1
|
Li NN, Rao LL, Su D, Liu BH, Ma GQ, Wang HF, Zhang ZL, Ying Z. NSCLC cells sustain phase separation of cytoplasmic membrane-less organelles to protect themselves against cisplatin treatment. Acta Pharmacol Sin 2025:10.1038/s41401-025-01551-5. [PMID: 40247038 DOI: 10.1038/s41401-025-01551-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 03/20/2025] [Indexed: 04/19/2025]
Abstract
Cisplatin is the first platinum compound used for anticancer therapy, including non-small cell lung cancer (NSCLC). However, the clinical efficacy of cisplatin is strongly limited by cisplatin resistance. Hence, illuminating the mechanism of cisplatin resistance will aid in the development of therapeutic strategies that improve the sensitivity of cancer cells to cisplatin. Interestingly, membrane-less organelles, which are formed through biomolecular condensation in association with phase separation, have been recently linked with cancers. Here, we reveal a new molecular basis of cisplatin resistance in NSCLC, showing that cisplatin kills cancer cells by the alteration of cytoplasmic membrane-less organelles. Specifically, cisplatin treatment results in the disassembly of processing bodies (PBs) and the assembly of stress granule (SG)-like granules which are different from canonical SGs in NSCLC cells, but not cisplatin-resistant NSCLC cells. Moreover, alterations of PBs and noncanonical SG-like granules are associated with cisplatin-induced cancer cell death. Importantly, we found that disrupting PBs and canonical SGs with cycloheximide and FDA-approved pyrvinium helps cisplatin to kill cisplatin-resistant NSCLC cells. Taken together, our findings provide insight into the role of membrane-less organelle regulation in cisplatin resistance and offer an effective solution for overcoming cisplatin resistance in NSCLC.
Collapse
Affiliation(s)
- Ning-Ning Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Ling-Ling Rao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Dan Su
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Bin-Hao Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Guo-Qiang Ma
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Hong-Feng Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
- MOE Key Laboratory of Geriatric Diseases and Immunology, College of Pharmaceutical Sciences, Suzhou Medical College of Soochow University, Suzhou, 215004, China.
| | - Zeng-Li Zhang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, 215123, China.
| | - Zheng Ying
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
- MOE Key Laboratory of Geriatric Diseases and Immunology, College of Pharmaceutical Sciences, Suzhou Medical College of Soochow University, Suzhou, 215004, China.
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
2
|
More N, Joseph J. Disruption of ER-mitochondria contact sites induces autophagy-dependent loss of P-bodies through the Ca2+-CaMKK2-AMPK pathway. J Cell Sci 2025; 138:JCS263652. [PMID: 40071500 DOI: 10.1242/jcs.263652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 01/17/2025] [Indexed: 05/13/2025] Open
Abstract
P-bodies (PBs) and stress granules (SGs) are conserved, non-membranous cytoplasmic condensates of RNA-protein complexes. PBs are implicated in post-transcriptional regulation of gene expression through mRNA decay, translational repression and/or storage. Although much is known about the de novo formation of PBs and SGs involving liquid-liquid phase separation through multiple protein-protein and protein-RNA interactions, their subcellular localization and turnover mechanisms are less understood. Here, we report the presence of a subpopulation of PBs and SGs that are in proximity to ER-mitochondria contact sites (ERMCSs) in mammalian cells. Disruption of ERMCSs, achieved through depletion of ER-mitochondria tethering proteins, leads to the disappearance of PBs but not SGs. This effect can be reversed by inhibiting autophagy through both genetic and pharmacological means. Additionally, we find that the disruption of ERMCSs leads to cytosolic Ca2+-induced activation of CaMKK2 and AMP-activated protein kinase (AMPK), ultimately resulting in an autophagy-dependent decrease in PB abundance. Collectively, our findings unveil a mechanism wherein disturbances in ERMCSs induce autophagy-dependent loss of PBs via activation of the Ca2+-CaMKK2-AMPK pathway, thus potentially linking the dynamics and functions of ERMCS with post-transcriptional gene regulation.
