1
|
Hermo L, Oliveira R, Dufresne J, Gregory M, Cyr DG. Basal and Immune Cells of the Epididymis: An Electron Microscopy View of Their Association. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1469:67-87. [PMID: 40301253 DOI: 10.1007/978-3-031-82990-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
The epididymis is a highly coiled duct divided into the initial segment, caput, corpus, and cauda regions. It is a pseudostratified epithelium consisting of principal, narrow, apical, basal, and clear cells. Circulating halo cells, identified as nonepithelial cells, monocytes/macrophages (M/M) and T-lymphocytes, in addition to dendritic cells and a resident population of M/M cells, also inhabit the epididymal epithelium. Using electron microscopy (EM), we characterized the ultrastructural features of each of these different cell types. Basal cells with stem cell characteristics suggest a role in sustaining the epithelium following injury and inflammation, as well as maintaining the steady state of the epithelium. Interestingly, a close morphological affiliation was noted between circulating M/M cells with basal cells and an intraepithelial resident M/M population of cells, as well as between T-lymphocytes and dendritic cells. The association of all these cell types with one another suggests complex interactions enabling the coordination of their functions related to maturation, protection, survival of sperm, and renewal of the epithelium.
Collapse
Affiliation(s)
- Louis Hermo
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Regiana Oliveira
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Julie Dufresne
- Laboratory for Reproductive Toxicology, INRS-Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, QC, Canada
| | - Mary Gregory
- Laboratory for Reproductive Toxicology, INRS-Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, QC, Canada
| | - Daniel G Cyr
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada.
- Laboratory for Reproductive Toxicology, INRS-Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, QC, Canada.
| |
Collapse
|
2
|
Patel S, Sparman NZR, Arneson D, Alvarsson A, Santos LC, Duesman SJ, Centonze A, Hathaway E, Ahn IS, Diamante G, Cely I, Cho CH, Talari NK, Rajbhandari AK, Goedeke L, Wang P, Butte AJ, Blanpain C, Chella Krishnan K, Lusis AJ, Stanley SA, Yang X, Rajbhandari P. Mammary duct luminal epithelium controls adipocyte thermogenic programme. Nature 2023; 620:192-199. [PMID: 37495690 PMCID: PMC10529063 DOI: 10.1038/s41586-023-06361-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 06/22/2023] [Indexed: 07/28/2023]
Abstract
Sympathetic activation during cold exposure increases adipocyte thermogenesis via the expression of mitochondrial protein uncoupling protein 1 (UCP1)1. The propensity of adipocytes to express UCP1 is under a critical influence of the adipose microenvironment and varies between sexes and among various fat depots2-7. Here we report that mammary gland ductal epithelial cells in the adipose niche regulate cold-induced adipocyte UCP1 expression in female mouse subcutaneous white adipose tissue (scWAT). Single-cell RNA sequencing shows that glandular luminal epithelium subtypes express transcripts that encode secretory factors controlling adipocyte UCP1 expression under cold conditions. We term these luminal epithelium secretory factors 'mammokines'. Using 3D visualization of whole-tissue immunofluorescence, we reveal sympathetic nerve-ductal contact points. We show that mammary ducts activated by sympathetic nerves limit adipocyte UCP1 expression via the mammokine lipocalin 2. In vivo and ex vivo ablation of mammary duct epithelium enhance the cold-induced adipocyte thermogenic gene programme in scWAT. Since the mammary duct network extends throughout most of the scWAT in female mice, females show markedly less scWAT UCP1 expression, fat oxidation, energy expenditure and subcutaneous fat mass loss compared with male mice, implicating sex-specific roles of mammokines in adipose thermogenesis. These results reveal a role of sympathetic nerve-activated glandular epithelium in adipocyte UCP1 expression and suggest that mammary duct luminal epithelium has an important role in controlling glandular adiposity.
