1
|
Chandra S, Mannino PJ, Thaller DJ, Ader NR, King MC, Melia TJ, Lusk CP. Atg39 selectively captures inner nuclear membrane into lumenal vesicles for delivery to the autophagosome. J Cell Biol 2021; 220:e202103030. [PMID: 34714326 PMCID: PMC8575018 DOI: 10.1083/jcb.202103030] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 08/26/2021] [Accepted: 09/29/2021] [Indexed: 12/26/2022] Open
Abstract
Mechanisms that turn over components of the nucleus and inner nuclear membrane (INM) remain to be fully defined. We explore how components of the INM are selected by a cytosolic autophagy apparatus through a transmembrane nuclear envelope-localized cargo adaptor, Atg39. A split-GFP reporter showed that Atg39 localizes to the outer nuclear membrane (ONM) and thus targets the INM across the nuclear envelope lumen. Consistent with this, sequence elements that confer both nuclear envelope localization and a membrane remodeling activity are mapped to the Atg39 lumenal domain; these lumenal motifs are required for the autophagy-mediated degradation of integral INM proteins. Interestingly, correlative light and electron microscopy shows that the overexpression of Atg39 leads to the expansion of the ONM and the enclosure of a network of INM-derived vesicles in the nuclear envelope lumen. Thus, we propose an outside-in model of nucleophagy where INM is delivered into vesicles in the nuclear envelope lumen, which can be targeted by the autophagosome.
Collapse
Affiliation(s)
| | | | | | | | | | - Thomas J. Melia
- Department of Cell Biology, Yale School of Medicine, New Haven, CT
| | - C. Patrick Lusk
- Department of Cell Biology, Yale School of Medicine, New Haven, CT
| |
Collapse
|
2
|
Wong X, Cutler JA, Hoskins VE, Gordon M, Madugundu AK, Pandey A, Reddy KL. Mapping the micro-proteome of the nuclear lamina and lamina-associated domains. Life Sci Alliance 2021; 4:e202000774. [PMID: 33758005 PMCID: PMC8008952 DOI: 10.26508/lsa.202000774] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 01/13/2023] Open
Abstract
The nuclear lamina is a proteinaceous network of filaments that provide both structural and gene regulatory functions by tethering proteins and large domains of DNA, the so-called lamina-associated domains (LADs), to the periphery of the nucleus. LADs are a large fraction of the mammalian genome that are repressed, in part, by their association to the nuclear periphery. The genesis and maintenance of LADs is poorly understood as are the proteins that participate in these functions. In an effort to identify proteins that reside at the nuclear periphery and potentially interact with LADs, we have taken a two-pronged approach. First, we have undertaken an interactome analysis of the inner nuclear membrane bound LAP2β to further characterize the nuclear lamina proteome. To accomplish this, we have leveraged the BioID system, which previously has been successfully used to characterize the nuclear lamina proteome. Second, we have established a system to identify proteins that bind to LADs by developing a chromatin-directed BioID system. We combined the BioID system with the m6A-tracer system which binds to LADs in live cells to identify both LAD proximal and nuclear lamina proteins. In combining these datasets, we have further characterized the protein network at the nuclear lamina, identified putative LAD proximal proteins and found several proteins that appear to interface with both micro-proteomes. Importantly, several proteins essential for LAD function, including heterochromatin regulating proteins related to H3K9 methylation, were identified in this study.