Collapse
Affiliation(s)
- Nikhil More
- BRIC-National Centre for Cell Science, S.P. Pune University Campus, Ganeshkhind, Pune-411007, India
| | - Jomon Joseph
- BRIC-National Centre for Cell Science, S.P. Pune University Campus, Ganeshkhind, Pune-411007, India
| |
Collapse
|
3
|
Jia Y, Jia R, Dai Z, Zhou J, Ruan J, Chng W, Cai Z, Zhang X. Stress granules in cancer: Adaptive dynamics and therapeutic implications. iScience 2024; 27:110359. [PMID: 39100690 PMCID: PMC11295550 DOI: 10.1016/j.isci.2024.110359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024] Open
Abstract
Stress granules (SGs), membrane-less cellular organelles formed via liquid-liquid phase separation, are central to how cells adapt to various stress conditions, including endoplasmic reticulum stress, nutrient scarcity, and hypoxia. Recent studies have underscored a significant link between SGs and the process of tumorigenesis, highlighting that proteins, associated components, and signaling pathways that facilitate SG formation are often upregulated in cancer. SGs play a key role in enhancing tumor cell proliferation, invasion, and migration, while also inhibiting apoptosis, facilitating immune evasion, and driving metabolic reprogramming through multiple mechanisms. Furthermore, SGs have been identified as crucial elements in the development of resistance against chemotherapy, immunotherapy, and radiotherapy across a variety of cancer types. This review delves into the complex role of SGs in cancer development and resistance, bringing together the latest progress in the field and exploring new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Yunlu Jia
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Ruyin Jia
- The Second School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zhengfeng Dai
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jianbiao Zhou
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Republic of Singapore
| | - Jian Ruan
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - WeeJoo Chng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Republic of Singapore
| | - Zhen Cai
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xiaochen Zhang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
4
|
Banerjee P, Markande S, Kalarikkal M, Joseph J. SUMOylation modulates the function of DDX19 in mRNA export. J Cell Sci 2022; 135:274424. [PMID: 35080244 DOI: 10.1242/jcs.259449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/13/2022] [Indexed: 11/20/2022] Open
Abstract
Nuclear export of mRNAs is a critical regulatory step in eukaryotic gene expression. The mRNA transcript undergoes extensive processing, and is loaded with a set of RNA-binding proteins (RBPs) to form export-competent messenger ribonucleoprotein particles (mRNPs) in the nucleus. During the transit of mRNPs through the nuclear pore complex (NPC), the DEAD-box ATPase - DDX19 - remodels mRNPs at the cytoplasmic side of the NPC, by removing a subset of RNA-binding proteins to terminate mRNP export. This requires the RNA-dependent ATPase activity of DDX19 and its dynamic interactions with Gle1 and Nup214. However, the regulatory mechanisms underlying these interactions are unclear. We find that DDX19 gets covalently attached with a small ubiquitin-like modifier (SUMO) at lysine 26, which enhances its interaction with Gle1. Furthermore, a SUMOylation-defective mutant of human DDX19B, K26R, failed to provide a complete rescue of the mRNA export defect caused by DDX19 depletion. Collectively, our results suggest that SUMOylation fine-tunes the function of DDX19 in mRNA export by regulating its interaction with Gle1. This study identifies SUMOylation of DDX19 as a modulatory mechanism during the mRNA export process.
Collapse
Affiliation(s)
- Poulomi Banerjee
- National Centre for Cell Science, S. P. Pune University Campus, Pune - 411007, Maharashtra State, India
| | - Shubha Markande
- National Centre for Cell Science, S. P. Pune University Campus, Pune - 411007, Maharashtra State, India
| | - Misha Kalarikkal
- National Centre for Cell Science, S. P. Pune University Campus, Pune - 411007, Maharashtra State, India
| | - Jomon Joseph
- National Centre for Cell Science, S. P. Pune University Campus, Pune - 411007, Maharashtra State, India
| |
Collapse
|
5
|
Frydrýšková K, Mašek T, Pospíšek M. Changing faces of stress: Impact of heat and arsenite treatment on the composition of stress granules. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 11:e1596. [PMID: 32362075 DOI: 10.1002/wrna.1596] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 03/19/2020] [Accepted: 03/23/2020] [Indexed: 11/07/2022]
Abstract
Stress granules (SGs), hallmarks of the cellular adaptation to stress, promote survival, conserve cellular energy, and are fully dissolved upon the cessation of stress treatment. Different stresses can initiate the assembly of SGs, but arsenite and heat are the best studied of these stresses. The composition of SGs and posttranslational modifications of SG proteins differ depending on the type and severity of the stress insult, methodology used, cell line, and presence of overexpressed and tagged proteins. A group of 18 proteins showing differential localization to SGs in heat- and arsenite-stressed mammalian cell lines is described. Upon severe and prolonged stress, physiological SGs transform into more solid protein aggregates that are no longer reversible and do not contain mRNA. Similar pathological inclusions are hallmarks of neurodegenerative diseases. SGs induced by heat stress are less dynamic than SGs induced by arsenite and contain a set of unique proteins and linkage-specific polyubiquitinated proteins. The same types of ubiquitin linkages have been found to contribute to the development of neurodegenerative disorders such as Parkinson disease, Alzheimer disease, and amyotrophic lateral sclerosis (ALS). We propose heat stress-induced SGs as a possible model of an intermediate stage along the transition from dynamic, fully reversible arsenite stress-induced SGs toward aberrant SGs, the hallmark of neurodegenerative diseases. Stress- and methodology-specific differences in the compositions of SGs and the transition of SGs to aberrant protein aggregates are discussed. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Export and Localization > RNA Localization.
