1
|
Wang W, Zhang Y, Zhai Y, Yang W, Xing Y. Alternative splicing dynamics during gastrulation in mouse embryo. Sci Rep 2025; 15:10948. [PMID: 40159515 PMCID: PMC11955514 DOI: 10.1038/s41598-025-96148-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025] Open
Abstract
Alternative splicing (AS) plays an essential role in development, differentiation and carcinogenesis. However, the mechanisms underlying splicing regulation during mouse embryo gastrulation remain unclear. Based on spatial-temporal transcriptome and epigenome data, we detected the dynamics of AS and revealed its regulatory mechanisms across primary germ layers during mouse gastrulation, spanning developmental stages from E6.5 to E7.5. Subsequently, the dynamic expression of splicing factors (SFs) during gastrulation was characterized, while the expression patterns and functions of germ layer-specific SFs were identified. The results indicate that AS and differential alternative splicing events (DASEs) exhibit dynamic changes and are significantly abundant during the late stage of gastrulation. Similarly, SFs demonstrate stage-specific expression, with elevated levels observed during the middle and late stages of gastrulation. Epigenetic signals associated with SFs and AS sites demonstrate significant enrichment and undergo dynamic changes throughout gastrulation. Overall, this study offers a systematic analysis of AS during mouse gastrulation, identifies primary germ layer-specific AS events, and characterizes the expression patterns of SFs and the associated epigenetic signals. These findings enhance the understanding of the mechanisms underlying the formation of the three germ layers during mammalian gastrulation, with a focus on pre-mRNA AS.
Collapse
Affiliation(s)
- Wei Wang
- Inner Mongolia Key Laboratory of Life Health and Bioinformatics, School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China
| | - Yu Zhang
- Inner Mongolia Key Laboratory of Life Health and Bioinformatics, School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China
| | - Yuanyuan Zhai
- Inner Mongolia Key Laboratory of Life Health and Bioinformatics, School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China
| | - Wuritu Yang
- Computer Department, Hohhot Vocational College, Hohhot, China.
| | - Yongqiang Xing
- Inner Mongolia Key Laboratory of Life Health and Bioinformatics, School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China.
| |
Collapse
|
2
|
Stelloo S, Alejo-Vinogradova MT, van Gelder CAGH, Zijlmans DW, van Oostrom MJ, Valverde JM, Lamers LA, Rus T, Sobrevals Alcaraz P, Schäfers T, Furlan C, Jansen PWTC, Baltissen MPA, Sonnen KF, Burgering B, Altelaar MAFM, Vos HR, Vermeulen M. Deciphering lineage specification during early embryogenesis in mouse gastruloids using multilayered proteomics. Cell Stem Cell 2024; 31:1072-1090.e8. [PMID: 38754429 DOI: 10.1016/j.stem.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 01/10/2024] [Accepted: 04/19/2024] [Indexed: 05/18/2024]
Abstract
Gastrulation is a critical stage in embryonic development during which the germ layers are established. Advances in sequencing technologies led to the identification of gene regulatory programs that control the emergence of the germ layers and their derivatives. However, proteome-based studies of early mammalian development are scarce. To overcome this, we utilized gastruloids and a multilayered mass spectrometry-based proteomics approach to investigate the global dynamics of (phospho) protein expression during gastruloid differentiation. Our findings revealed many proteins with temporal expression and unique expression profiles for each germ layer, which we also validated using single-cell proteomics technology. Additionally, we profiled enhancer interaction landscapes using P300 proximity labeling, which revealed numerous gastruloid-specific transcription factors and chromatin remodelers. Subsequent degron-based perturbations combined with single-cell RNA sequencing (scRNA-seq) identified a critical role for ZEB2 in mouse and human somitogenesis. Overall, this study provides a rich resource for developmental and synthetic biology communities endeavoring to understand mammalian embryogenesis.
