1
|
Wei H, Ge H, Qian Y, Li B. Genetic determinants of inflammatory cytokines and their causal relationship with inflammatory disorders of breast: a two-sample Mendelian randomization study. Sci Rep 2025; 15:7300. [PMID: 40025158 PMCID: PMC11873064 DOI: 10.1038/s41598-025-91723-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 02/24/2025] [Indexed: 03/04/2025] Open
Abstract
This study utilized two-sample MR to investigate causality between genetically predicted inflammatory markers and the risk of IDB. This research leveraged publicly available GWAS summary statistics to collect data on inflammatory cytokines and IDB. The IVW method was primarily employed for causal inference, supplemented by weighted median, mode-based estimation, and MR-Egger regression. Stringent sensitivity methods included Cochran's Q test, MR-Egger regression, MR-PRESSO, and leave-one-out analyses to assess the robustness of the findings. This study selected 452 instrument variables (IVs) related to inflammatory factors. The IVW analysis revealed that GROa and RANTES/CCL5 exhibited causal relationships with IDB. Additionally, after removing outliers, significant causal associations were observed for IL-1ra and IL-9. Notably, the causal associations of RANTES/CCL5 and IL-9 with IBD remained significant after FDR correction. Upon integrating the findings from all sensitivity analyses, it is unlikely that heterogeneity and pleiotropy substantially influenced the observed relationships, underscoring the robustness of our findings. Our MR analysis identified the causal roles of specific inflammatory cytokines such as GROa, RANTES/CCL5, IL-1ra and IL-9 in the development of IDB. These findings deepen our understanding of the complex regulatory mechanisms involving inflammation in breast diseases and suggest directions for future research on biological pathways linking inflammation with IDB.
Collapse
Affiliation(s)
- Hongxia Wei
- Department of Ultrasound, The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, 212300, Jiangsu, China
| | - Hongbo Ge
- Department of Ultrasound, The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, 212300, Jiangsu, China
| | - Ying Qian
- Department of Ultrasound, The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, 212300, Jiangsu, China
| | - Binyi Li
- Department of Ultrasound, The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, 212300, Jiangsu, China.
- Department of Ultrasound, The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, No. 2 Xin-min West Road, Danyang, 212300, Jiangsu, China.
| |
Collapse
|
2
|
Single cell RNA-seq reveals the CCL5/SDC1 receptor-ligand interaction between T cells and tumor cells in pancreatic cancer. Cancer Lett 2022; 545:215834. [DOI: 10.1016/j.canlet.2022.215834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/04/2022] [Accepted: 07/17/2022] [Indexed: 12/15/2022]
|
3
|
Kim S, Han Y, Kim SI, Lee J, Jo H, Wang W, Cho U, Park WY, Rando TA, Dhanasekaran DN, Song YS. Computational modeling of malignant ascites reveals CCL5-SDC4 interaction in the immune microenvironment of ovarian cancer. Mol Carcinog 2021; 60:297-312. [PMID: 33721368 PMCID: PMC8080545 DOI: 10.1002/mc.23289] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/23/2022]
Abstract
Fluid accumulation in the abdominal cavity is commonly found in advanced-stage ovarian cancer patients, which creates a specialized tumor microenvironment for cancer progression. Using single-cell RNA sequencing (scRNA-seq) of ascites cells from five patients with ovarian cancer, we identified seven cell types, including heterogeneous macrophages and ovarian cancer cells. We resolved a distinct polarization state of macrophages by MacSpectrum analysis and observed subtype-specific enrichment of pathways associated with their functions. The communication between immune and cancer cells was predicted through a putative ligand-receptor pair analysis using NicheNet. We found that CCL5, a chemotactic ligand, is enriched in immune cells (T cells and NK cells) and mediates ovarian cancer cell survival in the ascites, possibly through SDC4. Moreover, SDC4 expression correlated with poor overall survival in ovarian cancer patients. Our study highlights the potential role of T cells and NK cells in long-term survival patients with ovarian cancer, indicating SDC4 as a potential prognostic marker in ovarian cancer patients.
