1
|
Assessing the Impact of Electrostatic Drag on Processive Molecular Motor Transport. Bull Math Biol 2018; 80:2088-2123. [PMID: 29869045 DOI: 10.1007/s11538-018-0448-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 05/22/2018] [Indexed: 10/14/2022]
Abstract
The bidirectional movement of intracellular cargo is usually described as a tug-of-war among opposite-directed families of molecular motors. While tug-of-war models have enjoyed some success, recent evidence suggests underlying motor interactions are more complex than previously understood. For example, these tug-of-war models fail to predict the counterintuitive phenomenon that inhibiting one family of motors can decrease the functionality of opposite-directed transport. In this paper, we use a stochastic differential equations modeling framework to explore one proposed physical mechanism, called microtubule tethering, that could play a role in this "co-dependence" among antagonistic motors. This hypothesis includes the possibility of a trade-off: weakly bound trailing molecular motors can serve as tethers for cargoes and processing motors, thereby enhancing motor-cargo run lengths along microtubules; however, this introduces a cost of processing at a lower mean velocity. By computing the small- and large-time mean-squared displacement of our theoretical model and comparing our results to experimental observations of dynein and its "helper protein" dynactin, we find some supporting evidence for microtubule tethering interactions. We extrapolate these findings to predict how dynein-dynactin might interact with the opposite-directed kinesin motors and introduce a criterion for when the trade-off is beneficial in simple systems.
Collapse
|
2
|
Bradshaw NJ, Hayashi MAF. NDE1 and NDEL1 from genes to (mal)functions: parallel but distinct roles impacting on neurodevelopmental disorders and psychiatric illness. Cell Mol Life Sci 2017; 74:1191-1210. [PMID: 27742926 PMCID: PMC11107680 DOI: 10.1007/s00018-016-2395-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/13/2016] [Accepted: 10/06/2016] [Indexed: 01/01/2023]
Abstract
NDE1 (Nuclear Distribution Element 1, also known as NudE) and NDEL1 (NDE-Like 1, also known as NudEL) are the mammalian homologues of the fungus nudE gene, with important and at least partially overlapping roles for brain development. While a large number of studies describe the various properties and functions of these proteins, many do not directly compare the similarities and differences between NDE1 and NDEL1. Although sharing a high degree structural similarity and multiple common cellular roles, each protein presents several distinct features that justify their parallel but also unique functions. Notably both proteins have key binding partners in dynein, LIS1 and DISC1, which impact on neurodevelopmental and psychiatric illnesses. Both are implicated in schizophrenia through genetic and functional evidence, with NDE1 also strongly implicated in microcephaly, as well as other neurodevelopmental and psychiatric conditions through copy number variation, while NDEL1 possesses an oligopeptidase activity with a unique potential as a biomarker in schizophrenia. In this review, we aim to give a comprehensive overview of the various cellular roles of these proteins in a "bottom-up" manner, from their biochemistry and protein-protein interactions on the molecular level, up to the consequences for neuronal differentiation, and ultimately to their importance for correct cortical development, with direct consequences for the pathophysiology of neurodevelopmental and mental illness.
Collapse
Affiliation(s)
- Nicholas J Bradshaw
- Department of Neuropathology, Heinrich Heine University, Düsseldorf, Germany.
| | - Mirian A F Hayashi
- Department of Pharmacology, Universidade Federal de São Paulo (UNIFESP/EPM), São Paulo, Brazil
| |
Collapse
|
3
|
Bradshaw NJ. Cloning of the promoter of NDE1, a gene implicated in psychiatric and neurodevelopmental disorders through copy number variation. Neuroscience 2016; 324:262-70. [PMID: 26975893 DOI: 10.1016/j.neuroscience.2016.03.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/26/2016] [Accepted: 03/07/2016] [Indexed: 01/22/2023]
Abstract
Copy number variation at 16p13.11 has been associated with a range of neurodevelopmental and psychiatric conditions, with duplication of this region being more common in individuals with schizophrenia. A prominent candidate gene within this locus is NDE1 (Nuclear Distribution Element 1) given its known importance for neurodevelopment, previous associations with mental illness and its well characterized interaction with the Disrupted in Schizophrenia 1 (DISC1) protein. In order to accurately model the effect of NDE1 duplication, it is important to first gain an understanding of how the gene is expressed. The complex promoter system of NDE1, which produces three distinct transcripts, each encoding for the same full-length NDE1 protein (also known as NudE), was therefore cloned and tested in human cell lines. The promoter for the longest of these three NDE1 transcripts was found to be responsible for the majority of expression in these systems, with its extended 5' untranslated region (UTR) having a limiting effect on its expression. These results thus highlight and clone the promoter elements required to generate systems in which the NDE1 protein is exogenously expressed under its native promoter, providing a biologically relevant model of 16p13.11 duplication in major mental illness.
