1
|
Ferreccio A, Byeon S, Cornell M, Oses-Prieto J, Deshpande A, Weiss LA, Burlingame A, Yadav S. TAOK2 Drives Opposing Cilia Length Deficits in 16p11.2 Deletion and Duplication Carriers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.07.617069. [PMID: 39416068 PMCID: PMC11482803 DOI: 10.1101/2024.10.07.617069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Copy number variation (CNV) in the 16p11.2 (BP4-BP5) genomic locus is strongly associated with autism. Carriers of 16p11.2 deletion and duplication exhibit several common behavioral and social impairments, yet, show opposing brain structural changes and body mass index. To determine cellular mechanisms that might contribute to these opposing phenotypes, we performed quantitative tandem mass tag (TMT) proteomics on human dorsal forebrain neural progenitor cells (NPCs) differentiated from induced pluripotent stem cells (iPSC) derived from 16p11.2 CNV carriers. Differentially phosphorylated proteins between unaffected individuals and 16p11.2 CNV carriers were significantly enriched for centrosomal and cilia proteins. Deletion patient-derived NPCs show increased primary cilium length compared to unaffected individuals, while stunted cilium growth was observed in 16p11.2 duplication NPCs. Through cellular shRNA and overexpression screens in human iPSC derived NPCs, we determined the contribution of genes within the 16p11.2 locus to cilium length. TAOK2, a serine threonine protein kinase, and PPP4C, a protein phosphatase, were found to regulate primary cilia length in a gene dosage-dependent manner. We found TAOK2 was localized at centrosomes and the base of the primary cilium, and NPCs differentiated from TAOK2 knockout iPSCs had longer cilia. In absence of TAOK2, there was increased pericentrin at the basal body, and aberrant accumulation of IFT88 at the ciliary distal tip. Further, pharmacological inhibition of TAO kinase activity led to increased ciliary length, indicating that TAOK2 negatively controls primary cilium length through its catalytic activity. These results implicate aberrant cilia length in the pathophysiology of 16p11.2 CNV, and establish the role of TAOK2 kinase as a regulator of primary cilium length.
Collapse
Affiliation(s)
- Amy Ferreccio
- Department of Pharmacology, University of Washington, Seattle, WA 98195
| | - Sujin Byeon
- Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195
| | - Moira Cornell
- Department of Pharmacology, University of Washington, Seattle, WA 98195
| | - Juan Oses-Prieto
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94195
| | - Aditi Deshpande
- Department of Psychiatry, Weill Institute for Neurosciences, University of California, San Francisco, CA 94195
| | - Lauren A Weiss
- Department of Psychiatry, Weill Institute for Neurosciences, University of California, San Francisco, CA 94195
| | - Alma Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94195
| | - Smita Yadav
- Department of Pharmacology, University of Washington, Seattle, WA 98195
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98106
| |
Collapse
|
2
|
Fiedler J, Moennig T, Hinrichs JH, Weber A, Wagner T, Hemmer T, Schröter R, Weide T, Epting D, Bergmann C, Nedvetsky P, Krahn MP. PATJ inhibits histone deacetylase 7 to control tight junction formation and cell polarity. Cell Mol Life Sci 2023; 80:333. [PMID: 37878054 PMCID: PMC10600057 DOI: 10.1007/s00018-023-04994-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/19/2023] [Accepted: 09/29/2023] [Indexed: 10/26/2023]
Abstract
The conserved multiple PDZ-domain containing protein PATJ stabilizes the Crumbs-Pals1 complex to regulate apical-basal polarity and tight junction formation in epithelial cells. However, the molecular mechanism of PATJ's function in these processes is still unclear. In this study, we demonstrate that knockout of PATJ in epithelial cells results in tight junction defects as well as in a disturbed apical-basal polarity and impaired lumen formation in three-dimensional cyst assays. Mechanistically, we found PATJ to associate with and inhibit histone deacetylase 7 (HDAC7). Inhibition or downregulation of HDAC7 restores polarity and lumen formation. Gene expression analysis of PATJ-deficient cells revealed an impaired expression of genes involved in cell junction assembly and membrane organization, which is rescued by the downregulation of HDAC7. Notably, the function of PATJ regulating HDAC7-dependent cilia formation does not depend on its canonical interaction partner, Pals1, indicating a new role of PATJ, which is distinct from its function in the Crumbs complex. By contrast, polarity and lumen phenotypes observed in Pals1- and PATJ-deficient epithelial cells can be rescued by inhibition of HDAC7, suggesting that the main function of this polarity complex in this process is to modulate the transcriptional profile of epithelial cells by inhibiting HDAC7.