Collapse
Affiliation(s)
- Soochi Kim
- Department of Neurology and Neurological Sciences, Stanford University, School of Medicine, Stanford, CA, USA
- These authors contributed equally: Soochi Kim, Youngjin Han
| | - Youngjin Han
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
- WCU Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
- These authors contributed equally: Soochi Kim, Youngjin Han
| | - Se Ik Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Juwon Lee
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
- WCU Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - HyunA Jo
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
- WCU Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Wenyu Wang
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
- Interdisciplinary Program in Cancer Biology, Seoul National University, Seoul 03080, Republic of Korea
| | - Untack Cho
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
- Interdisciplinary Program in Cancer Biology, Seoul National University, Seoul 03080, Republic of Korea
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, South Korea
- Department of Molecular Cell Biology, Sungkyunkwan University, School of Medicine, Suwon, Korea
| | - Thomas A. Rando
- Department of Neurology and Neurological Sciences, Stanford University, School of Medicine, Stanford, CA, USA
- Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
- Neurology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Danny N. Dhanasekaran
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Yong Sang Song
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
- WCU Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Interdisciplinary Program in Cancer Biology, Seoul National University, Seoul 03080, Republic of Korea
| |
Collapse
|
4
|
Small changes in PDMMLA structure influence the adsorption behavior of ECM proteins and syndecan-4 on PDMMLA derivative surfaces: Experimental validation by tensiometric surface force measurements. Colloids Surf B Biointerfaces 2020; 193:111031. [DOI: 10.1016/j.colsurfb.2020.111031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/28/2020] [Accepted: 04/09/2020] [Indexed: 12/02/2022]
|
5
|
Takashima I, Kusamori K, Hakariya H, Takashima M, Vu TH, Mizukami Y, Noda N, Takayama Y, Katsuda Y, Sato SI, Takakura Y, Nishikawa M, Uesugi M. Multifunctionalization of Cells with a Self-Assembling Molecule to Enhance Cell Engraftment. ACS Chem Biol 2019; 14:775-783. [PMID: 30807095 DOI: 10.1021/acschembio.9b00109] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cell-based therapy is a promising approach to restoring lost functions to compromised organs. However, the issue of inefficient cell engraftment remains to be resolved. Herein, we take a chemical approach to facilitate cell engraftment by using self-assembling molecules which modify two cellular traits: cell survival and invasiveness. In this system, the self-assembling molecule induces syndecan-4 clusters on the cellular surface, leading to enhanced cell viability. Further integration with Halo-tag technology provided this self-assembly structure with matrix metalloproteinase-2 to functionalize cells with cell-invasion activity. In vivo experiments showed that the pretreated cells were able to survive injection and then penetrate and engraft into the host tissue, demonstrating that the system enhances cell engraftment. Therefore, cell-surface modification via an alliance between self-assembling molecules and ligation technologies may prove to be a promising method for cell engraftment.
Collapse
Affiliation(s)
- Ippei Takashima
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Kosuke Kusamori
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Hayase Hakariya
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Megumi Takashima
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Thi Hue Vu
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yuya Mizukami
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Naotaka Noda
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yukiya Takayama
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Yousuke Katsuda
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Shin-ichi Sato
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yoshinobu Takakura
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Makiya Nishikawa
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Motonari Uesugi
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Uji, Kyoto 611-0011, Japan
- School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
6
|
Larocca TF, Souza BSDF, Macêdo CT, Azevedo CM, Vasconcelos JF, Silva DN, Portella DCN, dos Santos WLC, Tavora FRF, Souza Neto JDD, dos Santos RR, Soares MBP. Assessment of syndecan-4 expression in the hearts of Trypanosoma cruzi-infected mice and human subjects with chronic Chagas disease cardiomyopathy. SURGICAL AND EXPERIMENTAL PATHOLOGY 2018. [DOI: 10.1186/s42047-018-0012-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Abstract
Background
Chronic Chagas cardiomyopathy (CCC) is characterized by the presence of a multifocal inflammatory response and myocardial damage, leading to fibrosis, arrhythmias and ventricular dysfunction. The expression of syndecan-4, a transmembrane proteoglycan, was previously found to be increased in the hearts of mice chronically infected with Trypanosoma cruzi. The possible involvement of syndecan-4 in the disease pathogenesis, however, remains unknown. Here we evaluated the pattern of expression of syndecan-4 in the heart tissue of T. cruzi infected mice and subjects with Chagas cardiomyopathy, correlating with the degree of inflammation and fibrosis.
Methods
The expression of syndecan-4 was evaluated by immunofluorescence and RT-qPCR in the hearts of C57Bl/6 mice at different time points after infection with the Colombian strain of T. cruzi. Immunostainings for syndecan-4 were performed in heart samples obtained from CCC patients and other etiologies of heart failure. The number of infiltrating inflammatory cells and area of fibrosis were also evaluated and quantified.
