmem161b in the control of cardiac rhythm. Proc Natl Acad Sci U S A 2021; 118:2018220118. [PMID: 33597309 DOI: 10.1073/pnas.2018220118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The establishment of cardiac function in the developing embryo is essential to ensure blood flow and, therefore, growth and survival of the animal. The molecular mechanisms controlling normal cardiac rhythm remain to be fully elucidated. From a forward genetic screen, we identified a unique mutant, grime, that displayed a specific cardiac arrhythmia phenotype. We show that loss-of-function mutations in tmem161b are responsible for the phenotype, identifying Tmem161b as a regulator of cardiac rhythm in zebrafish. To examine the evolutionary conservation of this function, we generated knockout mice for Tmem161b. Tmem161b knockout mice are neonatal lethal and cardiomyocytes exhibit arrhythmic calcium oscillations. Mechanistically, we find that Tmem161b is expressed at the cell membrane of excitable cells and live imaging shows it is required for action potential repolarization in the developing heart. Electrophysiology on isolated cardiomyocytes demonstrates that Tmem161b is essential to inhibit Ca2+ and K+ currents in cardiomyocytes. Importantly, Tmem161b haploinsufficiency leads to cardiac rhythm phenotypes, implicating it as a candidate gene in heritable cardiac arrhythmia. Overall, these data describe Tmem161b as a highly conserved regulator of cardiac rhythm that functions to modulate ion channel activity in zebrafish and mice.
Collapse
|
4
|
Rabinowitz R, Offen D. Single-Base Resolution: Increasing the Specificity of the CRISPR-Cas System in Gene Editing. Mol Ther 2021; 29:937-948. [PMID: 33248248 PMCID: PMC7938333 DOI: 10.1016/j.ymthe.2020.11.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 12/26/2022] Open
Abstract
The CRISPR-Cas system holds great promise in the treatment of diseases caused by genetic variations. The Cas protein, an RNA-guided programmable nuclease, generates a double-strand break at precise genomic loci. However, the use of the clustered regularly interspersed short palindromic repeats (CRISPR)-Cas system to distinguish between single-nucleotide variations is challenging. The promiscuity of the guide RNA (gRNA) and its mismatch tolerance make allele-specific targeting an elusive goal. This review presents a meta-analysis of previous studies reporting position-dependent mismatch tolerance within the gRNA. We also examine the conservativity of the seed sequence, a region within the gRNA with stringent sequence dependency, and propose the existence of a subregion within the seed sequence with a higher degree of specificity. In addition, we summarize the reports on high-fidelity Cas nucleases with improved specificity and compare the standard gRNA design methodology to the single-nucleotide polymorphism (SNP)-derived protospacer adjacent motif (PAM) approach, an alternative method for allele-specific targeting. The combination of the two methods may be advantageous in designing CRISPR-based therapeutics and diagnostics for heterozygous patients.
Collapse
Affiliation(s)
- Roy Rabinowitz
- Department of Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Felsenstein Medical Research Center, Tel Aviv University, Tel Aviv, Israel.
| | - Daniel Offen
- Department of Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Felsenstein Medical Research Center, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
5
|
Baltanás FC, Zarich N, Rojas-Cabañeros JM, Santos E. SOS GEFs in health and disease. Biochim Biophys Acta Rev Cancer 2020; 1874:188445. [PMID: 33035641 DOI: 10.1016/j.bbcan.2020.188445] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/01/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022]
Abstract
SOS1 and SOS2 are the most universal and widely expressed family of guanine exchange factors (GEFs) capable or activating RAS or RAC1 proteins in metazoan cells. SOS proteins contain a sequence of modular domains that are responsible for different intramolecular and intermolecular interactions modulating mechanisms of self-inhibition, allosteric activation and intracellular homeostasis. Despite their homology, analyses of SOS1/2-KO mice demonstrate functional prevalence of SOS1 over SOS2 in cellular processes including proliferation, migration, inflammation or maintenance of intracellular redox homeostasis, although some functional redundancy cannot be excluded, particularly at the organismal level. Specific SOS1 gain-of-function mutations have been identified in inherited RASopathies and various sporadic human cancers. SOS1 depletion reduces tumorigenesis mediated by RAS or RAC1 in mouse models and is associated with increased intracellular oxidative stress and mitochondrial dysfunction. Since WT RAS is essential for development of RAS-mutant tumors, the SOS GEFs may be considered as relevant biomarkers or therapy targets in RAS-dependent cancers. Inhibitors blocking SOS expression, intrinsic GEF activity, or productive SOS protein-protein interactions with cellular regulators and/or RAS/RAC targets have been recently developed and shown preclinical and clinical effectiveness blocking aberrant RAS signaling in RAS-driven and RTK-driven tumors.