Collapse
Affiliation(s)
| | | | - Martin Pospíšek
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
6
|
Sahoo PK, Lee SJ, Jaiswal PB, Alber S, Kar AN, Miller-Randolph S, Taylor EE, Smith T, Singh B, Ho TSY, Urisman A, Chand S, Pena EA, Burlingame AL, Woolf CJ, Fainzilber M, English AW, Twiss JL. Axonal G3BP1 stress granule protein limits axonal mRNA translation and nerve regeneration. Nat Commun 2018; 9:3358. [PMID: 30135423 PMCID: PMC6105716 DOI: 10.1038/s41467-018-05647-x] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 07/12/2018] [Indexed: 12/17/2022] Open
Abstract
Critical functions of intra-axonally synthesized proteins are thought to depend on regulated recruitment of mRNA from storage depots in axons. Here we show that axotomy of mammalian neurons induces translation of stored axonal mRNAs via regulation of the stress granule protein G3BP1, to support regeneration of peripheral nerves. G3BP1 aggregates within peripheral nerve axons in stress granule-like structures that decrease during regeneration, with a commensurate increase in phosphorylated G3BP1. Colocalization of G3BP1 with axonal mRNAs is also correlated with the growth state of the neuron. Disrupting G3BP functions by overexpressing a dominant-negative protein activates intra-axonal mRNA translation, increases axon growth in cultured neurons, disassembles axonal stress granule-like structures, and accelerates rat nerve regeneration in vivo. G3BP1 is RasGAP SH3 domain binding protein 1 that interacts with 48S pre-initiation complex when translation is stalled. Here, Twiss and colleagues show that neuronal G3BP1 can negatively regulate axonal mRNA translation, and inhibit axonal regeneration after injury.
Collapse
Affiliation(s)
- Pabitra K Sahoo
- Department of Biological Sciences, University of South Carolina, Columbia, 29208, SC, USA
| | - Seung Joon Lee
- Department of Biological Sciences, University of South Carolina, Columbia, 29208, SC, USA
| | - Poonam B Jaiswal
- Department of Cell Biology, Emory University College of Medicine, Atlanta, 30322, GA, USA
| | - Stefanie Alber
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Amar N Kar
- Department of Biological Sciences, University of South Carolina, Columbia, 29208, SC, USA
| | | | - Elizabeth E Taylor
- Department of Biological Sciences, University of South Carolina, Columbia, 29208, SC, USA
| | - Terika Smith
- Department of Biological Sciences, University of South Carolina, Columbia, 29208, SC, USA
| | - Bhagat Singh
- FM Kirby Neurobiology Center and Boston Children's Hospital and Harvard Medical School, Boston, 02115, MA, USA
| | - Tammy Szu-Yu Ho
- FM Kirby Neurobiology Center and Boston Children's Hospital and Harvard Medical School, Boston, 02115, MA, USA
| | - Anatoly Urisman
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, 94158, CA, USA
| | - Shreya Chand
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, 94158, CA, USA
| | - Edsel A Pena
- Department of Statistics, University of South Carolina, Columbia, 29208, SC, USA
| | - Alma L Burlingame
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, 94158, CA, USA
| | - Clifford J Woolf
- FM Kirby Neurobiology Center and Boston Children's Hospital and Harvard Medical School, Boston, 02115, MA, USA
| | - Mike Fainzilber
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Arthur W English
- Department of Cell Biology, Emory University College of Medicine, Atlanta, 30322, GA, USA
| | - Jeffery L Twiss
- Department of Biological Sciences, University of South Carolina, Columbia, 29208, SC, USA.