Collapse
Affiliation(s)
- Xianrong Wong
- Department of Biological Chemistry, Johns Hopkins University of Medicine, Baltimore, MD, USA
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Laboratory of Developmental and Regenerative Biology, Institute of Medical Biology, Agency for Science, Technology and Research (A∗STAR), Immunos, Singapore
| | - Jevon A Cutler
- Department of Biological Chemistry, Johns Hopkins University of Medicine, Baltimore, MD, USA
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Victoria E Hoskins
- Department of Biological Chemistry, Johns Hopkins University of Medicine, Baltimore, MD, USA
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Molly Gordon
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anil K Madugundu
- Department of Biological Chemistry, Johns Hopkins University of Medicine, Baltimore, MD, USA
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHNS), Bangalore, India
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Akhilesh Pandey
- Department of Biological Chemistry, Johns Hopkins University of Medicine, Baltimore, MD, USA
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHNS), Bangalore, India
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Manipal Academy of Higher Education (MAHE), Manipal, India
- Departments of Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Karen L Reddy
- Department of Biological Chemistry, Johns Hopkins University of Medicine, Baltimore, MD, USA
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Cancer Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
3
|
Sandor A, Fricker MD, Kriechbaumer V, Sweetlove LJ. IntEResting structures: formation and applications of organized smooth endoplasmic reticulum in plant cells. PLANT PHYSIOLOGY 2021; 185:550-561. [PMID: 33822222 PMCID: PMC8892044 DOI: 10.1104/pp.20.00719] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 07/21/2020] [Indexed: 06/12/2023]
Abstract
The endoplasmic reticulum (ER) is an organelle with remarkable plasticity, capable of rapidly changing its structure to accommodate different functions based on intra- and extracellular cues. One of the ER structures observed in plants is known as "organized smooth endoplasmic reticulum" (OSER), consisting of symmetrically stacked ER membrane arrays. In plants, these structures were first described in certain specialized tissues, e.g. the sieve elements of the phloem, and more recently in transgenic plants overexpressing ER membrane resident proteins. To date, much of the investigation of OSER focused on yeast and animal cells but research into plant OSER has started to grow. In this update, we give a succinct overview of research into the OSER phenomenon in plant cells with case studies highlighting both native and synthetic occurrences of OSER. We also assess the primary driving forces that trigger the formation of OSER, collating evidence from the literature to compare two competing theories for the origin of OSER: that OSER formation is initiated by oligomerizing protein accumulation in the ER membrane or that OSER is the result of ER membrane proliferation. This has long been a source of controversy in the field and here we suggest a way to integrate arguments from both sides into a single unifying theory. Finally, we discuss the potential biotechnological uses of OSER as a tool for the nascent plant synthetic biology field with possible applications as a synthetic microdomain for metabolic engineering and as an extensive membrane surface for synthetic chemistry or protein accumulation.
Collapse
Affiliation(s)
- Andras Sandor
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
| | - Mark D Fricker
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
| | - Verena Kriechbaumer
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Lee J Sweetlove
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
| |
Collapse
|
4
|
Kozono T, Sato H, Okumura W, Jogano C, Tamura-Nakano M, Kawamura YI, Rohrer J, Tonozuka T, Nishikawa A. The N-terminal region of Jaw1 has a role to inhibit the formation of organized smooth endoplasmic reticulum as an intrinsically disordered region. Sci Rep 2021; 11:753. [PMID: 33436890 PMCID: PMC7804115 DOI: 10.1038/s41598-020-80258-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023] Open
Abstract
Jaw1/LRMP is a type II integral membrane protein that is localized at the endoplasmic reticulum (ER) and outer nuclear membrane. We previously reported that a function of Jaw1 is to maintain the nuclear shape as a KASH protein via its carboxyl terminal region, a component of linker of nucleoskeleton and cytoskeleton complex in the oligomeric state. Although the oligomerization of some KASH proteins via the cytosolic regions serves to stabilize protein-protein interactions, the issue of how the oligomerization of Jaw1 is regulated is not completely understood. Therefore, we focused on three distinct regions on the cytosolic face of Jaw1: the N-terminal region, the coiled-coil domain and the stem region, in terms of oligomerization. A co-immunoprecipitation assay showed that its coiled-coil domain is a candidate for the oligomerization site. Furthermore, our data indicated that the N-terminal region prevents the aberrant oligomerization of Jaw1 as an intrinsically disordered region (IDR). Importantly, the ectopic expression of an N-terminal region deleted mutant caused the formation of organized smooth ER (OSER), structures such as nuclear karmellae and whorls, in B16F10 cells. Furthermore, this OSER interfered with the localization of the oligomer and interactors such as the type III inositol 1,4,5-triphosphate receptor (IP3R3) and SUN2. In summary, the N-terminal region of Jaw1 inhibits the formation of OSER as an IDR to maintain the homeostatic localization of interactors on the ER membrane.