Collapse
Affiliation(s)
- Fernando C Baltanás
- Centro de Investigación del Cáncer - IBMCC (CSIC-USAL) and CIBERONC, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Natasha Zarich
- Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC) and CIBERONC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | - Jose M Rojas-Cabañeros
- Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC) and CIBERONC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | - Eugenio Santos
- Centro de Investigación del Cáncer - IBMCC (CSIC-USAL) and CIBERONC, Universidad de Salamanca, 37007 Salamanca, Spain.
| |
Collapse
|
6
|
Rabinowitz R, Almog S, Darnell R, Offen D. CrisPam: SNP-Derived PAM Analysis Tool for Allele-Specific Targeting of Genetic Variants Using CRISPR-Cas Systems. Front Genet 2020; 11:851. [PMID: 33014011 PMCID: PMC7461778 DOI: 10.3389/fgene.2020.00851] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/13/2020] [Indexed: 12/26/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) is a promising novel technology that holds the potential of treating genetic diseases. Safety and specificity of the treatment are to be further studied and developed prior to implementation of the technology into the clinic. The guide-RNA (gRNA) allows precise position-specific DNA targeting, although it may tolerate small changes such as point mutations. The permissive nature of the CRISPR-Cas system makes allele-specific targeting a challenging goal. Hence, an allele-specific targeting approach is in need for future treatments of heterozygous patients suffering from diseases caused by dominant negative mutations. The single-nucleotide polymorphism (SNP)-derived protospacer adjacent motif (PAM) approach allows highly allele-specific DNA cleavage due to the existence of a novel PAM sequence only at the target allele. Here, we present CrisPam, a computational tool that detects PAMs within the variant allele for allele-specific targeting by CRISPR-Cas systems. The algorithm scans the sequences and attempts to identify the generation of multiple PAMs for a given reference sequence and its variations. A successful result is such that at least a single PAM is generated by the variation nucleotide. Since the PAM is present within the variant allele only, the Cas enzyme will bind the variant allele exclusively. Analyzing a dataset of human pathogenic point mutations revealed that 90% of the analyzed mutations generated at least a single PAM. Thus, the SNP-derived PAM approach is ideal for targeting most of the point mutations in an allele-specific manner. CrisPam simplifies the gRNAs design process to specifically target the allele of interest and scans a wide range of 26 unique PAMs derived from 23 Cas enzymes. CrisPam is freely available at https://www.danioffenlab.com/crispam.