Results
In the experimental model, the number of infiltrating inflammatory cells and fibrosis area in the hearts progressively increased after the acute phase of infection, while syndecan-4 expression remained elevated in similar levels in both the acute and chronic phases. Confocal microscopy analysis demonstrated the localization of syndecan-4 expression in blood vessels, co-localized with α-SMA, a marker for vascular smooth muscle cells (VSMCs). Confocal microscopy analysis of human hearts samples showed a similar pattern of syndecan-4 expression in blood vessels. No correlation between syndecan-4 expression and inflammation or fibrosis was found in the hearts from subjects with CCC. We also compared the expression of syndecan-4 evaluated in subjects with CCC, idiopathic dilated cardiomyopathy and ischemic cardiomyopathy. No differences in the number of syndecan-4 positive vessels/mm2 were found comparing the three groups (P = 0.466), whereas CCC patients presented a higher number of infiltrating inflammatory cells, compared to the other etiologies of heart failure. Additionally, no correlation between syndecan-4 and fibrosis or numbers of inflammatory cells was found.
Conclusions
Syndecan-4 is expressed in the heart during the acute and chronic phases of Chagas disease, in association with VSMCs, independently of the degree of myocardial fibrosis or the number of infiltrating inflammatory cells.
Collapse
|
7
|
Duncan DS, Weiner RL, Weitlauf C, Risner ML, Roux AL, Sanford ER, Formichella CR, Sappington RM. Ccl5 Mediates Proper Wiring of Feedforward and Lateral Inhibition Pathways in the Inner Retina. Front Neurosci 2018; 12:702. [PMID: 30369865 PMCID: PMC6194164 DOI: 10.3389/fnins.2018.00702] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/18/2018] [Indexed: 01/08/2023] Open
Abstract
The β-chemokine Ccl5 and its receptors are constitutively expressed in neurons of the murine inner retina. Here, we examined the functional and structural significance of this constitutive Ccl5 signaling on retinal development. We compared outcomes of electrophysiology, ocular imaging and retinal morphology in wild-type mice (WT) and mice with Ccl5 deficiency (Ccl5-/-). Assessment of retinal structure by ocular coherence tomography and histology revealed slight thinning of the inner plexiform layer (IPL) and inner nuclear layer (INL) in Ccl5-/- mice, compared to WT (p < 0.01). Assessment of postnatal timepoints important for development of the INL (P7 and P10) revealed Ccl5-dependent alterations in the pattern and timing of apoptotic pruning. Morphological analyses of major inner retinal cell types in WT, Ccl5-/-, gustducingfp and gustducingfp/Ccl5-/- mice revealed Ccl5-dependent reduction in GNAT3 expression in rod bipolar cells as well as a displacement of their terminals from the IPL into the GCL. RGC dendritic organization and amacrine cell morphology in the IPL was similarly disorganized in Ccl5-/- mice. Examination of the intrinsic electrophysiological properties of RGCs revealed higher spontaneous activity in Ccl5-/- mice that was characterized by higher spiking frequency and a more depolarized resting potential. This hyperactive phenotype could be negated by current clamp and correlated with both membrane resistance and soma area. Overall, our findings identify Ccl5 signaling as a mediator of inner retinal circuitry during development of the murine retina. The apparent role of Ccl5 in retinal development further supports chemokines as trophic modulators of CNS development and function that extends far beyond the inflammatory contexts in which they were first characterized.