Collapse
Affiliation(s)
- Takuma Kozono
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan.,Department of Gastroenterology, The Research Center for Hepatitis and Immunology, Research Institute, National Center for Global Health and Medicine, Chiba, 272-8516, Japan
| | - Hiroyuki Sato
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| | - Wataru Okumura
- Department of Food and Energy Systems Science, Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan
| | - Chifuyu Jogano
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| | - Miwa Tamura-Nakano
- Communal Laboratory, Research Institute, National Center for Global Health and Medicine, Tokyo, 162-8655, Japan
| | - Yuki I Kawamura
- Department of Gastroenterology, The Research Center for Hepatitis and Immunology, Research Institute, National Center for Global Health and Medicine, Chiba, 272-8516, Japan
| | - Jack Rohrer
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, CH-8820, Waedenswil, Switzerland
| | - Takashi Tonozuka
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| | - Atsushi Nishikawa
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan. .,Department of Applied Biological Chemistry, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan. .,Department of Food and Energy Systems Science, Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan.
| |
Collapse
|
5
|
Hayashi Y, Nemoto-Sasaki Y, Matsumoto N, Tanikawa T, Oka S, Tanaka Y, Arai S, Wada I, Sugiura T, Yamashita A. Carboxyl-terminal Tail-mediated Homodimerizations of Sphingomyelin Synthases Are Responsible for Efficient Export from the Endoplasmic Reticulum. J Biol Chem 2016; 292:1122-1141. [PMID: 27927984 DOI: 10.1074/jbc.m116.746602] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 11/16/2016] [Indexed: 11/06/2022] Open
Abstract
Sphingomyelin synthase (SMS) is the key enzyme for cross-talk between bioactive sphingolipids and glycerolipids. In mammals, SMS consists of two isoforms: SMS1 is localized in the Golgi apparatus, whereas SMS2 is localized in both the Golgi and plasma membranes. SMS2 seems to exert cellular functions through protein-protein interactions; however, the existence and functions of quaternary structures of SMS1 and SMS2 remain unclear. Here we demonstrate that both SMS1 and SMS2 form homodimers. The SMSs have six membrane-spanning domains, and the N and C termini of both proteins face the cytosolic side of the Golgi apparatus. Chemical cross-linking and bimolecular fluorescence complementation revealed that the N- and/or C-terminal tails of the SMSs were in close proximity to those of the other SMS in the homodimer. Homodimer formation was significantly decreased by C-terminal truncations, SMS1-ΔC22 and SMS2-ΔC30, indicating that the C-terminal tails of the SMSs are primarily responsible for homodimer formation. Moreover, immunoprecipitation using deletion mutants revealed that the C-terminal tail of SMS2 mainly interacted with the C-terminal tail of its homodimer partner, whereas the C-terminal tail of SMS1 mainly interacted with a site other than the C-terminal tail of its homodimer partner. Interestingly, homodimer formation occurred in the endoplasmic reticulum (ER) membrane before trafficking to the Golgi apparatus. Reduced homodimerization caused by C-terminal truncations of SMSs significantly reduced ER-to-Golgi transport. Our findings suggest that the C-terminal tails of SMSs are involved in homodimer formation, which is required for efficient transport from the ER.
