1
|
Luo EY, Chuen-Chung Chang R, Gilbert-Jaramillo J. SARS-CoV-2 infection in microglia and its sequelae: What do we know so far? Brain Behav Immun Health 2024; 42:100888. [PMID: 39881814 PMCID: PMC11776083 DOI: 10.1016/j.bbih.2024.100888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/22/2024] [Accepted: 10/05/2024] [Indexed: 01/31/2025] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused the COVID-19 pandemic. After the success of therapeutics and worldwide vaccination, the long-term sequelae of SARS-CoV-2 infections are yet to be determined. Common symptoms of COVID-19 include the loss of taste and smell, suggesting SARS-CoV-2 infection has a potentially detrimental effect on neurons within the olfactory/taste pathways, with direct access to the central nervous system (CNS). This could explain the detection of SARS-CoV-2 antigens in the brains of COVID-19 patients. Different viruses display neurotropism that causes impaired neurodevelopment and/or neurodegeneration. Hence, it is plausible that COVID-19-associated neuropathologies are directly driven by SARS-CoV-2 infection in the CNS. Microglia, resident immune cells of the brain, are constantly under investigation as their surveillance role has been suggested to act as a friend or a foe impacting the progression of neurological disorders. Herein, we review the current literature suggesting microglia potentially been a susceptible target by SARS-CoV-2 virions and their role in viral dissemination within the CNS. Particular attention is given to the different experimental models and their translational potential.
Collapse
Affiliation(s)
- Echo Yongqi Luo
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Raymond Chuen-Chung Chang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Javier Gilbert-Jaramillo
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| |
Collapse
|
2
|
Souza LRQ, Pedrosa CGDS, Puig-Pijuan T, da Silva Dos Santos C, Vitória G, Delou JMA, Setti-Perdigão P, Higa LM, Tanuri A, Rehen SK, Guimarães MZP. Saxitoxin potentiates human neuronal cell death induced by Zika virus while sparing neural progenitors and astrocytes. Sci Rep 2024; 14:22809. [PMID: 39354036 PMCID: PMC11445263 DOI: 10.1038/s41598-024-73873-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Abstract
The Zika virus (ZIKV) epidemic declared in Brazil between 2015 and 2016 was associated with an increased prevalence of severe congenital malformations, including microcephaly. The distribution of microcephaly cases was not uniform across the country, with a disproportionately higher incidence in the Northeast region (NE). Our previous work demonstrated that saxitoxin (STX), a toxin present in the drinking water reservoirs of the NE, exacerbated the damaging effects of ZIKV on the developing brain. We hypothesized that the impact of STX might vary among different neural cell types. While ZIKV infection caused severe damages on astrocytes and neural stem cells (NSCs), the addition of STX did not exacerbate these effects. We observed that neurons subjected to STX exposure were more prone to apoptosis and displayed higher ZIKV infection rate. These findings suggest that STX exacerbates the harmful effects of ZIKV on neurons, thereby providing a plausible explanation for the heightened severity of ZIKV-induced congenital malformations observed in Brazil's NE. This study highlights the importance of understanding the interactive effects of environmental toxins and infectious pathogens on neural development, with potential implications for public health policies.
Collapse
Affiliation(s)
- Leticia R Q Souza
- Instituto D'Or de Pesquisa e Ensino, Rua Diniz Cordeiro, 30, Rio de Janeiro, CEP 22281-100, Brazil
| | - Carolina G da S Pedrosa
- Instituto D'Or de Pesquisa e Ensino, Rua Diniz Cordeiro, 30, Rio de Janeiro, CEP 22281-100, Brazil
| | - Teresa Puig-Pijuan
- Instituto D'Or de Pesquisa e Ensino, Rua Diniz Cordeiro, 30, Rio de Janeiro, CEP 22281-100, Brazil
| | | | - Gabriela Vitória
- Instituto D'Or de Pesquisa e Ensino, Rua Diniz Cordeiro, 30, Rio de Janeiro, CEP 22281-100, Brazil
| | - João M A Delou
- Instituto D'Or de Pesquisa e Ensino, Rua Diniz Cordeiro, 30, Rio de Janeiro, CEP 22281-100, Brazil
| | - Pedro Setti-Perdigão
- Instituto D'Or de Pesquisa e Ensino, Rua Diniz Cordeiro, 30, Rio de Janeiro, CEP 22281-100, Brazil
| | - Luiza M Higa
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Amilcar Tanuri
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Stevens Kastrup Rehen
- Instituto D'Or de Pesquisa e Ensino, Rua Diniz Cordeiro, 30, Rio de Janeiro, CEP 22281-100, Brazil
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Marília Zaluar P Guimarães
- Instituto D'Or de Pesquisa e Ensino, Rua Diniz Cordeiro, 30, Rio de Janeiro, CEP 22281-100, Brazil.