| |
Collapse
|
7
|
Ramachandran B, Stabley JN, Cheng SL, Behrmann AS, Gay A, Li L, Mead M, Kozlitina J, Lemoff A, Mirzaei H, Chen Z, Towler DA. A GTPase-activating protein-binding protein (G3BP1)/antiviral protein relay conveys arteriosclerotic Wnt signals in aortic smooth muscle cells. J Biol Chem 2018; 293:7942-7968. [PMID: 29626090 DOI: 10.1074/jbc.ra118.002046] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/13/2018] [Indexed: 12/21/2022] Open
Abstract
In aortic vascular smooth muscle (VSM), the canonical Wnt receptor LRP6 inhibits protein arginine (Arg) methylation, a new component of noncanonical Wnt signaling that stimulates nuclear factor of activated T cells (viz NFATc4). To better understand how methylation mediates these actions, MS was performed on VSM cell extracts from control and LRP6-deficient mice. LRP6-dependent Arg methylation was regulated on >500 proteins; only 21 exhibited increased monomethylation (MMA) with concomitant reductions in dimethylation. G3BP1, a known regulator of arteriosclerosis, exhibited a >30-fold increase in MMA in its C-terminal domain. Co-transfection studies confirm that G3BP1 (G3BP is Ras-GAP SH3 domain-binding protein) methylation is inhibited by LRP6 and that G3BP1 stimulates NFATc4 transcription. NFATc4 association with VSM osteopontin (OPN) and alkaline phosphatase (TNAP) chromatin was increased with LRP6 deficiency and reduced with G3BP1 deficiency. G3BP1 activation of NFATc4 mapped to G3BP1 domains supporting interactions with RIG-I (retinoic acid inducible gene I), a stimulus for mitochondrial antiviral signaling (MAVS) that drives cardiovascular calcification in humans when mutated in Singleton-Merten syndrome (SGMRT2). Gain-of-function SGMRT2/RIG-I mutants increased G3BP1 methylation and synergized with osteogenic transcription factors (Runx2 and NFATc4). A chemical antagonist of G3BP, C108 (C108 is 2-hydroxybenzoic acid, 2-[1-(2-hydroxyphenyl)ethylidene]hydrazide CAS 15533-09-2), down-regulated RIG-I-stimulated G3BP1 methylation, Wnt/NFAT signaling, VSM TNAP activity, and calcification. G3BP1 deficiency reduced RIG-I protein levels and VSM osteogenic programs. Like G3BP1 and RIG-I deficiency, MAVS deficiency reduced VSM osteogenic signals, including TNAP activity and Wnt5-dependent nuclear NFATc4 levels. Aortic calcium accumulation is decreased in MAVS-deficient LDLR-/- mice fed arteriosclerotic diets. The G3BP1/RIG-I/MAVS relay is a component of Wnt signaling. Targeting this relay may help mitigate arteriosclerosis.
Collapse
Affiliation(s)
- Bindu Ramachandran
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - John N Stabley
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Su-Li Cheng
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Abraham S Behrmann
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Austin Gay
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Li Li
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Megan Mead
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Julia Kozlitina
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Andrew Lemoff
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Hamid Mirzaei
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Zhijian Chen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Dwight A Towler
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390.