Collapse
Affiliation(s)
- Yasuhiro Hayashi
- From the Faculty of Pharma Sciences, Teikyo University, Kaga 2-11-1, Itabashi-ku, Tokyo 173-8605, Japan and
| | - Yoko Nemoto-Sasaki
- From the Faculty of Pharma Sciences, Teikyo University, Kaga 2-11-1, Itabashi-ku, Tokyo 173-8605, Japan and
| | - Naoki Matsumoto
- From the Faculty of Pharma Sciences, Teikyo University, Kaga 2-11-1, Itabashi-ku, Tokyo 173-8605, Japan and
| | - Takashi Tanikawa
- From the Faculty of Pharma Sciences, Teikyo University, Kaga 2-11-1, Itabashi-ku, Tokyo 173-8605, Japan and
| | - Saori Oka
- From the Faculty of Pharma Sciences, Teikyo University, Kaga 2-11-1, Itabashi-ku, Tokyo 173-8605, Japan and
| | - Yusuke Tanaka
- From the Faculty of Pharma Sciences, Teikyo University, Kaga 2-11-1, Itabashi-ku, Tokyo 173-8605, Japan and
| | - Seisuke Arai
- the Department of Cell Science, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Hikarigaoka-1, Fukushima City, Fukushima 960-1295, Japan
| | - Ikuo Wada
- the Department of Cell Science, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Hikarigaoka-1, Fukushima City, Fukushima 960-1295, Japan
| | - Takayuki Sugiura
- From the Faculty of Pharma Sciences, Teikyo University, Kaga 2-11-1, Itabashi-ku, Tokyo 173-8605, Japan and
| | - Atsushi Yamashita
- From the Faculty of Pharma Sciences, Teikyo University, Kaga 2-11-1, Itabashi-ku, Tokyo 173-8605, Japan and
| |
Collapse
|
6
|
Zhang C, Kho YS, Wang Z, Chiang YT, Ng GKH, Shaw PC, Wang Y, Qi RZ. Transmembrane and coiled-coil domain family 1 is a novel protein of the endoplasmic reticulum. PLoS One 2014; 9:e85206. [PMID: 24454821 PMCID: PMC3891740 DOI: 10.1371/journal.pone.0085206] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 11/23/2013] [Indexed: 01/01/2023] Open
Abstract
The endoplasmic reticulum (ER) is a continuous membrane network in eukaryotic cells comprising the nuclear envelope, the rough ER, and the smooth ER. The ER has multiple critical functions and a characteristic structure. In this study, we identified a new protein of the ER, TMCC1 (transmembrane and coiled-coil domain family 1). The TMCC family consists of at least 3 putative proteins (TMCC1-3) that are conserved from nematode to human. We show that TMCC1 is an ER protein that is expressed in diverse human cell lines. TMCC1 contains 2 adjacent transmembrane domains near the C-terminus, in addition to coiled-coil domains. TMCC1 was targeted to the rough ER through the transmembrane domains, whereas the N-terminal region and C-terminal tail of TMCC1 were found to reside in the cytoplasm. Moreover, the cytosolic region of TMCC1 formed homo- or hetero-dimers or oligomers with other TMCC proteins and interacted with ribosomal proteins. Notably, overexpression of TMCC1 or its transmembrane domains caused defects in ER morphology. Our results suggest roles of TMCC1 in ER organization.
Collapse
Affiliation(s)
- Chao Zhang
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yik-Shing Kho
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Zhe Wang
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yan Ting Chiang
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Department of Experimental Therapeutics, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Gary K. H. Ng
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Pang-Chui Shaw
- Biochemistry Programme and Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yuzhuo Wang
- Department of Experimental Therapeutics, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Robert Z. Qi
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- * E-mail:
| |
Collapse
|
7
|
Lenormand C, Spiegelhalter C, Cinquin B, Bardin S, Bausinger H, Angénieux C, Eckly A, Proamer F, Wall D, Lich B, Tourne S, Hanau D, Schwab Y, Salamero J, de la Salle H. Birbeck granule-like "organized smooth endoplasmic reticulum" resulting from the expression of a cytoplasmic YFP-tagged langerin. PLoS One 2013; 8:e60813. [PMID: 23577166 PMCID: PMC3618057 DOI: 10.1371/journal.pone.0060813] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 03/04/2013] [Indexed: 11/22/2022] Open
Abstract
Langerin is required for the biogenesis of Birbeck granules (BGs), the characteristic organelles of Langerhans cells. We previously used a Langerin-YFP fusion protein having a C-terminal luminal YFP tag to dynamically decipher the molecular and cellular processes which accompany the traffic of Langerin. In order to elucidate the interactions of Langerin with its trafficking effectors and their structural impact on the biogenesis of BGs, we generated a YFP-Langerin chimera with an N-terminal, cytosolic YFP tag. This latter fusion protein induced the formation of YFP-positive large puncta. Live cell imaging coupled to a fluorescence recovery after photobleaching approach showed that this coalescence of proteins in newly formed compartments was static. In contrast, the YFP-positive structures present in the pericentriolar region of cells expressing Langerin-YFP chimera, displayed fluorescent recovery characteristics compatible with active membrane exchanges. Using correlative light-electron microscopy we showed that the coalescent structures represented highly organized stacks of membranes with a pentalaminar architecture typical of BGs. Continuities between these organelles and the rough endoplasmic reticulum allowed us to identify the stacks of membranes as a form of “Organized Smooth Endoplasmic Reticulum” (OSER), with distinct molecular and physiological properties. The involvement of homotypic interactions between cytoplasmic YFP molecules was demonstrated using an A206K variant of YFP, which restored most of the Langerin traffic and BG characteristics observed in Langerhans cells. Mutation of the carbohydrate recognition domain also blocked the formation of OSER. Hence, a “double-lock” mechanism governs the behavior of YFP-Langerin, where asymmetric homodimerization of the YFP tag and homotypic interactions between the lectin domains of Langerin molecules participate in its retention and the subsequent formation of BG-like OSER. These observations confirm that BG-like structures appear wherever Langerin accumulates and confirm that membrane trafficking effectors dictate their physiology and, illustrate the importance of molecular interactions in the architecture of intracellular membranes.
