1
|
Konduktorova VV, Luchinskaya NN, Belyavsky AV. Expression of the Germes Germ Plasm Gene in Follicular Cells of X. laevis Oocytes. Russ J Dev Biol 2022. [DOI: 10.1134/s1062360422050034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
2
|
Mercer M, Jang S, Ni C, Buszczak M. The Dynamic Regulation of mRNA Translation and Ribosome Biogenesis During Germ Cell Development and Reproductive Aging. Front Cell Dev Biol 2021; 9:710186. [PMID: 34805139 PMCID: PMC8595405 DOI: 10.3389/fcell.2021.710186] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 10/07/2021] [Indexed: 01/21/2023] Open
Abstract
The regulation of mRNA translation, both globally and at the level of individual transcripts, plays a central role in the development and function of germ cells across species. Genetic studies using flies, worms, zebrafish and mice have highlighted the importance of specific RNA binding proteins in driving various aspects of germ cell formation and function. Many of these mRNA binding proteins, including Pumilio, Nanos, Vasa and Dazl have been conserved through evolution, specifically mark germ cells, and carry out similar functions across species. These proteins typically influence mRNA translation by binding to specific elements within the 3′ untranslated region (UTR) of target messages. Emerging evidence indicates that the global regulation of mRNA translation also plays an important role in germ cell development. For example, ribosome biogenesis is often regulated in a stage specific manner during gametogenesis. Moreover, oocytes need to produce and store a sufficient number of ribosomes to support the development of the early embryo until the initiation of zygotic transcription. Accumulating evidence indicates that disruption of mRNA translation regulatory mechanisms likely contributes to infertility and reproductive aging in humans. These findings highlight the importance of gaining further insights into the mechanisms that control mRNA translation within germ cells. Future work in this area will likely have important impacts beyond germ cell biology.
Collapse
Affiliation(s)
- Marianne Mercer
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Seoyeon Jang
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Chunyang Ni
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Michael Buszczak
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
3
|
Shimaoka K, Mukumoto Y, Tanigawa Y, Komiya T. Xenopus Vasa Homolog XVLG1 is Essential for Migration and Survival of Primordial Germ Cells. Zoolog Sci 2017; 34:93-104. [PMID: 28397605 DOI: 10.2108/zs160198] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Xenopus vasa-like gene 1 (XVLG1), a DEAD-Box Helicase 4 (DDX4) gene identified as a vertebrate vasa homologue, is required for the formation of primordial germ cells (PGCs). However, it remains to be clarified when and how XVLG1 functions in the formation of the germ cells. To gain a better understanding of the molecular mechanisms underlying XVLG1 during PGC development, we injected XVLG1 morpholino oligos into germ-plasm containing blastomeres of 32-cell stage of Xenopus embryos, and traced cell fates of the injected blastomere-derived PGCs. As a result of this procedure, migration of the PGCs was impaired and the number of PGCs derived from the blastomeres was significantly decreased. In addition, TUNEL staining in combination with in situ hybridization revealed that the loss of PGCs peaked at stage 27 was caused by apoptosis. This data strongly suggests an essential role for XVLG1 in migration and survival of the germ cells.
Collapse
Affiliation(s)
- Kazumi Shimaoka
- 1 Department of Biological Function, Faculty of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-0022, Japan
| | - Yoshiko Mukumoto
- 1 Department of Biological Function, Faculty of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-0022, Japan.,2 Genetic Engineering Team, RIKEN Center for Life Science Technologies, Minatojimaminamimachi, Chuou-ku, Kobe 650-0047, Japan
| | - Yoko Tanigawa
- 1 Department of Biological Function, Faculty of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-0022, Japan
| | - Tohru Komiya
- 1 Department of Biological Function, Faculty of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-0022, Japan
| |
Collapse
|
4
|
Blitz IL, Fish MB, Cho KWY. Leapfrogging: primordial germ cell transplantation permits recovery of CRISPR/Cas9-induced mutations in essential genes. Development 2016; 143:2868-75. [PMID: 27385011 PMCID: PMC5004912 DOI: 10.1242/dev.138057] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/15/2016] [Indexed: 01/07/2023]
Abstract
CRISPR/Cas9 genome editing is revolutionizing genetic loss-of-function analysis but technical limitations remain that slow progress when creating mutant lines. First, in conventional genetic breeding schemes, mosaic founder animals carrying mutant alleles are outcrossed to produce F1 heterozygotes. Phenotypic analysis occurs in the F2 generation following F1 intercrosses. Thus, mutant analyses will require multi-generational studies. Second, when targeting essential genes, efficient mutagenesis of founders is often lethal, preventing the acquisition of mature animals. Reducing mutagenesis levels may improve founder survival, but results in lower, more variable rates of germline transmission. Therefore, an efficient approach to study lethal mutations would be useful. To overcome these shortfalls, we introduce 'leapfrogging', a method combining efficient CRISPR mutagenesis with transplantation of mutated primordial germ cells into a wild-type host. Tested using Xenopus tropicalis, we show that founders containing transplants transmit mutant alleles with high efficiency. F1 offspring from intercrosses between F0 animals that carry embryonic lethal alleles recapitulate loss-of-function phenotypes, circumventing an entire generation of breeding. We anticipate that leapfrogging will be transferable to other species.