Collapse
Affiliation(s)
- Julia Fiedler
- Department of Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer-Campus 1-A14, 48149, Münster, Germany
| | - Thomas Moennig
- Department of Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer-Campus 1-A14, 48149, Münster, Germany
| | - Johanna H Hinrichs
- Department of Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer-Campus 1-A14, 48149, Münster, Germany
| | - Annika Weber
- Department of Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer-Campus 1-A14, 48149, Münster, Germany
| | - Thomas Wagner
- Department of Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer-Campus 1-A14, 48149, Münster, Germany
| | - Tim Hemmer
- Department of Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer-Campus 1-A14, 48149, Münster, Germany
| | - Rita Schröter
- Department of Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer-Campus 1-A14, 48149, Münster, Germany
| | - Thomas Weide
- Department of Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer-Campus 1-A14, 48149, Münster, Germany
| | - Daniel Epting
- Department of Medicine IV, Faculty of Medicine, Medical Center, University of Freiburg, 79106, Freiburg, Germany
| | - Carsten Bergmann
- Department of Medicine IV, Faculty of Medicine, Medical Center, University of Freiburg, 79106, Freiburg, Germany
- Medizinische Genetik Mainz, Limbach Genetics, 55128, Mainz, Germany
| | - Pavel Nedvetsky
- Department of Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer-Campus 1-A14, 48149, Münster, Germany
| | - Michael P Krahn
- Department of Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer-Campus 1-A14, 48149, Münster, Germany.
| |
Collapse
|
3
|
Bae JE, Kim JB, Jo DS, Park NY, Kim YH, Lee HJ, Kim SH, Kim SH, Son M, Kim P, Ryu HY, Lee WH, Ryoo ZY, Lee HS, Jung YK, Cho DH. Carnitine Protects against MPP+-Induced Neurotoxicity and Inflammation by Promoting Primary Ciliogenesis in SH-SY5Y Cells. Cells 2022; 11:cells11172722. [PMID: 36078130 PMCID: PMC9454591 DOI: 10.3390/cells11172722] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 12/04/2022] Open
Abstract
Primary cilia help to maintain cellular homeostasis by sensing conditions in the extracellular environment, including growth factors, nutrients, and hormones that are involved in various signaling pathways. Recently, we have shown that enhanced primary ciliogenesis in dopamine neurons promotes neuronal survival in a Parkinson’s disease model. Moreover, we performed fecal metabolite screening in order to identify several candidates for improving primary ciliogenesis, including L-carnitine and acetyl-L-carnitine. However, the role of carnitine in primary ciliogenesis has remained unclear. In addition, the relationship between primary cilia and neurodegenerative diseases has remained unclear. In this study, we have evaluated the effects of carnitine on primary ciliogenesis in 1-methyl-4-phenylpyridinium ion (MPP+)-treated cells. We found that both L-carnitine and acetyl-L-carnitine promoted primary ciliogenesis in SH-SY5Y cells. In addition, the enhancement of ciliogenesis by carnitine suppressed MPP+-induced mitochondrial reactive oxygen species overproduction and mitochondrial fragmentation in SH-SY5Y cells. Moreover, carnitine inhibited the production of pro-inflammatory cytokines in MPP+-treated SH-SY5Y cells. Taken together, our findings suggest that enhanced ciliogenesis regulates MPP+-induced neurotoxicity and inflammation.
