1
|
Garcia G, Bar‐Ziv R, Averbukh M, Dasgupta N, Dutta N, Zhang H, Fan W, Moaddeli D, Tsui CK, Castro Torres T, Alcala A, Moehle EA, Hoang S, Shalem O, Adams PD, Thorwald MA, Higuchi‐Sanabria R. Large-scale genetic screens identify BET-1 as a cytoskeleton regulator promoting actin function and life span. Aging Cell 2023; 22:e13742. [PMID: 36404134 PMCID: PMC9835578 DOI: 10.1111/acel.13742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/17/2022] [Accepted: 11/01/2022] [Indexed: 11/22/2022] Open
Abstract
The actin cytoskeleton is a three-dimensional scaffold of proteins that is a regulatory, energyconsuming network with dynamic properties to shape the structure and function of the cell. Proper actin function is required for many cellular pathways, including cell division, autophagy, chaperone function, endocytosis, and exocytosis. Deterioration of these processes manifests during aging and exposure to stress, which is in part due to the breakdown of the actin cytoskeleton. However, the regulatory mechanisms involved in preservation of cytoskeletal form and function are not well-understood. Here, we performed a multipronged, cross-organismal screen combining a whole-genome CRISPR-Cas9 screen in human fibroblasts with in vivo Caenorhabditis elegans synthetic lethality screening. We identified the bromodomain protein, BET-1, as a key regulator of actin function and longevity. Overexpression of bet-1 preserves actin function at late age and promotes life span and healthspan in C. elegans. These beneficial effects are mediated through actin preservation by the transcriptional regulator function of BET-1. Together, our discovery assigns a key role for BET-1 in cytoskeletal health, highlighting regulatory cellular networks promoting cytoskeletal homeostasis.
Collapse
Affiliation(s)
- Gilberto Garcia
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Raz Bar‐Ziv
- Department of Molecular & Cellular Biology, Howard Hughes Medical InstituteThe University of California, BerkeleyBerkeleyCaliforniaUSA
| | - Maxim Averbukh
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Nirmalya Dasgupta
- Aging, Cancer and Immuno‐oncology ProgramSanford Burnham Prebys Medical Discovery InstituteLa JollaCaliforniaUSA
| | - Naibedya Dutta
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Hanlin Zhang
- Department of Molecular & Cellular Biology, Howard Hughes Medical InstituteThe University of California, BerkeleyBerkeleyCaliforniaUSA
| | - Wudi Fan
- Department of Molecular & Cellular Biology, Howard Hughes Medical InstituteThe University of California, BerkeleyBerkeleyCaliforniaUSA
| | - Darius Moaddeli
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - C. Kimberly Tsui
- Department of Molecular & Cellular Biology, Howard Hughes Medical InstituteThe University of California, BerkeleyBerkeleyCaliforniaUSA
| | - Toni Castro Torres
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Athena Alcala
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Erica A. Moehle
- Department of Molecular & Cellular Biology, Howard Hughes Medical InstituteThe University of California, BerkeleyBerkeleyCaliforniaUSA
| | - Sally Hoang
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Ophir Shalem
- Department of Genetics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Peter D. Adams
- Aging, Cancer and Immuno‐oncology ProgramSanford Burnham Prebys Medical Discovery InstituteLa JollaCaliforniaUSA
| | - Max A. Thorwald
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Ryo Higuchi‐Sanabria
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
3
|
Scholtes C, Bellemin S, Martin E, Carre-Pierrat M, Mollereau B, Gieseler K, Walter L. DRP-1-mediated apoptosis induces muscle degeneration in dystrophin mutants. Sci Rep 2018; 8:7354. [PMID: 29743663 PMCID: PMC5943356 DOI: 10.1038/s41598-018-25727-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/03/2018] [Indexed: 02/08/2023] Open
Abstract
Mitochondria are double-membrane subcellular organelles with highly conserved metabolic functions including ATP production. Mitochondria shapes change continually through the combined actions of fission and fusion events rendering mitochondrial network very dynamic. Mitochondria are largely implicated in pathologies and mitochondrial dynamics is often disrupted upon muscle degeneration in various models. Currently, the exact roles of mitochondria in the molecular mechanisms that lead to muscle degeneration remain poorly understood. Here we report a role for DRP-1 in regulating apoptosis induced by dystrophin-dependent muscle degeneration. We found that: (i) dystrophin-dependent muscle degeneration was accompanied by a drastic increase in mitochondrial fragmentation that can be rescued by genetic manipulations of mitochondrial dynamics (ii) the loss of function of the fission gene drp-1 or the overexpression of the fusion genes eat-3 and fzo-1 provoked a reduction of muscle degeneration and an improved mobility of dystrophin mutant worms (iii) the functions of DRP-1 in apoptosis and of others apoptosis executors are important for dystrophin-dependent muscle cell death (iv) DRP-1-mediated apoptosis is also likely to induce age-dependent loss of muscle cell. Collectively, our findings point toward a mechanism involving mitochondrial dynamics to respond to trigger(s) of muscle degeneration via apoptosis in Caenorhabditis elegans.