Collapse
Affiliation(s)
- Cédric Lenormand
- Unité Mixte de Recherche Santé 725, Institut National de la Santé et de la Recherche Médicale, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Histocompatibility Laboratory, Etablissement Français du Sang-Alsace, Strasbourg, France
| | - Coralie Spiegelhalter
- Imaging Centre, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Bertrand Cinquin
- Molecular Mechanisms of Intracellular Transport Laboratory, Unité Mixte de Recherche 144 Centre National de la Recherche Scientifique-Institut Curie, Paris, France
- Cell and Tissue Imaging Facility, BioImaging Cell-Institut Curie and Tissue Core Facility & Nikon Imaging Center, Unité Mixte de Recherche 144 Centre National de la Recherche Scientifique-Institut Curie, Paris, France
- Soleil Synchrotron, Gif-sur-Yvette, France
| | - Sabine Bardin
- Molecular Mechanisms of Intracellular Transport Laboratory, Unité Mixte de Recherche 144 Centre National de la Recherche Scientifique-Institut Curie, Paris, France
| | - Huguette Bausinger
- Unité Mixte de Recherche Santé 725, Institut National de la Santé et de la Recherche Médicale, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Histocompatibility Laboratory, Etablissement Français du Sang-Alsace, Strasbourg, France
| | - Catherine Angénieux
- Unité Mixte de Recherche Santé 725, Institut National de la Santé et de la Recherche Médicale, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Histocompatibility Laboratory, Etablissement Français du Sang-Alsace, Strasbourg, France
| | - Anita Eckly
- Unité Mixte de Recherche Santé 725, Institut National de la Santé et de la Recherche Médicale, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Unité Mixte de Recherche Santé 949, Institut National de la Santé et de la Recherche Médicale, Strasbourg, France
| | - Fabienne Proamer
- Unité Mixte de Recherche Santé 725, Institut National de la Santé et de la Recherche Médicale, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Histocompatibility Laboratory, Etablissement Français du Sang-Alsace, Strasbourg, France
| | | | - Ben Lich
- FEI Company, Eindhoven, The Netherlands
| | - Sylvie Tourne
- Histocompatibility Laboratory, Etablissement Français du Sang-Alsace, Strasbourg, France
| | - Daniel Hanau
- Unité Mixte de Recherche Santé 725, Institut National de la Santé et de la Recherche Médicale, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Histocompatibility Laboratory, Etablissement Français du Sang-Alsace, Strasbourg, France
| | - Yannick Schwab
- Imaging Centre, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Jean Salamero
- Molecular Mechanisms of Intracellular Transport Laboratory, Unité Mixte de Recherche 144 Centre National de la Recherche Scientifique-Institut Curie, Paris, France
- Cell and Tissue Imaging Facility, BioImaging Cell-Institut Curie and Tissue Core Facility & Nikon Imaging Center, Unité Mixte de Recherche 144 Centre National de la Recherche Scientifique-Institut Curie, Paris, France
| | - Henri de la Salle
- Unité Mixte de Recherche Santé 725, Institut National de la Santé et de la Recherche Médicale, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Histocompatibility Laboratory, Etablissement Français du Sang-Alsace, Strasbourg, France
- * E-mail:
| |
Collapse
|