Collapse
Affiliation(s)
- Suzan Stelloo
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, 6525 GA Nijmegen, the Netherlands.
| | - Maria Teresa Alejo-Vinogradova
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, 6525 GA Nijmegen, the Netherlands
| | - Charlotte A G H van Gelder
- Molecular Cancer Research, Center for Molecular Medicine, Oncode Institute, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Dick W Zijlmans
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, 6525 GA Nijmegen, the Netherlands
| | - Marek J van Oostrom
- Hubrecht Institute, KNAW (Royal Netherlands Academy of Arts and Sciences), University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | - Juan Manuel Valverde
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CA Utrecht, the Netherlands; Netherlands Proteomics Center, 3584 CH Utrecht, the Netherlands
| | - Lieke A Lamers
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, 6525 GA Nijmegen, the Netherlands
| | - Teja Rus
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, 6525 GA Nijmegen, the Netherlands
| | - Paula Sobrevals Alcaraz
- Molecular Cancer Research, Center for Molecular Medicine, Oncode Institute, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Tilman Schäfers
- Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, 6525 GA Nijmegen, the Netherlands
| | - Cristina Furlan
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, 6708 WE Wageningen, the Netherlands
| | - Pascal W T C Jansen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, 6525 GA Nijmegen, the Netherlands
| | - Marijke P A Baltissen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, 6525 GA Nijmegen, the Netherlands
| | - Katharina F Sonnen
- Hubrecht Institute, KNAW (Royal Netherlands Academy of Arts and Sciences), University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | - Boudewijn Burgering
- Molecular Cancer Research, Center for Molecular Medicine, Oncode Institute, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Maarten A F M Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CA Utrecht, the Netherlands; Netherlands Proteomics Center, 3584 CH Utrecht, the Netherlands
| | - Harmjan R Vos
- Molecular Cancer Research, Center for Molecular Medicine, Oncode Institute, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, 6525 GA Nijmegen, the Netherlands; Division of Molecular Genetics, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands.
| |
Collapse
|
3
|
Leshkowitz D, Kedmi M, Fried Y, Pilzer D, Keren-Shaul H, Ainbinder E, Dassa B. Exploring differential exon usage via short- and long-read RNA sequencing strategies. Open Biol 2022; 12:220206. [PMID: 36168804 PMCID: PMC9516339 DOI: 10.1098/rsob.220206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Alternative splicing produces various mRNAs, and thereby various protein products, from one gene, impacting a wide range of cellular activities. However, accurate reconstruction and quantification of full-length transcripts using short-reads is limited, due to their length. Long-reads sequencing technologies may provide a solution by sequencing full-length transcripts. We explored the use of both Illumina short-reads and two long Oxford Nanopore Technology (cDNA and Direct RNA) RNA-Seq reads for detecting global differential splicing during mouse embryonic stem cell differentiation, applying several bioinformatics strategies: gene-based, isoform-based and exon-based. We detected the strongest similarity among the sequencing platforms at the gene level compared to exon-based and isoform-based. Furthermore, the exon-based strategy discovered many differential exon usage (DEU) events, mostly in a platform-dependent manner and in non-differentially expressed genes. Thus, the platforms complemented each other in the ability to detect DEUs (i.e. long-reads exhibited an advantage in detecting DEUs at the UTRs, and short-reads detected more DEUs). Exons within 20 genes, detected in one or more platforms, were here validated by PCR, including key differentiation genes, such as Mdb3 and Aplp1. We provide an important analysis resource for discovering transcriptome changes during stem cell differentiation and insights for analysing such data.