Collapse
Affiliation(s)
- N J Bradshaw
- Department of Neuropathology, Heinrich Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany.
| |
Collapse
|
4
|
Kuijpers M, van de Willige D, Freal A, Chazeau A, Franker M, Hofenk J, Rodrigues R, Kapitein L, Akhmanova A, Jaarsma D, Hoogenraad C. Dynein Regulator NDEL1 Controls Polarized Cargo Transport at the Axon Initial Segment. Neuron 2016; 89:461-71. [DOI: 10.1016/j.neuron.2016.01.022] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 06/15/2015] [Accepted: 12/08/2015] [Indexed: 10/22/2022]
|
5
|
Arthur AL, Yang SZ, Abellaneda AM, Wildonger J. Dendrite arborization requires the dynein cofactor NudE. J Cell Sci 2015; 128:2191-201. [PMID: 25908857 PMCID: PMC4450295 DOI: 10.1242/jcs.170316] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/10/2015] [Indexed: 12/28/2022] Open
Abstract
The microtubule-based molecular motor dynein is essential for proper neuronal morphogenesis. Dynein activity is regulated by cofactors, and the role(s) of these cofactors in shaping neuronal structure are still being elucidated. Using Drosophila melanogaster, we reveal that the loss of the dynein cofactor NudE results in abnormal dendrite arborization. Our data show that NudE associates with Golgi outposts, which mediate dendrite branching, suggesting that NudE normally influences dendrite patterning by regulating Golgi outpost transport. Neurons lacking NudE also have increased microtubule dynamics, reflecting a change in microtubule stability that is likely to also contribute to abnormal dendrite growth and branching. These defects in dendritogenesis are rescued by elevating levels of Lis1, another dynein cofactor that interacts with NudE as part of a tripartite complex. Our data further show that the NudE C-terminus is dispensable for dendrite morphogenesis and is likely to modulate NudE activity. We propose that a key function of NudE is to enhance an interaction between Lis1 and dynein that is crucial for motor activity and dendrite architecture.
Collapse
Affiliation(s)
- Ashley L Arthur
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sihui Z Yang
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Allison M Abellaneda
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA Biochemistry Scholars Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jill Wildonger
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
6
|
Abstract
Vesicles, organelles and other intracellular cargo are transported by kinesin and dynein motors, which move in opposite directions along microtubules. This bidirectional cargo movement is frequently described as a 'tug of war' between oppositely directed molecular motors attached to the same cargo. However, although many experimental and modelling studies support the tug-of-war paradigm, numerous knockout and inhibition studies in various systems have found that inhibiting one motor leads to diminished motility in both directions, which is a 'paradox of co-dependence' that challenges the paradigm. In an effort to resolve this paradox, three classes of bidirectional transport models--microtubule tethering, mechanical activation and steric disinhibition--are proposed, and a general mathematical modelling framework for bidirectional cargo transport is put forward to guide future experiments.
Collapse
|
7
|
Abstract
In this chapter, we describe experimental techniques used in vitro to illuminate how small teams of motors can work to translocate cargos. We will focus on experiments utilizing in vitro reconstitution, artificial or ex vivo purified cargos, and fluorescence imaging. A number of studies have been able to recapitulate the activities of cargo transport driven by small teams of motors elucidating how multiple motors can work together to transport cargos within the cell. Here, we describe some of the methods employed and highlight important experimental details needed to perform these experiments.
