1
|
Chen J, Zhu P, Jin S, Zhang Z, Jiang S, Li S, Liu S, Peng Q, Pan Y. A hormone-to-neuropeptide pathway inhibits sexual receptivity in immature Drosophila females. Proc Natl Acad Sci U S A 2025; 122:e2418481122. [PMID: 39982743 PMCID: PMC11874258 DOI: 10.1073/pnas.2418481122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/21/2025] [Indexed: 02/22/2025] Open
Abstract
Newborns, typically asexual, undergo a process of sexual transition to reach sexual maturity, but the regulatory mechanism underlying this transition is not clear. Here, we studied how female sexual behavior is modulated during sexual transition by hormones and neuromodulators in Drosophila. We found that neuropeptide Leucokinin (LK) inhibits female receptivity specifically during a sexual transition period in immature females, but not in younger or mature females. Moreover, the steroid hormone ecdysone, which is mainly synthesized in the female ovary during sexual maturation, acts on LK neurons via the ecdysone receptor to suppress sexual receptivity. We further found that LK suppresses female receptivity through its receptor LKR in central pC1 neurons, a decision center for female sexual behavior. These findings reveal a hormone-to-neuropeptide pathway that specifically inhibits sexual behavior during sexual maturation in female Drosophila, shedding light on how hormones and neuromodulators coordinate sexual development and behaviors.
Collapse
Affiliation(s)
- Jie Chen
- The Key Laboratory of Developmental Genes and Human Disease, Jiangsu Key Laboratory of Brain Science and Medicine, School of Life Science and Technology, Southeast University, Nanjing210096, China
| | - Peiwen Zhu
- The Key Laboratory of Developmental Genes and Human Disease, Jiangsu Key Laboratory of Brain Science and Medicine, School of Life Science and Technology, Southeast University, Nanjing210096, China
| | - Sihui Jin
- The Key Laboratory of Developmental Genes and Human Disease, Jiangsu Key Laboratory of Brain Science and Medicine, School of Life Science and Technology, Southeast University, Nanjing210096, China
| | - Zhaokun Zhang
- The Key Laboratory of Developmental Genes and Human Disease, Jiangsu Key Laboratory of Brain Science and Medicine, School of Life Science and Technology, Southeast University, Nanjing210096, China
| | - Simei Jiang
- The Key Laboratory of Developmental Genes and Human Disease, Jiangsu Key Laboratory of Brain Science and Medicine, School of Life Science and Technology, Southeast University, Nanjing210096, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou510631, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou514779, China
| | - Suning Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou510631, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou514779, China
| | - Qionglin Peng
- The Key Laboratory of Developmental Genes and Human Disease, Jiangsu Key Laboratory of Brain Science and Medicine, School of Life Science and Technology, Southeast University, Nanjing210096, China
| | - Yufeng Pan
- The Key Laboratory of Developmental Genes and Human Disease, Jiangsu Key Laboratory of Brain Science and Medicine, School of Life Science and Technology, Southeast University, Nanjing210096, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong226019, China
| |
Collapse
|
2
|
Sato K, Yamamoto D. Molecular and cellular origins of behavioral sex differences: a tiny little fly tells a lot. Front Mol Neurosci 2023; 16:1284367. [PMID: 37928065 PMCID: PMC10622783 DOI: 10.3389/fnmol.2023.1284367] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023] Open
Abstract
Behavioral sex differences primarily derive from the sexually dimorphic organization of neural circuits that direct the behavior. In Drosophila melanogaster, the sex-determination genes fruitless (fru) and doublesex (dsx) play pivotal roles in producing the sexual dimorphism of neural circuits for behavior. Here we examine three neural groups expressing fru and/or dsx, i.e., the P1 cluster, aSP-f and aSP-g cluster pairs and aDN cluster, in which causal relationships between the dimorphic behavior and dimorphic neural characteristics are best illustrated. aSP-f, aSP-g and aDN clusters represent examples where fru or dsx switches cell-autonomously their neurite structures between the female-type and male-type. Processed sensory inputs impinging on these neurons may result in outputs that encode different valences, which culminate in the execution of distinct behavior according to the sex. In contrast, the P1 cluster is male-specific as its female counterpart undergoes dsx-driven cell death, which lowers the threshold for the induction of male-specific behaviors. We propose that the products of fru and dsx genes, as terminal selectors in sexually dimorphic neuronal wiring, induce and maintain the sex-typical chromatin state at postembryonic stages, orchestrating the transcription of effector genes that shape single neuron structures and govern cell survival and death.