| |
Collapse
|
8
|
Sahoo MR, Gaikwad S, Khuperkar D, Ashok M, Helen M, Yadav SK, Singh A, Magre I, Deshmukh P, Dhanvijay S, Sahoo PK, Ramtirtha Y, Madhusudhan MS, Gayathri P, Seshadri V, Joseph J. Nup358 binds to AGO proteins through its SUMO-interacting motifs and promotes the association of target mRNA with miRISC. EMBO Rep 2016; 18:241-263. [PMID: 28039207 DOI: 10.15252/embr.201642386] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 11/13/2016] [Accepted: 11/24/2016] [Indexed: 11/09/2022] Open
Abstract
MicroRNA (miRNA)-guided mRNA repression, mediated by the miRNA-induced silencing complex (miRISC), is an important component of post-transcriptional gene silencing. However, how miRISC identifies the target mRNA in vivo is not well understood. Here, we show that the nucleoporin Nup358 plays an important role in this process. Nup358 localizes to the nuclear pore complex and to the cytoplasmic annulate lamellae (AL), and these structures dynamically associate with two mRNP granules: processing bodies (P bodies) and stress granules (SGs). Nup358 depletion disrupts P bodies and concomitantly impairs the miRNA pathway. Furthermore, Nup358 interacts with AGO and GW182 proteins and promotes the association of target mRNA with miRISC A well-characterized SUMO-interacting motif (SIM) in Nup358 is sufficient for Nup358 to directly bind to AGO proteins. Moreover, AGO and PIWI proteins interact with SIMs derived from other SUMO-binding proteins. Our study indicates that Nup358-AGO interaction is important for miRNA-mediated gene silencing and identifies SIM as a new interacting motif for the AGO family of proteins. The findings also support a model wherein the coupling of miRISC with the target mRNA could occur at AL, specialized domains within the ER, and at the nuclear envelope.
Collapse
Affiliation(s)
- Manas Ranjan Sahoo
- National Centre for Cell Science, S.P. Pune University Campus, Pune, India
| | - Swati Gaikwad
- National Centre for Cell Science, S.P. Pune University Campus, Pune, India
| | - Deepak Khuperkar
- National Centre for Cell Science, S.P. Pune University Campus, Pune, India
| | - Maitreyi Ashok
- National Centre for Cell Science, S.P. Pune University Campus, Pune, India
| | - Mary Helen
- National Centre for Cell Science, S.P. Pune University Campus, Pune, India
| | | | - Aditi Singh
- National Centre for Cell Science, S.P. Pune University Campus, Pune, India
| | - Indrasen Magre
- National Centre for Cell Science, S.P. Pune University Campus, Pune, India
| | - Prachi Deshmukh
- National Centre for Cell Science, S.P. Pune University Campus, Pune, India
| | - Supriya Dhanvijay
- National Centre for Cell Science, S.P. Pune University Campus, Pune, India
| | | | - Yogendra Ramtirtha
- Division of Biology, Indian Institute of Science Education and Research, Pune, India
| | | | - Pananghat Gayathri
- Division of Biology, Indian Institute of Science Education and Research, Pune, India
| | - Vasudevan Seshadri
- National Centre for Cell Science, S.P. Pune University Campus, Pune, India
| | - Jomon Joseph
- National Centre for Cell Science, S.P. Pune University Campus, Pune, India
| |
Collapse
|
9
|
Zampedri C, Tinoco-Cuellar M, Carrillo-Rosas S, Diaz-Tellez A, Ramos-Balderas JL, Pelegri F, Maldonado E. Zebrafish P54 RNA helicases are cytoplasmic granule residents that are required for development and stress resilience. Biol Open 2016; 5:1473-1484. [PMID: 27489304 PMCID: PMC5087673 DOI: 10.1242/bio.015826] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Stress granules are cytoplasmic foci that directly respond to the protein synthesis status of the cell. Various environmental insults, such as oxidative stress or extreme heat, block protein synthesis; consequently, mRNA will stall in translation, and stress granules will immediately form and become enriched with mRNAs. P54 DEAD box RNA helicases are components of RNA granules such as P-bodies and stress granules. We studied the expression, in cytoplasmic foci, of both zebrafish P54 RNA helicases (P54a and P54b) during development and found that they are expressed in cytoplasmic granules under both normal conditions and stress conditions. In zebrafish embryos exposed to heat shock, some proportion of P54a and P54b helicases move to larger granules that exhibit the properties of genuine stress granules. Knockdown of P54a and/or P54b in zebrafish embryos produces developmental abnormalities restricted to the posterior trunk; further, these embryos do not form stress granules, and their survival upon exposure to heat-shock conditions is compromised. Our observations fit the model that cells lacking stress granules have no resilience or ability to recover once the stress has ended, indicating that stress granules play an essential role in the way organisms adapt to a changing environment. Summary: Stress granules are formed by mRNAs stalled in translation during stress conditions. P54 RNA helicases from zebrafish reside in cytoplasmic granules and are essential for heat-shock resilience.