Collapse
Affiliation(s)
- D'Anne S Duncan
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Rebecca L Weiner
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, United States.,Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Carl Weitlauf
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Michael L Risner
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Abigail L Roux
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Emily R Sanford
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Cathryn R Formichella
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Rebecca M Sappington
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, United States.,Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, United States.,Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, TN, United States
| |
Collapse
|
8
|
Dyer DP, Migliorini E, Salanga CL, Thakar D, Handel TM, Richter RP. Differential structural remodelling of heparan sulfate by chemokines: the role of chemokine oligomerization. Open Biol 2017; 7:rsob.160286. [PMID: 28123055 PMCID: PMC5303277 DOI: 10.1098/rsob.160286] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/16/2016] [Indexed: 12/02/2022] Open
Abstract
Chemokines control the migration of cells in normal physiological processes and in the context of disease such as inflammation, autoimmunity and cancer. Two major interactions are involved: (i) binding of chemokines to chemokine receptors, which activates the cellular machinery required for movement; and (ii) binding of chemokines to glycosaminoglycans (GAGs), which facilitates the organization of chemokines into haptotactic gradients that direct cell movement. Chemokines can bind and activate their receptors as monomers; however, the ability to oligomerize is critical for the function of many chemokines in vivo. Chemokine oligomerization is thought to enhance their affinity for GAGs, and here we show that it significantly affects the ability of chemokines to accumulate on and be retained by heparan sulfate (HS). We also demonstrate that several chemokines differentially rigidify and cross-link HS, thereby affecting HS rigidity and mobility, and that HS cross-linking is significantly enhanced by chemokine oligomerization. These findings suggest that chemokine–GAG interactions may play more diverse biological roles than the traditional paradigms of physical immobilization and establishment of chemokine gradients; we hypothesize that they may promote receptor-independent events such as physical re-organization of the endothelial glycocalyx and extracellular matrix, as well as signalling through proteoglycans to facilitate leukocyte adhesion and transmigration.
Collapse
Affiliation(s)
- Douglas P Dyer
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093-0684, USA.,Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Elisa Migliorini
- CIC biomaGUNE, 20009 Donostia-San Sebastian, Spain.,Département de Chimie Moléculaire, Université Grenoble Alpes-CNRS, 38041 Grenoble Cedex 9, France
| | - Catherina L Salanga
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093-0684, USA
| | - Dhruv Thakar
- Département de Chimie Moléculaire, Université Grenoble Alpes-CNRS, 38041 Grenoble Cedex 9, France
| | - Tracy M Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093-0684, USA
| | - Ralf P Richter
- CIC biomaGUNE, 20009 Donostia-San Sebastian, Spain .,Département de Chimie Moléculaire, Université Grenoble Alpes-CNRS, 38041 Grenoble Cedex 9, France.,School of Biomedical Sciences and School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
9
|
Dyer DP, Salanga CL, Volkman BF, Kawamura T, Handel TM. The dependence of chemokine-glycosaminoglycan interactions on chemokine oligomerization. Glycobiology 2015; 26:312-26. [PMID: 26582609 DOI: 10.1093/glycob/cwv100] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 10/30/2015] [Indexed: 01/14/2023] Open
Abstract
Both chemokine oligomerization and binding to glycosaminoglycans (GAGs) are required for their function in cell recruitment. Interactions with GAGs facilitate the formation of chemokine gradients, which provide directional cues for migrating cells. In contrast, chemokine oligomerization is thought to contribute to the affinity of GAG interactions by providing a more extensive binding surface than single subunits alone. However, the importance of chemokine oligomerization to GAG binding has not been extensively quantified. Additionally, the ability of chemokines to form different oligomers has been suggested to impart specificity to GAG interactions, but most studies have been limited to heparin. In this study, several differentially oligomerizing chemokines (CCL2, CCL3, CCL5, CCL7, CXCL4, CXCL8, CXCL11 and CXCL12) and select oligomerization-deficient mutants were systematically characterized by surface plasmon resonance to determine their relative affinities for heparin, heparan sulfate (HS) and chondroitin sulfate-A (CS-A). Wild-type chemokines demonstrated a hierarchy of binding affinities for heparin and HS that was markedly dependent on oligomerization. These results were corroborated by their relative propensity to accumulate on cells and the critical role of oligomerization in cell presentation. CS-A was found to exhibit greater chemokine selectivity than heparin or HS, as it only bound a subset of chemokines; moreover, binding to CS-A was ablated with oligomerization-deficient mutants. Overall, this study definitively demonstrates the importance of oligomerization for chemokine-GAG interactions, and demonstrates diversity in the affinity and specificity of different chemokines for GAGs. These data support the idea that GAG interactions provide a mechanism for fine-tuning chemokine function.
Collapse
Affiliation(s)
- Douglas P Dyer
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, 9500 Gilman Drive MC0684, San Diego, La Jolla, CA 92093-0684, USA
| | - Catherina L Salanga
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, 9500 Gilman Drive MC0684, San Diego, La Jolla, CA 92093-0684, USA
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Tetsuya Kawamura
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, 9500 Gilman Drive MC0684, San Diego, La Jolla, CA 92093-0684, USA
| | - Tracy M Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, 9500 Gilman Drive MC0684, San Diego, La Jolla, CA 92093-0684, USA
| |
Collapse
|