Collapse
Affiliation(s)
- Kosei Sato
- Neuro-ICT Laboratory, Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Japan
| | - Daisuke Yamamoto
- Neuro-ICT Laboratory, Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Japan
| |
Collapse
|
3
|
Deanhardt B, Duan Q, Du C, Soeder C, Morlote A, Garg D, Saha A, Jones CD, Volkan PC. Social experience and pheromone receptor activity reprogram gene expression in sensory neurons. G3 (BETHESDA, MD.) 2023; 13:jkad072. [PMID: 36972331 PMCID: PMC10234412 DOI: 10.1093/g3journal/jkad072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/11/2023] [Indexed: 06/29/2024]
Abstract
Social experience and pheromone signaling in olfactory neurons affect neuronal responses and male courtship behaviors in Drosophila. We previously showed that social experience and pheromone signaling modulate chromatin around behavioral switch gene fruitless, which encodes a transcription factor necessary and sufficient for male sexual behaviors. Fruitless drives social experience-dependent modulation of courtship behaviors and physiological sensory neuron responses to pheromone; however, the molecular mechanisms underlying this modulation of neural responses remain less clear. To identify the molecular mechanisms driving social experience-dependent changes in neuronal responses, we performed RNA-seq from antennal samples of mutants in pheromone receptors and fruitless, as well as grouped or isolated wild-type males. Genes affecting neuronal physiology and function, such as neurotransmitter receptors, ion channels, ion and membrane transporters, and odorant binding proteins are differentially regulated by social context and pheromone signaling. While we found that loss of pheromone detection only has small effects on differential promoter and exon usage within fruitless gene, many of the differentially regulated genes have Fruitless-binding sites or are bound by Fruitless in the nervous system. Recent studies showed that social experience and juvenile hormone signaling co-regulate fruitless chromatin to modify pheromone responses in olfactory neurons. Interestingly, genes involved in juvenile hormone metabolism are also misregulated in different social contexts and mutant backgrounds. Our results suggest that modulation of neuronal activity and behaviors in response to social experience and pheromone signaling likely arise due to large-scale changes in transcriptional programs for neuronal function downstream of behavioral switch gene function.
Collapse
Affiliation(s)
- Bryson Deanhardt
- Department of Biology, Duke University, Durham, NC 27708, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Qichen Duan
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Chengcheng Du
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Charles Soeder
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alec Morlote
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Deeya Garg
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Aishani Saha
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Corbin D Jones
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Pelin Cayirlioglu Volkan
- Department of Biology, Duke University, Durham, NC 27708, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
4
|
Sun J, Liu WK, Ellsworth C, Sun Q, Pan YF, Huang YC, Deng WM. Integrating lipid metabolism, pheromone production and perception by Fruitless and Hepatocyte nuclear factor 4. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.23.529767. [PMID: 36865119 PMCID: PMC9980076 DOI: 10.1101/2023.02.23.529767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Sexual attraction and perception, governed by separate genetic circuits in different organs, are crucial for mating and reproductive success, yet the mechanisms of how these two aspects are integrated remain unclear. In Drosophila , the male-specific isoform of Fruitless (Fru), Fru M , is known as a master neuro-regulator of innate courtship behavior to control perception of sex pheromones in sensory neurons. Here we show that the non-sex specific Fru isoform (Fru COM ) is necessary for pheromone biosynthesis in hepatocyte-like oenocytes for sexual attraction. Loss of Fru COM in oenocytes resulted in adults with reduced levels of the cuticular hydrocarbons (CHCs), including sex pheromones, and show altered sexual attraction and reduced cuticular hydrophobicity. We further identify Hepatocyte nuclear factor 4 ( Hnf4 ) as a key target of Fru COM in directing fatty acid conversion to hydrocarbons in adult oenocytes. fru - and Hnf4 -depletion disrupts lipid homeostasis, resulting in a novel sex-dimorphic CHC profile, which differs from doublesex - and transformer -dependent sexual dimorphism of the CHC profile. Thus, Fru couples pheromone perception and production in separate organs for precise coordination of chemosensory communication that ensures efficient mating behavior. Teaser Fruitless and lipid metabolism regulator HNF4 integrate pheromone biosynthesis and perception to ensure robust courtship behavior.
Collapse
Affiliation(s)
- Jie Sun
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Wen-Kan Liu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Calder Ellsworth
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Qian Sun
- Department of Entomology, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Yu-Feng Pan
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Yi-Chun Huang
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Wu-Min Deng
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|