Collapse
Affiliation(s)
- Sanil Patel
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Njeri Z R Sparman
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Douglas Arneson
- Department of Integrative Biology and Physiology and Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, USA
| | - Alexandra Alvarsson
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Luís C Santos
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Samuel J Duesman
- Department of Psychiatry and Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alessia Centonze
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Ephraim Hathaway
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - In Sook Ahn
- Department of Integrative Biology and Physiology and Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Graciel Diamante
- Department of Integrative Biology and Physiology and Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Ingrid Cely
- Department of Integrative Biology and Physiology and Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Chung Hwan Cho
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Noble Kumar Talari
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Abha K Rajbhandari
- Department of Psychiatry and Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Leigh Goedeke
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peng Wang
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Atul J Butte
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, USA
- Department of Pediatrics, University of California, San Francisco, CA, USA
- Center for Data-Driven Insights and Innovation, University of California Health, Oakland, CA, USA
| | - Cédric Blanpain
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Karthickeyan Chella Krishnan
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Medicine, Division of Cardiology, and Department of Human Genetics, University of California, Los Angeles, CA, USA
| | - Aldons J Lusis
- Department of Medicine, Division of Cardiology, and Department of Human Genetics, University of California, Los Angeles, CA, USA
| | - Sarah A Stanley
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xia Yang
- Department of Integrative Biology and Physiology and Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Prashant Rajbhandari
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
3
|
Horton C, Liu Y, Wang J, Green J, Tsyporin J, Chen B, Wang ZA. Modulation of the canonical Wnt activity by androgen signaling in prostate epithelial basal stem cells. Stem Cell Reports 2023; 18:1355-1370. [PMID: 37172587 PMCID: PMC10277819 DOI: 10.1016/j.stemcr.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 05/15/2023] Open
Abstract
Both the canonical Wnt and androgen receptor (AR) signaling pathways are important for prostate organogenesis and homeostasis. How they crosstalk to regulate prostate stem cell behaviors remains unclear. Here, we show in lineage-tracing mouse models that although Wnt is essential for basal stem cell multipotency, ectopic Wnt activity promotes basal cell over-proliferation and squamous phenotypes, which are counteracted by elevated levels of androgen. In prostate basal cell organoids, dihydrotestosterone (DHT) antagonizes R-spondin-stimulated growth in a concentration-dependent manner. DHT down-regulates the expressions of a Wnt reporter and target genes, and RNA sequencing (RNA-seq) analyses identify Wnt signaling as a key altered pathway. Mechanistically, DHT enhances AR and β-catenin protein binding, and CUT&RUN analyses reveal that ectopic AR sequesters β-catenin away from its Wnt-related cistrome. Our results suggest that an intermediate level of Wnt activity in prostate basal stem cells, achieved via AR-β-catenin interaction, is essential for normal prostate homeostasis.
Collapse
Affiliation(s)
- Corrigan Horton
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Yueli Liu
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Jiawen Wang
- Sequencing Center, National Institute of Biological Sciences, Beijing 102206, China
| | - Jonathan Green
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Jeremiah Tsyporin
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Bin Chen
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Zhu A Wang
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA.
| |
Collapse
|
4
|
Hu WY, Hu DP, Xie L, Nonn L, Lu R, Abern M, Shioda T, Prins GS. Keratin Profiling by Single-Cell RNA-Sequencing Identifies Human Prostate Stem Cell Lineage Hierarchy and Cancer Stem-Like Cells. Int J Mol Sci 2021; 22:ijms22158109. [PMID: 34360875 PMCID: PMC8346986 DOI: 10.3390/ijms22158109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 01/10/2023] Open
Abstract
Single prostate stem cells can generate stem and progenitor cells to form prostaspheres in 3D culture. Using a prostasphere-based label retention assay, we recently identified keratin 13 (KRT13)-enriched prostate stem cells at single-cell resolution, distinguishing them from daughter progenitors. Herein, we characterized the epithelial cell lineage hierarchy in prostaspheres using single-cell RNA-seq analysis. Keratin profiling revealed three clusters of label-retaining prostate stem cells; cluster I represents quiescent stem cells (PSCA, CD36, SPINK1, and KRT13/23/80/78/4 enriched), while clusters II and III represent active stem and bipotent progenitor cells (KRT16/17/6 enriched). Gene set enrichment analysis revealed enrichment of stem and cancer-related pathways in cluster I. In non-label-retaining daughter progenitor cells, three clusters were identified; cluster IV represents basal progenitors (KRT5/14/6/16 enriched), while clusters V and VI represent early and late-stage luminal progenitors, respectively (KRT8/18/10 enriched). Furthermore, MetaCore analysis showed enrichment of the “cytoskeleton remodeling–keratin filaments” pathway in cancer stem-like cells from human prostate cancer specimens. Along with common keratins (KRT13/23/80/78/4) in normal stem cells, unique keratins (KRT10/19/6C/16) were enriched in cancer stem-like cells. Clarification of these keratin profiles in human prostate stem cell lineage hierarchy and cancer stem-like cells can facilitate the identification and therapeutic targeting of prostate cancer stem-like cells.