Collapse
Affiliation(s)
- Roy Rabinowitz
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Felsenstein Medical Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Shiri Almog
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Roy Darnell
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Daniel Offen
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Felsenstein Medical Research Center, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
7
|
Wu J, Tang B, Tang Y. Allele-specific genome targeting in the development of precision medicine. Theranostics 2020; 10:3118-3137. [PMID: 32194858 PMCID: PMC7053192 DOI: 10.7150/thno.43298] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 01/18/2020] [Indexed: 12/11/2022] Open
Abstract
The CRISPR-based genome editing holds immense potential to fix disease-causing mutations, however, must also handle substantial natural genetic variations between individuals. Previous studies have shown that mismatches between the single guide RNA (sgRNA) and genomic DNA may negatively impact sgRNA efficiencies and lead to imprecise specificity prediction. Hence, the genetic variations bring about a great challenge for designing platinum sgRNAs in large human populations. However, they also provide a promising entry for designing allele-specific sgRNAs for the treatment of each individual. The CRISPR system is rather specific, with the potential ability to discriminate between similar alleles, even based on a single nucleotide difference. Genetic variants contribute to the discrimination capabilities, once they generate a novel protospacer adjacent motif (PAM) site or locate in the seed region near an available PAM. Therefore, it can be leveraged to establish allele-specific targeting in numerous dominant human disorders, by selectively ablating the deleterious alleles. So far, allele-specific CRISPR has been increasingly implemented not only in treating dominantly inherited diseases, but also in research areas such as genome imprinting, haploinsufficiency, spatiotemporal loci imaging and immunocompatible manipulations. In this review, we will describe the working principles of allele-specific genome manipulations by virtue of expanding engineering tools of CRISPR. And then we will review new advances in the versatile applications of allele-specific CRISPR targeting in treating human genetic diseases, as well as in a series of other interesting research areas. Lastly, we will discuss their potential therapeutic utilities and considerations in the era of precision medicine.
Collapse
Affiliation(s)
- Junjiao Wu
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Beisha Tang
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan 410008, China
| | - Yu Tang
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
8
|
Liu Y, Li J, Zhou C, Meng B, Wei Y, Yang G, Lu Z, Shen Q, Zhang Y, Yang H, Qiao Y. Allele-specific genome editing of imprinting genes by preferentially targeting non-methylated loci using Staphylococcus aureus Cas9 (SaCas9). Sci Bull (Beijing) 2019; 64:1592-1600. [PMID: 36659571 DOI: 10.1016/j.scib.2019.08.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/30/2019] [Accepted: 08/08/2019] [Indexed: 01/21/2023]
Abstract
Allele-specific DNA methylation is the most important imprinting marker localized to differentially methylated regions (DMRs), and aberrant genomic imprinted DNA methylation is associated with some human diseases, including Prader-Willi syndrome and cancer. Thus, the development of an effective strategy for the precise editing of allele-specific methylated genes is essential for the functional clarification of imprinting elements and the correction of imprinting disorders in human diseases. To discover a feasible allele-specific genome editing tool based on the CRISPR/Cas system, which is an efficient gene-targeting technique in various organisms, we examined the targeting efficiency of Staphylococcus aureus Cas9 (SaCas9) and Streptococcus pyogenes Cas9 (SpCas9) in response to DNA methylation interference. We found that the targeting efficiency of SaCas9, but not SpCas9, was enhanced by targeted DNA demethylation using the dCas9-Tet1 catalytic domain (CD) but suppressed by targeted DNA methylation using Dnmt3l-Dnmt3a-dCas9. An in vitro cleavage assay further demonstrated that SaCas9 nuclease activity was inhibited by 5-methylcytosine (5mC) in a synthesized CpG-containing context. Further analysis with ChIP-Q-PCR demonstrated that the non-methylated sequence targeting of SaCas9 depends on the binding preference of SaCas9 to non-methylated sequences. Taking advantage of this feature of SaCas9, we have successfully obtained non-methylated allele-biased targeted embryos/mice for two imprinting genes, H19 and Snrpn, with relatively high efficiencies of 28.6% and 47.4%, respectively. These results indicate that the targeting efficiency of SaCas9 was strongly reduced by DNA methylation. By using SaCas9, we successfully achieved allele-specific genome editing of imprinting genes by preferentially targeting non-methylated loci.
