1
|
Frommelt J, Liu E, Bhaidani A, Hu B, Gao Y, Ye D, Lin F. Flat mount preparation for whole-mount fluorescent imaging of zebrafish embryos. Biol Open 2023; 12:bio060048. [PMID: 37746815 PMCID: PMC10373579 DOI: 10.1242/bio.060048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 09/26/2023] Open
Abstract
The zebrafish is a widely used model organism for biomedical research due to its ease of maintenance, external fertilization of embryos, rapid embryonic development, and availability of established genetic tools. One notable advantage of using zebrafish is the transparency of the embryos, which enables high-resolution imaging of specific cells, tissues, and structures through the use of transgenic and knock-in lines. However, as the embryo develops, multiple layers of tissue wrap around the lipid-enriched yolk, which can create a challenge to image tissues located deep within the embryo. While various methods are available, such as two-photon imaging, cryosectioning, vibratome sectioning, and micro-surgery, each of these has limitations. In this study, we present a novel deyolking method that allows for high-quality imaging of tissues that are obscured by other tissues and the yolk. Embryos are lightly fixed in 1% PFA to remove the yolk without damaging embryonic tissues and are then refixed in 4% PFA and mounted on custom-made bridged slides. This method offers a simple way to prepare imaging samples that can be subjected to further preparation, such as immunostaining. Furthermore, the bridged slides described in this study can be used for imaging tissue and organ preparations from various model organisms.
Collapse
Affiliation(s)
- Joseph Frommelt
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Emily Liu
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Afraz Bhaidani
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Bo Hu
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Yuanyuan Gao
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Ding Ye
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Fang Lin
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| |
Collapse
|
2
|
Hu B, Rodriguez JJ, Kakkerla Balaraju A, Gao Y, Nguyen NT, Steen H, Suhaib S, Chen S, Lin F. Glypican 4 mediates Wnt transport between germ layers via signaling filopodia. J Cell Biol 2021; 220:212673. [PMID: 34591076 PMCID: PMC8488972 DOI: 10.1083/jcb.202009082] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 07/18/2021] [Accepted: 09/08/2021] [Indexed: 12/31/2022] Open
Abstract
Glypicans influence signaling pathways by regulating morphogen trafficking and reception. However, the underlying mechanisms in vertebrates are poorly understood. In zebrafish, Glypican 4 (Gpc4) is required for convergence and extension (C&E) of both the mesoderm and endoderm. Here, we show that transgenic expression of GFP-Gpc4 in the endoderm of gpc4 mutants rescued C&E defects in all germ layers. The rescue of mesoderm was likely mediated by Wnt5b and Wnt11f2 and depended on signaling filopodia rather than on cleavage of the Gpc4 GPI anchor. Gpc4 bound both Wnt5b and Wnt11f2 and regulated formation of the filopodia that transport Wnt5b and Wnt11f2 to neighboring cells. Moreover, this rescue was suppressed by blocking signaling filopodia that extend from endodermal cells. Thus, GFP-Gpc4–labeled protrusions that emanated from endodermal cells transported Wnt5b and Wnt11f2 to other germ layers, rescuing the C&E defects caused by a gpc4 deficiency. Our study reveals a new mechanism that could explain in vivo morphogen distribution involving Gpc4.
Collapse
Affiliation(s)
- Bo Hu
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, IA
| | - Juan J Rodriguez
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, IA
| | - Anurag Kakkerla Balaraju
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, IA
| | - Yuanyuan Gao
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, IA
| | - Nhan T Nguyen
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, IA
| | - Heston Steen
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, IA
| | - Saeb Suhaib
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, IA
| | - Songhai Chen
- Department of Neuroscience and Pharmacology, Carver College of Medicine, The University of Iowa, Iowa City, IA
| | - Fang Lin
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, IA
| |
Collapse
|
3
|
Balaraju AK, Hu B, Rodriguez JJ, Murry M, Lin F. Glypican 4 regulates planar cell polarity of endoderm cells by controlling the localization of Cadherin 2. Development 2021; 148:dev199421. [PMID: 34131730 PMCID: PMC8313861 DOI: 10.1242/dev.199421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/09/2021] [Indexed: 11/20/2022]
Abstract
Noncanonical Wnt/planar cell polarity (Wnt/PCP) signaling has been implicated in endoderm morphogenesis. However, the underlying cellular and molecular mechanisms of this process are unclear. We found that, during convergence and extension (C&E) in zebrafish, gut endodermal cells are polarized mediolaterally, with GFP-Vangl2 enriched at the anterior edges. Endoderm cell polarity is lost and intercalation is impaired in the absence of glypican 4 (gpc4), a heparan-sulfate proteoglycan that promotes Wnt/PCP signaling, suggesting that this signaling is required for endodermal cell polarity. Live imaging revealed that endoderm C&E is accomplished by polarized cell protrusions and junction remodeling, which are impaired in gpc4-deficient endodermal cells. Furthermore, in the absence of gpc4, Cadherin 2 expression on the endodermal cell surface is increased as a result of impaired Rab5c-mediated endocytosis, which partially accounts for the endodermal defects in these mutants. These findings indicate that Gpc4 regulates endodermal planar cell polarity during endoderm C&E by influencing the localization of Cadherin 2. Thus, our study uncovers a new mechanism by which Gpc4 regulates planar cell polarity and reveals the role of Wnt/PCP signaling in endoderm morphogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Fang Lin
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
4
|
Williams ML, Solnica-Krezel L. Cellular and molecular mechanisms of convergence and extension in zebrafish. Curr Top Dev Biol 2020; 136:377-407. [DOI: 10.1016/bs.ctdb.2019.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
5
|
Hu B, Gao Y, Davies L, Woo S, Topczewski J, Jessen JR, Lin F. Glypican 4 and Mmp14 interact in regulating the migration of anterior endodermal cells by limiting extracellular matrix deposition. Development 2018; 145:dev.163303. [PMID: 30082271 DOI: 10.1242/dev.163303] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 07/16/2018] [Indexed: 01/30/2023]
Abstract
During embryogenesis, the germ layers, including the endoderm, undergo convergence and extension movements to narrow and elongate the body plan. In zebrafish, the dorsal migration of endodermal cells during gastrulation is controlled by chemokine signaling, but little is known about how they migrate during segmentation. Here, we show that glypican 4 (Gpc4), a member of the heparin sulfate proteoglycan family, is required for efficient migration of anterior endodermal cells during early segmentation, regulating Rac activation to maintain polarized actin-rich lamellipodia. An endoderm transplantation assay showed that Gpc4 regulates endoderm migration in a non-cell-autonomous fashion. Further analyses revealed that the impaired endoderm migration in gpc4 mutants results from increases in the expression and assembly of fibronectin and laminin, major components of the extracellular matrix (ECM). Notably, we found that matrix metalloproteinase 14 (Mmp14a/b) is required for the control of ECM expression during endoderm migration, with Gpc4 acting through Mmp14a/b to limit ECM expression. Our results suggest that Gpc4 is crucial for generating the environment required for efficient migration of endodermal cells, uncovering a novel function of Gpc4 during development.
Collapse
Affiliation(s)
- Bo Hu
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Yuanyuan Gao
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Lauren Davies
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Stephanie Woo
- School of Natural Sciences, Merced, University of California Merced, Merced, CA 95340, USA
| | - Jacek Topczewski
- Northwestern University, Feinberg School of Medicine, Stanley Manne Children's Research Institute, Chicago, IL 60611, USA.,Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin 20-093, Poland
| | - Jason R Jessen
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN 37132, USA
| | - Fang Lin
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|