Collapse
Affiliation(s)
- Wen-Yang Hu
- Department of Urology, University of Illinois at Chicago, Chicago, IL 60612, USA; (D.-P.H.); (L.X.); (R.L.); (M.A.); (G.S.P.)
- Correspondence:
| | - Dan-Ping Hu
- Department of Urology, University of Illinois at Chicago, Chicago, IL 60612, USA; (D.-P.H.); (L.X.); (R.L.); (M.A.); (G.S.P.)
| | - Lishi Xie
- Department of Urology, University of Illinois at Chicago, Chicago, IL 60612, USA; (D.-P.H.); (L.X.); (R.L.); (M.A.); (G.S.P.)
| | - Larisa Nonn
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - Ranli Lu
- Department of Urology, University of Illinois at Chicago, Chicago, IL 60612, USA; (D.-P.H.); (L.X.); (R.L.); (M.A.); (G.S.P.)
| | - Michael Abern
- Department of Urology, University of Illinois at Chicago, Chicago, IL 60612, USA; (D.-P.H.); (L.X.); (R.L.); (M.A.); (G.S.P.)
| | - Toshihiro Shioda
- Massachusetts General Hospital Center for Cancer Research and Harvard Medical School, Charlestown, MA 02129, USA;
| | - Gail S. Prins
- Department of Urology, University of Illinois at Chicago, Chicago, IL 60612, USA; (D.-P.H.); (L.X.); (R.L.); (M.A.); (G.S.P.)
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, USA;
| |
Collapse
|
5
|
Mevel R, Steiner I, Mason S, Galbraith LCA, Patel R, Fadlullah MZH, Ahmad I, Leung HY, Oliveira P, Blyth K, Baena E, Lacaud G. RUNX1 marks a luminal castration-resistant lineage established at the onset of prostate development. eLife 2020; 9:e60225. [PMID: 33025905 PMCID: PMC7644213 DOI: 10.7554/elife.60225] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022] Open
Abstract
The characterization of prostate epithelial hierarchy and lineage heterogeneity is critical to understand its regenerative properties and malignancies. Here, we report that the transcription factor RUNX1 marks a specific subpopulation of proximal luminal cells (PLCs), enriched in the periurethral region of the developing and adult mouse prostate, and distinct from the previously identified NKX3.1+ luminal castration-resistant cells. Using scRNA-seq profiling and genetic lineage tracing, we show that RUNX1+ PLCs are unaffected by androgen deprivation, and do not contribute to the regeneration of the distal luminal compartments. Furthermore, we demonstrate that a transcriptionally similar RUNX1+ population emerges at the onset of embryonic prostate specification to populate the proximal region of the ducts. Collectively, our results reveal that RUNX1+ PLCs is an intrinsic castration-resistant and self-sustained lineage that emerges early during prostate development and provide new insights into the lineage relationships of the prostate epithelium.
Collapse
Affiliation(s)
- Renaud Mevel
- Cancer Research United Kingdom, Stem Cell Biology Group, Cancer Research United Kingdom Manchester Institute, The University of Manchester, Alderley Park, Alderley EdgeMacclesfieldUnited Kingdom
| | - Ivana Steiner
- Cancer Research United Kingdom, Prostate Oncobiology Group, Cancer Research United Kingdom Manchester Institute, The University of Manchester, Alderley Park, Alderley EdgeMacclesfieldUnited Kingdom
| | - Susan Mason
- Cancer Research United Kingdom Beatson Institute, BearsdenGlasgowUnited Kingdom
| | - Laura CA Galbraith
- Cancer Research United Kingdom Beatson Institute, BearsdenGlasgowUnited Kingdom
| | - Rahima Patel
- Cancer Research United Kingdom, Stem Cell Biology Group, Cancer Research United Kingdom Manchester Institute, The University of Manchester, Alderley Park, Alderley EdgeMacclesfieldUnited Kingdom
| | - Muhammad ZH Fadlullah
- Cancer Research United Kingdom, Stem Cell Biology Group, Cancer Research United Kingdom Manchester Institute, The University of Manchester, Alderley Park, Alderley EdgeMacclesfieldUnited Kingdom
| | - Imran Ahmad
- Cancer Research United Kingdom Beatson Institute, BearsdenGlasgowUnited Kingdom
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, BearsdenGlasgowUnited Kingdom
| | - Hing Y Leung
- Cancer Research United Kingdom Beatson Institute, BearsdenGlasgowUnited Kingdom
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, BearsdenGlasgowUnited Kingdom
| | - Pedro Oliveira
- Department of Pathology, The Christie NHS Foundation TrustManchesterUnited Kingdom
| | - Karen Blyth
- Cancer Research United Kingdom Beatson Institute, BearsdenGlasgowUnited Kingdom
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, BearsdenGlasgowUnited Kingdom