Collapse
Affiliation(s)
- Charlotte Scholtes
- Laboratory of Biology and Modelling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, UMS 3444 Biosciences Lyon Gerland, Universite de Lyon, Lyon, 69007, France.,NeuroMyoGene Institute (INMG), Universite Lyon 1, CNRS UMR 5310, INSERM U1217, Lyon 69008, France
| | - Stéphanie Bellemin
- NeuroMyoGene Institute (INMG), Universite Lyon 1, CNRS UMR 5310, INSERM U1217, Lyon 69008, France
| | - Edwige Martin
- NeuroMyoGene Institute (INMG), Universite Lyon 1, CNRS UMR 5310, INSERM U1217, Lyon 69008, France
| | - Maïté Carre-Pierrat
- Biology of Caenorhabditis elegans facility, Universite Lyon 1, UMS3421, Lyon 69008, France
| | - Bertrand Mollereau
- Laboratory of Biology and Modelling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, UMS 3444 Biosciences Lyon Gerland, Universite de Lyon, Lyon, 69007, France
| | - Kathrin Gieseler
- NeuroMyoGene Institute (INMG), Universite Lyon 1, CNRS UMR 5310, INSERM U1217, Lyon 69008, France.
| | - Ludivine Walter
- Laboratory of Biology and Modelling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, UMS 3444 Biosciences Lyon Gerland, Universite de Lyon, Lyon, 69007, France.
| |
Collapse
|
5
|
Etheridge T, Rahman M, Gaffney CJ, Shaw D, Shephard F, Magudia J, Solomon DE, Milne T, Blawzdziewicz J, Constantin-Teodosiu D, Greenhaff PL, Vanapalli SA, Szewczyk NJ. The integrin-adhesome is required to maintain muscle structure, mitochondrial ATP production, and movement forces in Caenorhabditis elegans. FASEB J 2014; 29:1235-46. [PMID: 25491313 PMCID: PMC4396603 DOI: 10.1096/fj.14-259119] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 11/11/2014] [Indexed: 01/19/2023]
Abstract
The integrin-adhesome network, which contains >150 proteins, is mechano-transducing and located at discreet positions along the cell-cell and cell-extracellular matrix interface. A small subset of the integrin-adhesome is known to maintain normal muscle morphology. However, the importance of the entire adhesome for muscle structure and function is unknown. We used RNA interference to knock down 113 putative Caenorhabditis elegans homologs constituting most of the mammalian adhesome and 48 proteins known to localize to attachment sites in C. elegans muscle. In both cases, we found >90% of components were required for normal muscle mitochondrial structure and/or proteostasis vs. empty vector controls. Approximately half of these, mainly proteins that physically interact with each other, were also required for normal sarcomere and/or adhesome structure. Next we confirmed that the dystrophy observed in adhesome mutants associates with impaired maximal mitochondrial ATP production (P < 0.01), as well as reduced probability distribution of muscle movement forces compared with wild-type animals. Our results show that the integrin-adhesome network as a whole is required for maintaining both muscle structure and function and extend the current understanding of the full complexities of the functional adhesome in vivo.—Etheridge, T., Rahman, M., Gaffney, C. J., Shaw, D., Shephard, F., Magudia, J., Solomon, D. E., Milne, T., Blawzdziewicz, J., Constantin-Teodosiu, D., Greenhaff, P. L., Vanapalli, S. A., Szewczyk, N. J. The integrin-adhesome is required to maintain muscle structure, mitochondrial ATP production, and movement forces in Caenorhabditis elegans.