Collapse
Affiliation(s)
- Cecilia Zampedri
- EvoDevo Laboratory, Unidad de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México, 77580
| | - Maryana Tinoco-Cuellar
- EvoDevo Laboratory, Unidad de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México, 77580
| | - Samantha Carrillo-Rosas
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, D.F. México, México, 04510
| | - Abigail Diaz-Tellez
- EvoDevo Laboratory, Unidad de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México, 77580
| | - Jose Luis Ramos-Balderas
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, D.F. México, México, 04510
| | - Francisco Pelegri
- Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin 53706, USA
| | - Ernesto Maldonado
- EvoDevo Laboratory, Unidad de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México, 77580
| |
Collapse
|
10
|
Tsai WC, Gayatri S, Reineke LC, Sbardella G, Bedford MT, Lloyd RE. Arginine Demethylation of G3BP1 Promotes Stress Granule Assembly. J Biol Chem 2016; 291:22671-22685. [PMID: 27601476 DOI: 10.1074/jbc.m116.739573] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/15/2016] [Indexed: 12/22/2022] Open
Abstract
Stress granules (SGs) are cytoplasmic condensates of stalled messenger ribonucleoprotein complexes (mRNPs) that form when eukaryotic cells encounter environmental stress. RNA-binding proteins are enriched for arginine methylation and facilitate SG assembly through interactions involving regions of low amino acid complexity. How methylation of specific RNA-binding proteins regulates RNA granule assembly has not been characterized. Here, we examined the potent SG-nucleating protein Ras-GAP SH3-binding protein 1 (G3BP1), and found that G3BP1 is differentially methylated on specific arginine residues by protein arginine methyltransferase (PRMT) 1 and PRMT5 in its RGG domain. Several genetic and biochemical interventions that increased methylation repressed SG assembly, whereas interventions that decreased methylation promoted SG assembly. Arsenite stress quickly and reversibly decreased asymmetric arginine methylation on G3BP1. These data indicate that arginine methylation in the RGG domain prevents large SG assembly and rapid demethylation is a novel signal that regulates SG formation.
Collapse
Affiliation(s)
- Wei-Chih Tsai
- From the Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030
| | - Sitaram Gayatri
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M. D. Anderson Cancer Center, Science Park, Smithville, Texas 78957, and
| | - Lucas C Reineke
- From the Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030
| | - Gianluca Sbardella
- Epigenetic Med Chem Lab, Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M. D. Anderson Cancer Center, Science Park, Smithville, Texas 78957, and
| | - Richard E Lloyd
- From the Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030,
| |
Collapse
|
11
|
Kedersha N, Panas MD, Achorn CA, Lyons S, Tisdale S, Hickman T, Thomas M, Lieberman J, McInerney GM, Ivanov P, Anderson P. G3BP-Caprin1-USP10 complexes mediate stress granule condensation and associate with 40S subunits. J Cell Biol 2016; 212:845-60. [PMID: 27022092 PMCID: PMC4810302 DOI: 10.1083/jcb.201508028] [Citation(s) in RCA: 446] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 02/17/2016] [Indexed: 12/11/2022] Open
Abstract
Stress granule condensation (SGC) of translationally arrested mRNAs requires G3BP, and G3BP-mediated SGC is inhibited by serine 149 phosphorylation, regulated by mutually exclusive binding of Caprin1 and USP10, and requires its RGG region for SGC and for interactions with 40S ribosomal subunits. Mammalian stress granules (SGs) contain stalled translation preinitiation complexes that are assembled into discrete granules by specific RNA-binding proteins such as G3BP. We now show that cells lacking both G3BP1 and G3BP2 cannot form SGs in response to eukaryotic initiation factor 2α phosphorylation or eIF4A inhibition, but are still SG-competent when challenged with severe heat or osmotic stress. Rescue experiments using G3BP1 mutants show that phosphomimetic G3BP1-S149E fails to rescue SG formation, whereas G3BP1-F33W, a mutant unable to bind G3BP partner proteins Caprin1 or USP10, rescues SG formation. Caprin1/USP10 binding to G3BP is mutually exclusive: Caprin binding promotes, but USP10 binding inhibits, SG formation. G3BP interacts with 40S ribosomal subunits through its RGG motif, which is also required for G3BP-mediated SG formation. We propose that G3BP mediates the condensation of SGs by shifting between two different states that are controlled by the phosphorylation of S149 and by binding to Caprin1 or USP10.