Collapse
Affiliation(s)
- Dena Leshkowitz
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Merav Kedmi
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yael Fried
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 76100, Israel
| | - David Pilzer
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Hadas Keren-Shaul
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Elena Ainbinder
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Bareket Dassa
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
4
|
Tarekegn GM, Khayatzadeh N, Liu B, Osama S, Haile A, Rischkowsky B, Zhang W, Tesfaye K, Dessie T, Mwai OA, Djikeng A, Mwacharo JM. Ethiopian indigenous goats offer insights into past and recent demographic dynamics and local adaptation in sub-Saharan African goats. Evol Appl 2021; 14:1716-1731. [PMID: 34295359 PMCID: PMC8287980 DOI: 10.1111/eva.13118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 07/15/2020] [Accepted: 08/13/2020] [Indexed: 12/13/2022] Open
Abstract
Knowledge on how adaptive evolution and human socio-cultural and economic interests shaped livestock genomes particularly in sub-Saharan Africa remains limited. Ethiopia is in a geographic region that has been critical in the history of African agriculture with ancient and diverse human ethnicity and bio-climatic conditions. Using 52K genome-wide data analysed in 646 individuals from 13 Ethiopian indigenous goat populations, we observed high levels of genetic variation. Although runs of homozygosity (ROH) were ubiquitous genome-wide, there were clear differences in patterns of ROH length and abundance and in effective population sizes illustrating differences in genome homozygosity, evolutionary history, and management. Phylogenetic analysis incorporating patterns of genetic differentiation and gene flow with ancestry modelling highlighted past and recent intermixing and possible two deep ancient genetic ancestries that could have been brought by humans with the first introduction of goats in Africa. We observed four strong selection signatures that were specific to Arsi-Bale and Nubian goats. These signatures overlapped genomic regions with genes associated with morphological, adaptation, reproduction and production traits due possibly to selection under environmental constraints and/or human preferences. The regions also overlapped uncharacterized genes, calling for a comprehensive annotation of the goat genome. Our results provide insights into mechanisms leading to genome variation and differentiation in sub-Saharan Africa indigenous goats.
Collapse
Affiliation(s)
- Getinet M. Tarekegn
- Department of Animal Production and TechnologySchool of Animal Sciences and Veterinary MedicineBahir Dar UniversityBahir DarEthiopia
- Department of Animal Breeding and GeneticsSwedish University of Agricultural Sciences (SLU)UppsalaSweden
| | - Negar Khayatzadeh
- Department of Sustainable Agricultural SystemsDivision of Livestock SciencesUniversity of Natural Resources and Life SciencesViennaAustria
| | - Bin Liu
- Inner Mongolia Agricultural UniversityHohhotChina
| | - Sarah Osama
- The University of QueenslandSaint LuciaQLDAustralia
| | - Aynalem Haile
- Small Ruminant GenomicsInternational Centre for Agricultural Research in the Dry Areas (ICARDA)Addis AbabaEthiopia
| | - Barbara Rischkowsky
- Small Ruminant GenomicsInternational Centre for Agricultural Research in the Dry Areas (ICARDA)Addis AbabaEthiopia
| | | | - Kassahun Tesfaye
- Department of Microbial, Cellular and Molecular BiologyAddis Ababa UniversityAddis AbabaEthiopia
| | - Tadelle Dessie
- International Livestock Research Institute (ILRI)Addis AbabaEthiopia
| | - Okeyo A. Mwai
- International Livestock Research Institute (ILRI)NairobiKenya
| | - Appolinaire Djikeng
- Animal and Veterinary Sciences Group, SRUC and Centre for Tropical Livestock Genetics and Health (CTLGH)The Roslin InstituteEaster BushMidlothianUK
| | - Joram M. Mwacharo
- Small Ruminant GenomicsInternational Centre for Agricultural Research in the Dry Areas (ICARDA)Addis AbabaEthiopia
- Animal and Veterinary Sciences Group, SRUC and Centre for Tropical Livestock Genetics and Health (CTLGH)The Roslin InstituteEaster BushMidlothianUK
| |
Collapse
|
5
|