Collapse
|
8
|
Bradshaw NJ, Hennah W, Soares DC. NDE1 and NDEL1: twin neurodevelopmental proteins with similar 'nature' but different 'nurture'. Biomol Concepts 2013; 4:447-64. [PMID: 24093049 PMCID: PMC3787581 DOI: 10.1515/bmc-2013-0023] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Nuclear distribution element 1 (NDE1, also known as NudE) and NDE-like 1 (NDEL1, also known as Nudel) are paralogous proteins essential for mitosis and neurodevelopment that have been implicated in psychiatric and neurodevelopmental disorders. The two proteins possess high sequence similarity and have been shown to physically interact with one another. Numerous lines of experimental evidence in vivo and in cell culture have demonstrated that these proteins share common functions, although instances of differing functions between the two have recently emerged. We review the key aspects of NDE1 and NDEL1 in terms of recent advances in structure elucidation and cellular function, with an emphasis on their differing mechanisms of post-translational modification. Based on a review of the literature and bioinformatics assessment, we advance the concept that the twin proteins NDE1 and NDEL1, while sharing a similar 'nature' in terms of their structure and basic functions, appear to be different in their 'nurture', the manner in which they are regulated both in terms of expression and of post-translational modification within the cell. These differences are likely to be of significant importance in understanding the specific roles of NDE1 and NDEL1 in neurodevelopment and disease.
Collapse
Affiliation(s)
- Nicholas J. Bradshaw
- Department of Neuropathology, Heinrich Heine University, Düsseldorf, University Medical School, Moorenstrasse 5, D-40225, Düsseldorf, Germany
| | - William Hennah
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland; and National Institute for, Health and Welfare, Department of Mental Health and Substance, Abuse Services, Helsinki, Finland
| | - Dinesh C. Soares
- MRC Institute of Genetics and Molecular Medicine (MRC IGMM), University of Edinburgh, Western General, Hospital, Crewe Road South, Edinburgh EH4 2XU, UK
| |
Collapse
|
9
|
Reiner O, Sapir T. LIS1 functions in normal development and disease. Curr Opin Neurobiol 2013; 23:951-6. [PMID: 23973156 DOI: 10.1016/j.conb.2013.08.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 08/01/2013] [Accepted: 08/01/2013] [Indexed: 10/26/2022]
Abstract
LIS1, the first gene to be identified as involved in a neuronal migration disease, is a dosage-sensitive gene whose proper levels are required for multiple aspects of cortical development. Deletions in LIS1 result in a severe brain malformation, known as lissencephaly, whereas duplications delay brain development. LIS1 affects the proliferation of progenitors, spindle orientation and interkinetic nuclear movement in the ventricular zone, as well as nucleokinesis and migration of neurons. LIS1 regulatory interaction with the minus end directed molecular motor cytoplasmic dynein is the key for understanding its complex cellular functions. LIS1-dynein interaction decreases the average velocity of the molecular motor in vitro, shows more complex effects in vivo, and may be of importance in high-load transport especially in neurons.
Collapse
Affiliation(s)
- Orly Reiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel.
| | | |
Collapse
|
10
|
Miles RR, Perry W, Haas JV, Mosior MK, N'Cho M, Wang JWJ, Yu P, Calley J, Yue Y, Carter Q, Han B, Foxworthy P, Kowala MC, Ryan TP, Solenberg PJ, Michael LF. Genome-wide screen for modulation of hepatic apolipoprotein A-I (ApoA-I) secretion. J Biol Chem 2013; 288:6386-96. [PMID: 23322769 DOI: 10.1074/jbc.m112.410092] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Control of plasma cholesterol levels is a major therapeutic strategy for management of coronary artery disease (CAD). Although reducing LDL cholesterol (LDL-c) levels decreases morbidity and mortality, this therapeutic intervention only translates into a 25-40% reduction in cardiovascular events. Epidemiological studies have shown that a high LDL-c level is not the only risk factor for CAD; low HDL cholesterol (HDL-c) is an independent risk factor for CAD. Apolipoprotein A-I (ApoA-I) is the major protein component of HDL-c that mediates reverse cholesterol transport from tissues to the liver for excretion. Therefore, increasing ApoA-I levels is an attractive strategy for HDL-c elevation. Using genome-wide siRNA screening, targets that regulate hepatocyte ApoA-I secretion were identified through transfection of 21,789 siRNAs into hepatocytes whereby cell supernatants were assayed for ApoA-I. Approximately 800 genes were identified and triaged using a convergence of information, including genetic associations with HDL-c levels, tissue-specific gene expression, druggability assessments, and pathway analysis. Fifty-nine genes were selected for reconfirmation; 40 genes were confirmed. Here we describe the siRNA screening strategy, assay implementation and validation, data triaging, and example genes of interest. The genes of interest include known and novel genes encoding secreted enzymes, proteases, G-protein-coupled receptors, metabolic enzymes, ion transporters, and proteins of unknown function. Repression of farnesyltransferase (FNTA) by siRNA and the enzyme inhibitor manumycin A caused elevation of ApoA-I secretion from hepatocytes and from transgenic mice expressing hApoA-I and cholesterol ester transfer protein transgenes. In total, this work underscores the power of functional genetic assessment to identify new therapeutic targets.