Collapse
Affiliation(s)
- Nancy Kedersha
- Division of Rheumatology, Immunology and Allergy, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115
| | - Marc D Panas
- Division of Rheumatology, Immunology and Allergy, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115
| | - Christopher A Achorn
- Division of Rheumatology, Immunology and Allergy, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115
| | - Shawn Lyons
- Division of Rheumatology, Immunology and Allergy, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115
| | - Sarah Tisdale
- Division of Rheumatology, Immunology and Allergy, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115
| | - Tyler Hickman
- Division of Rheumatology, Immunology and Allergy, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115
| | - Marshall Thomas
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115
| | - Judy Lieberman
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115
| | - Gerald M McInerney
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Pavel Ivanov
- Division of Rheumatology, Immunology and Allergy, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115 The Broad Institute of Harvard and MIT, Cambridge, MA 02142
| | - Paul Anderson
- Division of Rheumatology, Immunology and Allergy, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115
| |
Collapse
|
12
|
Epithelial Cell Transforming 2 and Aurora Kinase B Modulate Formation of Stress Granule–Containing Transcripts from Diverse Cellular Pathways in Astrocytoma Cells. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1674-87. [DOI: 10.1016/j.ajpath.2016.02.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 01/26/2016] [Accepted: 02/18/2016] [Indexed: 12/12/2022]
|
13
|
Cassola A, Romaniuk MA, Primrose D, Cervini G, D'Orso I, Frasch AC. Association of UBP1 to ribonucleoprotein complexes is regulated by interaction with the trypanosome ortholog of the human multifunctional P32 protein. Mol Microbiol 2015; 97:1079-96. [PMID: 26096620 DOI: 10.1111/mmi.13090] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2015] [Indexed: 12/30/2022]
Abstract
Regulation of gene expression in trypanosomatid parasitic protozoa is mainly achieved posttranscriptionally. RNA-binding proteins (RBPs) associate to 3' untranslated regions in mRNAs through dedicated domains such as the RNA recognition motif (RRM). Trypanosoma cruzi UBP1 (TcUBP1) is an RRM-type RBP involved in stabilization/degradation of mRNAs. TcUBP1 uses its RRM to associate with cytoplasmic mRNA and to mRNA granules under starvation stress. Here, we show that under starvation stress, TcUBP1 is tightly associated with condensed cytoplasmic mRNA granules. Conversely, under high nutrient/low density-growing conditions, TcUBP1 ribonucleoprotein (RNP) complexes are lax and permeable to mRNA degradation and disassembly. After dissociating from mRNA, TcUBP1 can be phosphorylated only in unstressed parasites. We have identified TcP22, the ortholog of mammalian P32/C1QBP, as an interactor of TcUBP1 RRM. Overexpression of TcP22 decreased the number of TcUBP1 granules in starved parasites in vivo. Endogenous TcUBP1 RNP complexes could be dissociated in vitro by addition of recombinant TcP22, a condition stimulating TcUBP1 phosphorylation. Biochemical and in silico analysis revealed that TcP22 interacts with the RNA-binding surface of TcUBP1 RRM. We propose a model for the decondensation of TcUBP1 RNP complexes in T. cruzi through direct interaction with TcP22 and phosphorylation.