Collapse
Affiliation(s)
- Ira L Blitz
- 4410 Natural Sciences Building 2, Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Margaret B Fish
- 4410 Natural Sciences Building 2, Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Ken W Y Cho
- 4410 Natural Sciences Building 2, Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| |
Collapse
|
5
|
Yang J, Aguero T, King ML. The Xenopus Maternal-to-Zygotic Transition from the Perspective of the Germline. Curr Top Dev Biol 2015; 113:271-303. [PMID: 26358876 DOI: 10.1016/bs.ctdb.2015.07.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In Xenopus, the germline is specified by the inheritance of germ-plasm components synthesized at the beginning of oogenesis. Only the cells in the early embryo that receive germ plasm, the primordial germ cells (PGCs), are competent to give rise to the gametes. Thus, germ-plasm components continue the totipotent potential exhibited by the oocyte into the developing embryo at a time when most cells are preprogrammed for somatic differentiation as dictated by localized maternal determinants. When zygotic transcription begins at the mid-blastula transition, the maternally set program for somatic differentiation is realized. At this time, genetic control is ceded to the zygotic genome, and developmental potential gradually becomes more restricted within the primary germ layers. PGCs are a notable exception to this paradigm and remain transcriptionally silent until the late gastrula. How the germ-cell lineage retains full potential while somatic cells become fate restricted is a tale of translational repression, selective degradation of somatic maternal determinants, and delayed activation of zygotic transcription.
Collapse
Affiliation(s)
- Jing Yang
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Tristan Aguero
- Department of Cell Biology, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Mary Lou King
- Department of Cell Biology, University of Miami, Miller School of Medicine, Miami, Florida, USA.
| |
Collapse
|
6
|
Tada H, Orii H. Dynamic intracellular localization of Dazl protein during Xenopus germline development. Histochem Cell Biol 2015; 144:157-66. [DOI: 10.1007/s00418-015-1323-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2015] [Indexed: 12/13/2022]
|
7
|
Yamaguchi T, Kataoka K, Watanabe K, Orii H. Restriction of the Xenopus DEADSouth mRNA to the primordial germ cells is ensured by multiple mechanisms. Mech Dev 2013; 131:15-23. [PMID: 24291337 DOI: 10.1016/j.mod.2013.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 10/26/2013] [Accepted: 11/17/2013] [Indexed: 02/04/2023]
Abstract
DEADSouth mRNA encoding the RNA helicase DDX25 is a component of the germ plasm in Xenopus laevis. We investigated the mechanisms underlying its specific mRNA expression in primordial germ cells (PGCs). Based on our previous findings of several microRNA miR-427 recognition elements (MREs) in the 3' untranslated region of the mRNA, we first examined whether DEADSouth mRNA was degraded by miR-427 targeting in somatic cells. Injection of antisense miR-427 oligomer and reporter mRNA for mutated MREs revealed that DEADSouth mRNA was potentially degraded in somatic cells via miR-427 targeting, but not in PGCs after the mid-blastula transition (MBT). The expression level of miR-427 was very low in PGCs, which probably resulted in the lack of miR-427-mediated degradation. In addition, the DEADSouth gene was expressed zygotically after MBT. Thus, the predominant expression of DEADSouth mRNA in the PGCs is ensured by multiple mechanisms including zygotic expression and prohibition from miR-427-mediated degradation.
Collapse
Affiliation(s)
- Takeshi Yamaguchi
- Department of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori, Akou-gun, Hyogo 678-1297, Japan
| | - Kensuke Kataoka
- Department of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori, Akou-gun, Hyogo 678-1297, Japan
| | - Kenji Watanabe
- Department of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori, Akou-gun, Hyogo 678-1297, Japan
| | - Hidefumi Orii
- Department of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori, Akou-gun, Hyogo 678-1297, Japan.
| |
Collapse
|
8
|
Lasko P. The DEAD-box helicase Vasa: evidence for a multiplicity of functions in RNA processes and developmental biology. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:810-6. [PMID: 23587717 DOI: 10.1016/j.bbagrm.2013.04.005] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 04/03/2013] [Accepted: 04/06/2013] [Indexed: 01/19/2023]
Abstract
DEAD-box helicases related to the Drosophila protein Vasa (also known as Ddx4) are found throughout the animal kingdom. They have been linked to numerous processes in gametogenesis, germ cell specification, and stem cell biology, and alterations in Vasa expression are associated with malignancy of tumor cells and with some human male infertility syndromes. Experimental results indicating how Vasa contributes to all these different cellular and developmental processes are discussed, using examples from planarians, Caenorhabditis elegans, Drosophila, sea urchin, zebrafish, Xenopus, mouse, and human. Molecular, cellular, and developmental functions of Vasa and its orthologs are reviewed in this article. Evidence linking Vasa to translational regulation, to biogenesis of small RNAs, and to chromosome condensation is examined. Finally, potential overlapping functions between Vasa and related DEAD-box helicases (Belle, or Ddx3, and DEADSouth, or Ddx25) are explored. This article is part of a Special Issue entitled: The biology of RNA helicases - Modulation for life.
Collapse
Affiliation(s)
- Paul Lasko
- Department of Biology, McGill University, Montréal, Québec, Canada.
| |
Collapse
|