Collapse
Affiliation(s)
- Rebecca R Miles
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Soares DC, Bradshaw NJ, Zou J, Kennaway CK, Hamilton RS, Chen ZA, Wear MA, Blackburn EA, Bramham J, Böttcher B, Millar JK, Barlow PN, Walkinshaw MD, Rappsilber J, Porteous DJ. The mitosis and neurodevelopment proteins NDE1 and NDEL1 form dimers, tetramers, and polymers with a folded back structure in solution. J Biol Chem 2012; 287:32381-93. [PMID: 22843697 PMCID: PMC3463352 DOI: 10.1074/jbc.m112.393439] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 07/26/2012] [Indexed: 11/06/2022] Open
Abstract
Paralogs NDE1 (nuclear distribution element 1) and NDEL1 (NDE-like 1) are essential for mitosis and neurodevelopment. Both proteins are predicted to have similar structures, based upon high sequence similarity, and they co-complex in mammalian cells. X-ray diffraction studies and homology modeling suggest that their N-terminal regions (residues 8-167) adopt continuous, extended α-helical coiled-coil structures, but no experimentally derived information on the structure of their C-terminal regions or the architecture of the full-length proteins is available. In the case of NDE1, no biophysical data exists. Here we characterize the structural architecture of both full-length proteins utilizing negative stain electron microscopy along with our established paradigm of chemical cross-linking followed by tryptic digestion, mass spectrometry, and database searching, which we enhance using isotope labeling for mixed NDE1-NDEL1. We determined that full-length NDE1 forms needle-like dimers and tetramers in solution, similar to crystal structures of NDEL1, as well as chain-like end-to-end polymers. The C-terminal domain of each protein, required for interaction with key protein partners dynein and DISC1 (disrupted-in-schizophrenia 1), includes a predicted disordered region that allows a bent back structure. This facilitates interaction of the C-terminal region with the N-terminal coiled-coil domain and is in agreement with previous results showing N- and C-terminal regions of NDEL1 and NDE1 cooperating in dynein interaction. It sheds light on recently identified mutations in the NDE1 gene that cause truncation of the encoded protein. Additionally, analysis of mixed NDE1-NDEL1 complexes demonstrates that NDE1 and NDEL1 can interact directly.
Collapse
Affiliation(s)
- Dinesh C. Soares
- From the Medical Genetics Section, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Nicholas J. Bradshaw
- From the Medical Genetics Section, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
- the Institut für Neuropathologie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Juan Zou
- the Wellcome Trust Centre for Cell Biology and
| | - Christopher K. Kennaway
- the School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| | - Russell S. Hamilton
- the Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | | | - Martin A. Wear
- the Centre for Translational and Chemical Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom, and
| | - Elizabeth A. Blackburn
- the Centre for Translational and Chemical Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom, and
| | - Janice Bramham
- the Centre for Translational and Chemical Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom, and
| | - Bettina Böttcher
- the School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| | - J. Kirsty Millar
- From the Medical Genetics Section, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Paul N. Barlow
- the Centre for Translational and Chemical Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom, and
| | - Malcolm D. Walkinshaw
- the Centre for Translational and Chemical Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom, and
| | - Juri Rappsilber
- the Wellcome Trust Centre for Cell Biology and
- the Department of Biotechnology, Technische Universität Berlin, 13353 Berlin, Germany
| | - David J. Porteous
- From the Medical Genetics Section, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| |
Collapse
|