Collapse
Affiliation(s)
- Timothy Etheridge
- *Department of Sport and Health Science, College of Life and Environmental Sciences, and College of Engineering, Mathematics and Physical Science, University of Exeter, Exeter, United Kingdom; Departments of Chemical Engineering and Mechanical Engineering, Texas Tech University, Lubbock, Texas, USA; Medical Research Council/Arthritis Research UK Centre for Musculoskeletal Ageing Research, Schools of Life Sciences and Medicine, University of Nottingham, Nottingham, United Kingdom; and School of Veterinary Medicine and Science, University of Nottingham, Leicestershire, United Kingdom
| | - Mizanur Rahman
- *Department of Sport and Health Science, College of Life and Environmental Sciences, and College of Engineering, Mathematics and Physical Science, University of Exeter, Exeter, United Kingdom; Departments of Chemical Engineering and Mechanical Engineering, Texas Tech University, Lubbock, Texas, USA; Medical Research Council/Arthritis Research UK Centre for Musculoskeletal Ageing Research, Schools of Life Sciences and Medicine, University of Nottingham, Nottingham, United Kingdom; and School of Veterinary Medicine and Science, University of Nottingham, Leicestershire, United Kingdom
| | - Christopher J Gaffney
- *Department of Sport and Health Science, College of Life and Environmental Sciences, and College of Engineering, Mathematics and Physical Science, University of Exeter, Exeter, United Kingdom; Departments of Chemical Engineering and Mechanical Engineering, Texas Tech University, Lubbock, Texas, USA; Medical Research Council/Arthritis Research UK Centre for Musculoskeletal Ageing Research, Schools of Life Sciences and Medicine, University of Nottingham, Nottingham, United Kingdom; and School of Veterinary Medicine and Science, University of Nottingham, Leicestershire, United Kingdom
| | - Debra Shaw
- *Department of Sport and Health Science, College of Life and Environmental Sciences, and College of Engineering, Mathematics and Physical Science, University of Exeter, Exeter, United Kingdom; Departments of Chemical Engineering and Mechanical Engineering, Texas Tech University, Lubbock, Texas, USA; Medical Research Council/Arthritis Research UK Centre for Musculoskeletal Ageing Research, Schools of Life Sciences and Medicine, University of Nottingham, Nottingham, United Kingdom; and School of Veterinary Medicine and Science, University of Nottingham, Leicestershire, United Kingdom
| | - Freya Shephard
- *Department of Sport and Health Science, College of Life and Environmental Sciences, and College of Engineering, Mathematics and Physical Science, University of Exeter, Exeter, United Kingdom; Departments of Chemical Engineering and Mechanical Engineering, Texas Tech University, Lubbock, Texas, USA; Medical Research Council/Arthritis Research UK Centre for Musculoskeletal Ageing Research, Schools of Life Sciences and Medicine, University of Nottingham, Nottingham, United Kingdom; and School of Veterinary Medicine and Science, University of Nottingham, Leicestershire, United Kingdom
| | - Jignesh Magudia
- *Department of Sport and Health Science, College of Life and Environmental Sciences, and College of Engineering, Mathematics and Physical Science, University of Exeter, Exeter, United Kingdom; Departments of Chemical Engineering and Mechanical Engineering, Texas Tech University, Lubbock, Texas, USA; Medical Research Council/Arthritis Research UK Centre for Musculoskeletal Ageing Research, Schools of Life Sciences and Medicine, University of Nottingham, Nottingham, United Kingdom; and School of Veterinary Medicine and Science, University of Nottingham, Leicestershire, United Kingdom
| | - Deepak E Solomon