| | - Esther Baena
- Cancer Research United Kingdom, Prostate Oncobiology Group, Cancer Research United Kingdom Manchester Institute, The University of Manchester, Alderley Park, Alderley EdgeMacclesfieldUnited Kingdom
- Belfast-Manchester Movember Centre of Excellence, Cancer Research United Kingdom Manchester Institute, The University of ManchesterAlderley ParkUnited Kingdom
| | - Georges Lacaud
- Cancer Research United Kingdom, Stem Cell Biology Group, Cancer Research United Kingdom Manchester Institute, The University of Manchester, Alderley Park, Alderley EdgeMacclesfieldUnited Kingdom
| |
Collapse
|
6
|
Centonze A, Lin S, Tika E, Sifrim A, Fioramonti M, Malfait M, Song Y, Wuidart A, Van Herck J, Dannau A, Bouvencourt G, Dubois C, Dedoncker N, Sahay A, de Maertelaer V, Siebel CW, Van Keymeulen A, Voet T, Blanpain C. Heterotypic cell-cell communication regulates glandular stem cell multipotency. Nature 2020; 584:608-613. [PMID: 32848220 DOI: 10.1038/s41586-020-2632-y] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/20/2020] [Indexed: 12/15/2022]
Abstract
Glandular epithelia, including the mammary and prostate glands, are composed of basal cells (BCs) and luminal cells (LCs)1,2. Many glandular epithelia develop from multipotent basal stem cells (BSCs) that are replaced in adult life by distinct pools of unipotent stem cells1,3-8. However, adult unipotent BSCs can reactivate multipotency under regenerative conditions and upon oncogene expression3,9-13. This suggests that an active mechanism restricts BSC multipotency under normal physiological conditions, although the nature of this mechanism is unknown. Here we show that the ablation of LCs reactivates the multipotency of BSCs from multiple epithelia both in vivo in mice and in vitro in organoids. Bulk and single-cell RNA sequencing revealed that, after LC ablation, BSCs activate a hybrid basal and luminal cell differentiation program before giving rise to LCs-reminiscent of the genetic program that regulates multipotency during embryonic development7. By predicting ligand-receptor pairs from single-cell data14, we find that TNF-which is secreted by LCs-restricts BC multipotency under normal physiological conditions. By contrast, the Notch, Wnt and EGFR pathways were activated in BSCs and their progeny after LC ablation; blocking these pathways, or stimulating the TNF pathway, inhibited regeneration-induced BC multipotency. Our study demonstrates that heterotypic communication between LCs and BCs is essential to maintain lineage fidelity in glandular epithelial stem cells.
Collapse
Affiliation(s)
- Alessia Centonze
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Shuheng Lin
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Elisavet Tika
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Alejandro Sifrim
- Department of Human Genetics, University of Leuven, KU Leuven, Leuven, Belgium.,Sanger Institute-EBI Single-Cell Genomics Centre, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Marco Fioramonti
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Milan Malfait
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Yura Song
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Aline Wuidart
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Jens Van Herck
- Department of Human Genetics, University of Leuven, KU Leuven, Leuven, Belgium
| | - Anne Dannau
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Gaelle Bouvencourt
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Christine Dubois
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Nina Dedoncker
- Department of Human Genetics, University of Leuven, KU Leuven, Leuven, Belgium
| | - Amar Sahay
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, USA.,Harvard Stem Cell Institute, Cambridge, MA, USA.,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,BROAD Institute of Harvard and MIT, Cambridge, MA, USA
| | | | - Christian W Siebel
- Department of Discovery Oncology, Genentech, South San Francisco, CA, USA
| | | | - Thierry Voet
- Department of Human Genetics, University of Leuven, KU Leuven, Leuven, Belgium.,Sanger Institute-EBI Single-Cell Genomics Centre, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Cédric Blanpain
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium. .,WELBIO, Université Libre de Bruxelles (ULB), Brussels, Belgium.
| |
Collapse
|