Collapse
Affiliation(s)
- Yajing Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianan Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changyang Zhou
- University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Bin Meng
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 200031, China
| | - Yu Wei
- University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guang Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zongyang Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingmei Shen
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Yu Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Hui Yang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Yunbo Qiao
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
9
|
Grassini DR, da Silva J, Hall TE, Baillie GJ, Simons C, Parton RG, Hogan BM, Smith KA. Myosin Vb is required for correct trafficking of N-cadherin and cardiac chamber ballooning. Dev Dyn 2019; 248:284-295. [PMID: 30801852 DOI: 10.1002/dvdy.19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND During heart morphogenesis, the cardiac chambers undergo ballooning: a process involving regionalized elongation of cardiomyocytes. Cardiomyocyte shape changes require reorganization of the actin cytoskeleton; however, the genetic regulation of this process is not well understood. RESULTS From a forward genetic screen, we identified the zebrafish uq 23ks mutant which manifests chamber ballooning defects. Whole-genome sequencing-mapping identified a truncating mutation in the gene, myo5b. myo5b encodes an atypical myosin required for endosome recycling and, consistent with this, increased vesicles were observed in myo5b mutant cardiomyocytes. Expression of RFP-Rab11a (a recycling endosome marker) confirmed increased recycling endosomes in cardiomyocytes of myo5b mutants. To investigate potential cargo of MyoVb-associated vesicles, we examined the adherens junction protein, N-cadherin. N-cadherin appeared mispatterned at cell junctions, and an increase in the number of intracellular particles was also apparent. Co-localization with RFP-Rab11a confirmed increased N-cadherin-positive recycling endosomes, demonstrating N-cadherin trafficking is perturbed in myo5b mutants. Finally, phalloidin staining showed disorganized F-actin in myo5b cardiomyocytes, suggesting the cytoskeleton fails to remodel, obstructing chamber ballooning. CONCLUSIONS MyoVb is required for cardiomyocyte endosomal recycling and appropriate N-cadherin localization during the onset of chamber ballooning. Cardiomyocytes lacking MyoVb are unable to reorganize their actin cytoskeleton, resulting in failed chamber ballooning. Developmental Dynamics 248:284-295, 2019. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Daniela R Grassini
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Jason da Silva
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Thomas E Hall
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Gregory J Baillie
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Cas Simons
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.,Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Robert G Parton
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Benjamin M Hogan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Kelly A Smith
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
10
|
Zheng SS, Han RY, Xiang L, Zhuang YY, Jin ZB. Versatile Genome Engineering Techniques Advance Human Ocular Disease Researches in Zebrafish. Front Cell Dev Biol 2018; 6:75. [PMID: 30050903 PMCID: PMC6052052 DOI: 10.3389/fcell.2018.00075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/25/2018] [Indexed: 12/18/2022] Open
Abstract
Over recent decades, zebrafish has been established as a sophisticated vertebrate model for studying human ocular diseases due to its high fecundity, short generation time and genetic tractability. With the invention of morpholino (MO) technology, it became possible to study the genetic basis and relevant genes of ocular diseases in vivo. Many genes have been shown to be related to ocular diseases. However, the issue of specificity is the major concern in defining gene functions with MO technology. The emergence of the first- and second-generation genetic modification tools zinc-finger nucleases (ZFNs) and TAL effector nucleases (TALENs), respectively, eliminated the potential phenotypic risk induced by MOs. Nevertheless, the efficiency of these nucleases remained relatively low until the third technique, the clustered regularly interspersed short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system, was discovered. This review highlights the application of multiple genome engineering techniques, especially the CRISPR/Cas9 system, in the study of human ocular diseases in zebrafish.