Collapse
Affiliation(s)
- Alejandro Cassola
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, UNSAM-CONICET, Buenos Aires, Argentina
| | - María Albertina Romaniuk
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, UNSAM-CONICET, Buenos Aires, Argentina
| | - Debora Primrose
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, UNSAM-CONICET, Buenos Aires, Argentina
| | - Gabriela Cervini
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, UNSAM-CONICET, Buenos Aires, Argentina
| | - Iván D'Orso
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, UNSAM-CONICET, Buenos Aires, Argentina
| | - Alberto Carlos Frasch
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, UNSAM-CONICET, Buenos Aires, Argentina
| |
Collapse
|
14
|
Khuperkar D, Helen M, Magre I, Joseph J. Inter-cellular transport of ran GTPase. PLoS One 2015; 10:e0125506. [PMID: 25894517 PMCID: PMC4403925 DOI: 10.1371/journal.pone.0125506] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 03/24/2015] [Indexed: 12/25/2022] Open
Abstract
Ran, a member of the Ras-GTPase superfamily, has a well-established role in regulating the transport of macromolecules across the nuclear envelope (NE). Ran has also been implicated in mitosis, cell cycle progression, and NE formation. Over-expression of Ran is associated with various cancers, although the molecular mechanism underlying this phenomenon is unclear. Serendipitously, we found that Ran possesses the ability to move from cell-to-cell when transiently expressed in mammalian cells. Moreover, we show that the inter-cellular transport of Ran is GTP-dependent. Importantly, Ran displays a similar distribution pattern in the recipient cells as that in the donor cell and co-localizes with the Ran binding protein Nup358 (also called RanBP2). Interestingly, leptomycin B, an inhibitor of CRM1-mediated export, or siRNA mediated depletion of CRM1, significantly impaired the inter-cellular transport of Ran, suggesting a function for CRM1 in this process. These novel findings indicate a possible role for Ran beyond nucleo-cytoplasmic transport, with potential implications in inter-cellular communication and cancers.
Collapse
Affiliation(s)
| | - Mary Helen
- National Centre for Cell Science, Ganeshkhind, Pune, India
| | - Indrasen Magre
- National Centre for Cell Science, Ganeshkhind, Pune, India
| | - Jomon Joseph
- National Centre for Cell Science, Ganeshkhind, Pune, India
| |
Collapse
|
15
|
Vyas P, Singh A, Murawala P, Joseph J. Nup358 interacts with Dishevelled and aPKC to regulate neuronal polarity. Biol Open 2013; 2:1270-8. [PMID: 24244865 PMCID: PMC3828775 DOI: 10.1242/bio.20135363] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 10/01/2013] [Indexed: 11/25/2022] Open
Abstract
Par polarity complex, consisting of Par3, Par6, and aPKC, plays a conserved role in the establishment and maintenance of polarization in diverse cellular contexts. Recent reports suggest that Dishevelled (Dvl), a cytoplasmic mediator of Wnt signalling, interacts with atypical protein kinase C and regulates its activity during neuronal differentiation and directed cell migration. Here we show that Nup358 (also called RanBP2), a nucleoporin previously implicated in polarity during directed cell migration, interacts with Dishevelled and aPKC through its N-terminal region (BPN) and regulates axon–dendrite differentiation of cultured hippocampal neurons. Depletion of endogenous Nup358 leads to generation of multiple axons, whereas overexpression of BPN abrogates the process of axon formation. Moreover, siRNA-mediated knockdown of Dvl or inhibition of aPKC by a pseudosubstrate inhibitor significantly reverses the multiple axon phenotype produced by Nup358 depletion. Collectively, these data suggest that Nup358 plays an important role in regulating neuronal polarization upstream to Dvl and aPKC.
Collapse
Affiliation(s)
- Pankhuri Vyas
- National Centre for Cell Science , Ganeshkhind, Pune 411007, Maharashtra , India
| | | | | | | |
Collapse
|
16
|
Kedersha N, Ivanov P, Anderson P. Stress granules and cell signaling: more than just a passing phase? Trends Biochem Sci 2013; 38:494-506. [PMID: 24029419 DOI: 10.1016/j.tibs.2013.07.004] [Citation(s) in RCA: 479] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/23/2013] [Accepted: 07/29/2013] [Indexed: 12/27/2022]
Abstract
Stress granules (SGs) contain translationally-stalled mRNAs, associated preinitiation factors, and specific RNA-binding proteins. In addition, many signaling proteins are recruited to SGs and/or influence their assembly, which is transient, lasting only until the cells adapt to stress or die. Beyond their role as mRNA triage centers, we posit that SGs constitute RNA-centric signaling hubs analogous to classical multiprotein signaling domains such as transmembrane receptor complexes. As signaling centers, SG formation communicates a 'state of emergency', and their transient existence alters multiple signaling pathways by intercepting and sequestering signaling components. SG assembly and downstream signaling functions may require a cytosolic phase transition facilitated by intrinsically disordered, aggregation-prone protein regions shared by RNA-binding and signaling proteins.
Collapse
Affiliation(s)
- Nancy Kedersha
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Smith 652, One Jimmy Fund Way, Boston, MA 02115, USA
| | | | | |
Collapse
|