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil.
| |
Collapse
|
3
|
Gilbert-Jaramillo J, Komarasamy TV, Balasubramaniam VR, Heather LC, James WS. Targeting glucose metabolism with dichloroacetate (DCA) reduces zika virus replication in brain cortical progenitors at different stages of maturation. Antiviral Res 2024; 228:105933. [PMID: 38851593 DOI: 10.1016/j.antiviral.2024.105933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/10/2024]
Abstract
The underlying threat of new Zika virus (ZIKV) outbreaks remains, as no vaccines or therapies have yet been developed. In vitro research has shown that glycolysis is a key factor to enable sustained ZIKV replication in neuroprogenitors. However, neither in vivo nor clinical investigation of glycolytic modulators as potential therapeutics for ZIKV-related fetal abnormalities has been conducted. Accordingly, we tested the therapeutic potential of metabolic modulators in relevant in vitro systems comprising two pools of neuroprogenitors (NPCs), which resemble early and late stages of pregnancy. Effective doses of metabolic modulators [3.0 μM] dimethyl fumarate (DMF), [3.2 mM] dichloroacetate (DCA), and [6.3 μM] VER-246608 were determined for these cells by their effect on lactate release, pyruvate dehydrogenase (PDH) activity and cell survival. The drugs were used in a 24h pre-treatment and kept throughout ZIKV infection of NPCs. Drug effects and ZIKV replication were assessed at 24- and 56-h post-infection. In early NPCs treated with DMF, DCA and VER-246608, there was a significant reduction in the extracellular release of ZIKV potentially by PDH-mediated increased mitochondrial oxidation of glucose. Out of the three drugs, only DCA was observed to reduce viral replication in late NPCs treated with DCA. Altogether, our findings suggest that reduction of anaerobic glycolysis could be of therapeutic potential against ZIKV-related fetal abnormalities and that clinical translation should consider the use of specific glycolytic modulators over different trimesters.
Collapse
Affiliation(s)
- Javier Gilbert-Jaramillo
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK.
| | - Thamil Vaani Komarasamy
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Vinod Rmt Balasubramaniam
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Lisa C Heather
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - William S James
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK.
| |
Collapse
|
4
|
El Safadi D, Lebeau G, Turpin J, Lefebvre d’Hellencourt C, Diotel N, Viranaicken W, Krejbich-Trotot P. The Antiviral Potential of AdipoRon, an Adiponectin Receptor Agonist, Reveals the Ability of Zika Virus to Deregulate Adiponectin Receptor Expression. Viruses 2023; 16:24. [PMID: 38257725 PMCID: PMC10820441 DOI: 10.3390/v16010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/11/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Zika virus (ZIKV) is a pathogenic member of the flavivirus family, with several unique characteristics. Unlike any other arbovirus, ZIKV can be transmitted sexually and maternally, and thus produce congenital syndromes (CZS) due to its neurotropism. This challenges the search for safe active molecules that can protect pregnant women and their fetuses. In this context, and in the absence of any existing treatment, it seemed worthwhile to test whether the known cytoprotective properties of adiponectin and its pharmacological analog, AdipoRon, could influence the outcome of ZIKV infection. We showed that both AdipoRon and adiponectin could significantly reduce the in vitro infection of A549 epithelial cells, a well-known cell model for flavivirus infection studies. This effect was particularly observed when a pre-treatment was carried out. Conversely, ZIKV revealed an ability to downregulate adiponectin receptor expression and thereby limit adiponectin signaling.
Collapse
Affiliation(s)
- Daed El Safadi
- Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, 94791 Sainte Clotilde, La Réunion, France; (D.E.S.); (G.L.); (J.T.)
| | - Grégorie Lebeau
- Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, 94791 Sainte Clotilde, La Réunion, France; (D.E.S.); (G.L.); (J.T.)
| | - Jonathan Turpin
- Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, 94791 Sainte Clotilde, La Réunion, France; (D.E.S.); (G.L.); (J.T.)
- UMR 1188 Diabète Athérothombose Réunion Océan Indien (DéTROI), Campus Santé Université de la Réunion, Université de La Réunion, INSERM, 77 Avenue du Docteur Jean-Marie Dambreville, 97410 Saint-Pierre, La Réunion, France; (C.L.d.); (N.D.)
| | - Christian Lefebvre d’Hellencourt
- UMR 1188 Diabète Athérothombose Réunion Océan Indien (DéTROI), Campus Santé Université de la Réunion, Université de La Réunion, INSERM, 77 Avenue du Docteur Jean-Marie Dambreville, 97410 Saint-Pierre, La Réunion, France; (C.L.d.); (N.D.)
| | - Nicolas Diotel
- UMR 1188 Diabète Athérothombose Réunion Océan Indien (DéTROI), Campus Santé Université de la Réunion, Université de La Réunion, INSERM, 77 Avenue du Docteur Jean-Marie Dambreville, 97410 Saint-Pierre, La Réunion, France; (C.L.d.); (N.D.)
| | - Wildriss Viranaicken
- Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, 94791 Sainte Clotilde, La Réunion, France; (D.E.S.); (G.L.); (J.T.)
- UMR 1188 Diabète Athérothombose Réunion Océan Indien (DéTROI), Campus Santé Université de la Réunion, Université de La Réunion, INSERM, 77 Avenue du Docteur Jean-Marie Dambreville, 97410 Saint-Pierre, La Réunion, France; (C.L.d.); (N.D.)
| | - Pascale Krejbich-Trotot
- Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, 94791 Sainte Clotilde, La Réunion, France; (D.E.S.); (G.L.); (J.T.)
| |
Collapse
|