Collapse
Affiliation(s)
- Ji-Eun Bae
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41566, Korea
| | - Joon Bum Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
| | - Doo Sin Jo
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
| | - Na Yeon Park
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
| | - Yong Hwan Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
| | - Ha Jung Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
| | - Seong Hyun Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
| | - So Hyun Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
| | - Mikyung Son
- ORGASIS Corp. 260, Changyong-daero, Yeongtong-gu, Suwon 16229, Korea
| | - Pansoo Kim
- Biocenter, Gyeonggido Business and Science Accelerator, Suwon 16229, Korea
| | - Hong-Yeoul Ryu
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
| | - Won Ha Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
| | - Zae Young Ryoo
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
| | - Hyun-Shik Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
| | - Yong-Keun Jung
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Dong-Hyung Cho
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
- ORGASIS Corp. 260, Changyong-daero, Yeongtong-gu, Suwon 16229, Korea
- Correspondence: ; Tel.: +82-53-950-5382
| |
Collapse
|
4
|
Rocha C, Prinos P. Post-transcriptional and Post-translational Modifications of Primary Cilia: How to Fine Tune Your Neuronal Antenna. Front Cell Neurosci 2022; 16:809917. [PMID: 35295905 PMCID: PMC8918543 DOI: 10.3389/fncel.2022.809917] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/19/2022] [Indexed: 12/27/2022] Open
Abstract
Primary cilia direct cellular signaling events during brain development and neuronal differentiation. The primary cilium is a dynamic organelle formed in a multistep process termed ciliogenesis that is tightly coordinated with the cell cycle. Genetic alterations, such as ciliary gene mutations, and epigenetic alterations, such as post-translational modifications and RNA processing of cilia related factors, give rise to human neuronal disorders and brain tumors such as glioblastoma and medulloblastoma. This review discusses the important role of genetics/epigenetics, as well as RNA processing and post-translational modifications in primary cilia function during brain development and cancer formation. We summarize mouse and human studies of ciliogenesis and primary cilia activity in the brain, and detail how cilia maintain neuronal progenitor populations and coordinate neuronal differentiation during development, as well as how cilia control different signaling pathways such as WNT, Sonic Hedgehog (SHH) and PDGF that are critical for neurogenesis. Moreover, we describe how post-translational modifications alter cilia formation and activity during development and carcinogenesis, and the impact of missplicing of ciliary genes leading to ciliopathies and cell cycle alterations. Finally, cilia genetic and epigenetic studies bring to light cellular and molecular mechanisms that underlie neurodevelopmental disorders and brain tumors.
Collapse
Affiliation(s)
- Cecilia Rocha
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
- *Correspondence: Cecilia Rocha,
| | - Panagiotis Prinos
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
- Panagiotis Prinos,
| |
Collapse
|
5
|
Kuek LE, Lee RJ. First contact: the role of respiratory cilia in host-pathogen interactions in the airways. Am J Physiol Lung Cell Mol Physiol 2020; 319:L603-L619. [PMID: 32783615 PMCID: PMC7516383 DOI: 10.1152/ajplung.00283.2020] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
Respiratory cilia are the driving force of the mucociliary escalator, working in conjunction with secreted airway mucus to clear inhaled debris and pathogens from the conducting airways. Respiratory cilia are also one of the first contact points between host and inhaled pathogens. Impaired ciliary function is a common pathological feature in patients with chronic airway diseases, increasing susceptibility to respiratory infections. Common respiratory pathogens, including viruses, bacteria, and fungi, have been shown to target cilia and/or ciliated airway epithelial cells, resulting in a disruption of mucociliary clearance that may facilitate host infection. Despite being an integral component of airway innate immunity, the role of respiratory cilia and their clinical significance during airway infections are still poorly understood. This review examines the expression, structure, and function of respiratory cilia during pathogenic infection of the airways. This review also discusses specific known points of interaction of bacteria, fungi, and viruses with respiratory cilia function. The emerging biological functions of motile cilia relating to intracellular signaling and their potential immunoregulatory roles during infection will also be discussed.
Collapse
Affiliation(s)
- Li Eon Kuek
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Robert J Lee
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|