Miao S, Zhao D, Wang X, Ni X, Fang X, Yu M, Ye L, Yang J, Wu H, Han X, Qu L, Li L, Lan F, Shen Z, Lei W, Zhao ZA, Hu S. Retinoic acid promotes metabolic maturation of human Embryonic Stem Cell-derived Cardiomyocytes. Theranostics 2020; 10:9686-9701. [PMID: 32863954 PMCID: PMC7449904 DOI: 10.7150/thno.44146] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/20/2020] [Indexed: 12/15/2022] Open
Abstract
Cardiomyocytes differentiated from human embryonic stem cells (hESCs) represent a promising cell source for heart repair, disease modeling and drug testing. However, improving the differentiation efficiency and maturation of hESC-derived cardiomyocytes (hESC-CMs) is still a major concern. Retinoic acid (RA) signaling plays multiple roles in heart development. However, the effects of RA on cardiomyocyte differentiation efficiency and maturation are still unknown. Methods: RA was added at different time intervals to identify the best treatment windows for cardiomyocyte differentiation and maturation. The efficiency of cardiomyocyte differentiation was detected by quantitative real-time PCR and flow cytometry. Cardiomyocytes maturation was detected by immunofluorescence staining, metabolic assays and patch clamp to verify structural, metabolic and electrophysiological maturation, respectively. RNA sequencing was used for splicing analysis. Results: We found that RA treatment at the lateral mesoderm stage (days 2-4) significantly improved cardiomyocyte differentiation, as evidenced by the upregulation of TNNT2, NKX2.5 and MYH6 on day 10 of differentiation. In addition, flow cytometry showed that the proportion of differentiated cardiomyocytes in the RA-treated group was significantly higher than that in control group. RA treatment on days 15-20 increased cardiomyocyte area, sarcomere length, multinucleation and mitochondrial copy number. RNA sequencing revealed RA promoted RNA isoform switch to the maturation-related form. Meanwhile, RA promoted electrophysiological maturation and calcium handling of hESC-CMs. Importantly, RA-treated cardiomyocytes showed decreased glycolysis and enhanced mitochondrial oxidative phosphorylation, with the increased utilization of fatty acid and exogenous pyruvate but not glutamine. Conclusion: Our data indicated that RA treatment at an early time window (days 2-4) promotes the efficiency of cardiomyocyte differentiation and that RA treatment post beating (days 15-20) promotes cardiomyocyte maturation. The biphasic effects of RA provide new insights for improving cardiomyocyte differentiation and quality.
Collapse
|
6
|
Campla CK, Mast H, Dong L, Lei J, Halford S, Sekaran S, Swaroop A. Targeted deletion of an NRL- and CRX-regulated alternative promoter specifically silences FERM and PDZ domain containing 1 (Frmpd1) in rod photoreceptors. Hum Mol Genet 2020; 28:804-817. [PMID: 30445545 DOI: 10.1093/hmg/ddy388] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/15/2018] [Accepted: 11/07/2018] [Indexed: 02/07/2023] Open
Abstract
Regulation of cell type-specific gene expression is critical for generating neuronal diversity. Transcriptome analyses have unraveled extensive heterogeneity of transcribed sequences in retinal photoreceptors because of alternate splicing and/or promoter usage. Here we show that Frmpd1 (FERM and PDZ domain containing 1) is transcribed from an alternative promoter specifically in the retina. Electroporation of Frmpd1 promoter region, -505 to +382 bp, activated reporter gene expression in mouse retina in vivo. A proximal promoter sequence (-8 to +33 bp) of Frmpd1 binds to neural retina leucine zipper (NRL) and cone-rod homeobox protein (CRX), two rod-specific differentiation factors, and is necessary for activating reporter gene expression in vitro and in vivo. Clustered regularly interspaced short palindromic repeats/Cas9-mediated deletion of the genomic region, including NRL and CRX binding sites, in vivo completely eliminated Frmpd1 expression in rods and dramatically reduced expression in rod bipolar cells, thereby overcoming embryonic lethality caused by germline Frmpd1 deletion. Our studies demonstrate that a cell type-specific regulatory control region is a credible target for creating loss-of-function alleles of widely expressed genes.