- *Department of Sport and Health Science, College of Life and Environmental Sciences, and College of Engineering, Mathematics and Physical Science, University of Exeter, Exeter, United Kingdom; Departments of Chemical Engineering and Mechanical Engineering, Texas Tech University, Lubbock, Texas, USA; Medical Research Council/Arthritis Research UK Centre for Musculoskeletal Ageing Research, Schools of Life Sciences and Medicine, University of Nottingham, Nottingham, United Kingdom; and School of Veterinary Medicine and Science, University of Nottingham, Leicestershire, United Kingdom
| | - Thomas Milne
- *Department of Sport and Health Science, College of Life and Environmental Sciences, and College of Engineering, Mathematics and Physical Science, University of Exeter, Exeter, United Kingdom; Departments of Chemical Engineering and Mechanical Engineering, Texas Tech University, Lubbock, Texas, USA; Medical Research Council/Arthritis Research UK Centre for Musculoskeletal Ageing Research, Schools of Life Sciences and Medicine, University of Nottingham, Nottingham, United Kingdom; and School of Veterinary Medicine and Science, University of Nottingham, Leicestershire, United Kingdom
| | - Jerzy Blawzdziewicz
- *Department of Sport and Health Science, College of Life and Environmental Sciences, and College of Engineering, Mathematics and Physical Science, University of Exeter, Exeter, United Kingdom; Departments of Chemical Engineering and Mechanical Engineering, Texas Tech University, Lubbock, Texas, USA; Medical Research Council/Arthritis Research UK Centre for Musculoskeletal Ageing Research, Schools of Life Sciences and Medicine, University of Nottingham, Nottingham, United Kingdom; and School of Veterinary Medicine and Science, University of Nottingham, Leicestershire, United Kingdom
| | - Dumitru Constantin-Teodosiu
- *Department of Sport and Health Science, College of Life and Environmental Sciences, and College of Engineering, Mathematics and Physical Science, University of Exeter, Exeter, United Kingdom; Departments of Chemical Engineering and Mechanical Engineering, Texas Tech University, Lubbock, Texas, USA; Medical Research Council/Arthritis Research UK Centre for Musculoskeletal Ageing Research, Schools of Life Sciences and Medicine, University of Nottingham, Nottingham, United Kingdom; and School of Veterinary Medicine and Science, University of Nottingham, Leicestershire, United Kingdom
| | - Paul L Greenhaff
- *Department of Sport and Health Science, College of Life and Environmental Sciences, and College of Engineering, Mathematics and Physical Science, University of Exeter, Exeter, United Kingdom; Departments of Chemical Engineering and Mechanical Engineering, Texas Tech University, Lubbock, Texas, USA; Medical Research Council/Arthritis Research UK Centre for Musculoskeletal Ageing Research, Schools of Life Sciences and Medicine, University of Nottingham, Nottingham, United Kingdom; and School of Veterinary Medicine and Science, University of Nottingham, Leicestershire, United Kingdom
| | - Siva A Vanapalli
- *Department of Sport and Health Science, College of Life and Environmental Sciences, and College of Engineering, Mathematics and Physical Science, University of Exeter, Exeter, United Kingdom; Departments of Chemical Engineering and Mechanical Engineering, Texas Tech University, Lubbock, Texas, USA; Medical Research Council/Arthritis Research UK Centre for Musculoskeletal Ageing Research, Schools of Life Sciences and Medicine, University of Nottingham, Nottingham, United Kingdom; and School of Veterinary Medicine and Science, University of Nottingham, Leicestershire, United Kingdom
| | - Nathaniel J Szewczyk
- *Department of Sport and Health Science, College of Life and Environmental Sciences, and College of Engineering, Mathematics and Physical Science, University of Exeter, Exeter, United Kingdom; Departments of Chemical Engineering and Mechanical Engineering, Texas Tech University, Lubbock, Texas, USA; Medical Research Council/Arthritis Research UK Centre for Musculoskeletal Ageing Research, Schools of Life Sciences and Medicine, University of Nottingham, Nottingham, United Kingdom; and School of Veterinary Medicine and Science, University of Nottingham, Leicestershire, United Kingdom
| |
Collapse
|