Collapse
Affiliation(s)
- Si-Si Zheng
- Division of Ophthalmic Genetics, Laboratory for Stem Cell and Retinal Regeneration, Institute of Stem Cell Research, The Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National International Joint Research Center for Regenerative Medicine and Neurogenetics, Wenzhou Medical University, Wenzhou, China
| | - Ru-Yi Han
- Division of Ophthalmic Genetics, Laboratory for Stem Cell and Retinal Regeneration, Institute of Stem Cell Research, The Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National International Joint Research Center for Regenerative Medicine and Neurogenetics, Wenzhou Medical University, Wenzhou, China
| | - Lue Xiang
- Division of Ophthalmic Genetics, Laboratory for Stem Cell and Retinal Regeneration, Institute of Stem Cell Research, The Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National International Joint Research Center for Regenerative Medicine and Neurogenetics, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, China
| | - You-Yuan Zhuang
- Division of Ophthalmic Genetics, Laboratory for Stem Cell and Retinal Regeneration, Institute of Stem Cell Research, The Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National International Joint Research Center for Regenerative Medicine and Neurogenetics, Wenzhou Medical University, Wenzhou, China
| | - Zi-Bing Jin
- Division of Ophthalmic Genetics, Laboratory for Stem Cell and Retinal Regeneration, Institute of Stem Cell Research, The Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National International Joint Research Center for Regenerative Medicine and Neurogenetics, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, China
| |
Collapse
|
11
|
Grassini DR, Lagendijk AK, De Angelis JE, Da Silva J, Jeanes A, Zettler N, Bower NI, Hogan BM, Smith KA. Nppa and Nppb act redundantly during zebrafish cardiac development to confine AVC marker expression and reduce cardiac jelly volume. Development 2018; 145:dev.160739. [PMID: 29752386 DOI: 10.1242/dev.160739] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 05/02/2018] [Indexed: 12/30/2022]
Abstract
Atrial natriuretic peptide (nppa/anf) and brain natriuretic peptide (nppb/bnp) form a gene cluster with expression in the chambers of the developing heart. Despite restricted expression, a function in cardiac development has not been demonstrated by mutant analysis. This is attributed to functional redundancy; however, their genomic location in cis has impeded formal analysis. Using genome editing, we have generated mutants for nppa and nppb, and found that single mutants were indistinguishable from wild type, whereas nppa/nppb double mutants displayed heart morphogenesis defects and pericardial oedema. Analysis of atrioventricular canal (AVC) markers show expansion of bmp4, tbx2b, has2 and versican expression into the atrium of double mutants. This expanded expression correlates with increased extracellular matrix in the atrium. Using a biosensor for hyaluronic acid to measure the cardiac jelly (cardiac extracellular matrix), we confirmed cardiac jelly expansion in nppa/nppb double mutants. Finally, bmp4 knockdown rescued the expansion of has2 expression and cardiac jelly in double mutants. This definitively shows that nppa and nppb function redundantly during cardiac development to restrict gene expression to the AVC, preventing excessive cardiac jelly synthesis in the atrial chamber.
Collapse
Affiliation(s)
- Daniela R Grassini
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Anne K Lagendijk
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jessica E De Angelis
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jason Da Silva
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Angela Jeanes
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Nicole Zettler
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Neil I Bower
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Benjamin M Hogan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Kelly A Smith
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
12
|
Abstract
The discovery and adaptation of the CRISPR/Cas system for epigenome editing has allowed for a straightforward design of targeting modules which can direct epigenetic editors to virtually any genomic site. This advancement in DNA-targeting technology brings allele-specific epigenome editing into reach, a "super-specific" variation of epigenome editing whose goal is an alteration of chromatin marks at only one selected allele of the target genomic locus. This technology would be useful for the treatment of diseases caused by a mutant allele with a dominant effect, because allele-specific epigenome editing allows the specific silencing of the mutated allele leaving the healthy counterpart expressed. Moreover, it may allow the direct correction of aberrant imprints in imprinting disorders where editing of DNA methylation is needed in one allele only. Here, we describe some principal setups of allele-specific epigenome editing systems and present exemplary data illustrating the feasibility of the concept.
Collapse
Affiliation(s)
- Pavel Bashtrykov
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Stuttgart, Germany.
| | - Albert Jeltsch
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart, Germany.
| |
Collapse
|