Collapse
Affiliation(s)
- Christie K Campla
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA.,Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Hannah Mast
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lijin Dong
- Genetic Engineering Core, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jingqi Lei
- Genetic Engineering Core, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stephanie Halford
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Sumathi Sekaran
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Anand Swaroop
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
7
|
Expression profile and potential functional differentiation of the Speedy/RINGO family in mice. Gene 2019; 683:80-86. [PMID: 30316922 DOI: 10.1016/j.gene.2018.10.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/01/2018] [Accepted: 10/11/2018] [Indexed: 11/23/2022]
Abstract
As novel cyclin-dependent kinase (CDK) activators, Speedy/RINGO (hereafter named Speedy) proteins can directly regulate the cell cycle of vertebrates by binding to and activating various CDKs. Previous studies have shown that Speedy genes are highly associated with different types of cancer and other diseases. However, Speedy genes have not been systematically identified in mice, and their function and expression profiles remain elusive, which greatly hinders the functional and mechanistic study of Speedy genes in vivo. Here, we comprehensively identified Speedy genes in the mouse genome. Phylogenetic analysis showed that the Speedy gene family should be divided into three subfamilies, rather than the previously reported two subfamilies. Mice have two of the three subfamilies of Speedy genes, namely, subfamilies A and E. Speedy subfamily C genes have been lost from the mouse genome. By combining experimental and bioinformatics approaches, we found that the genes from subfamilies A and E have different expression profiles, indicating their functional divergence, which was also consistent with the phylogenetic results. The genes belonging to subfamily E showed only slightly different expression profiles, indicating their similar functions. Coexpression network analysis showed that the genes coexpressed with mouse Speedy genes were primarily enriched in reproduction-related mechanisms and there were significant functional differences between genes from subfamilies A and E, further demonstrating functional differentiation. In summary, we provide a comprehensive landscape (from evolution to expression and function) of the Speedy family in mice; we also demonstrate that Speedy genes mainly participate in reproduction-related mechanisms and that they have undergone functional differentiation in mice.
Collapse
|
8
|
Yoney A, Etoc F, Ruzo A, Carroll T, Metzger JJ, Martyn I, Li S, Kirst C, Siggia ED, Brivanlou AH. WNT signaling memory is required for ACTIVIN to function as a morphogen in human gastruloids. eLife 2018; 7:38279. [PMID: 30311909 PMCID: PMC6234031 DOI: 10.7554/elife.38279] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 10/11/2018] [Indexed: 01/10/2023] Open
Abstract
Self-organization of discrete fates in human gastruloids is mediated by a hierarchy of signaling pathways. How these pathways are integrated in time, and whether cells maintain a memory of their signaling history remains obscure. Here, we dissect the temporal integration of two key pathways, WNT and ACTIVIN, which along with BMP control gastrulation. CRISPR/Cas9-engineered live reporters of SMAD1, 2 and 4 demonstrate that in contrast to the stable signaling by SMAD1, signaling and transcriptional response by SMAD2 is transient, and while necessary for pluripotency, it is insufficient for differentiation. Pre-exposure to WNT, however, endows cells with the competence to respond to graded levels of ACTIVIN, which induces differentiation without changing SMAD2 dynamics. This cellular memory of WNT signaling is necessary for ACTIVIN morphogen activity. A re-evaluation of the evidence gathered over decades in model systems, re-enforces our conclusions and points to an evolutionarily conserved mechanism.
Collapse
Affiliation(s)
- Anna Yoney
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, United States.,Center for Studies in Physics and Biology, The Rockefeller University, New York, United States
| | - Fred Etoc
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, United States.,Center for Studies in Physics and Biology, The Rockefeller University, New York, United States
| | - Albert Ruzo
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, United States
| | - Thomas Carroll
- Bioinformatics Resource Center, The Rockefeller University, New York, United States
| | - Jakob J Metzger
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, United States.,Center for Studies in Physics and Biology, The Rockefeller University, New York, United States
| | - Iain Martyn
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, United States.,Center for Studies in Physics and Biology, The Rockefeller University, New York, United States
| | - Shu Li
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, United States
| | - Christoph Kirst
- Center for Studies in Physics and Biology, The Rockefeller University, New York, United States
| | - Eric D Siggia
- Center for Studies in Physics and Biology, The Rockefeller University, New York, United States
| | - Ali H Brivanlou
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, United States
| |
Collapse
|