1
|
Wishart TFL, Lovicu FJ. Heparan sulfate proteoglycans (HSPGs) of the ocular lens. Prog Retin Eye Res 2023; 93:101118. [PMID: 36068128 DOI: 10.1016/j.preteyeres.2022.101118] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022]
Abstract
Heparan sulfate proteoglycans (HSPGs) reside in most cells; on their surface, in the pericellular milieu and/or extracellular matrix. In the eye, HSPGs can orchestrate the activity of key signalling molecules found in the ocular environment that promote its development and homeostasis. To date, our understanding of the specific roles played by individual HSPG family members, and the heterogeneity of their associated sulfated HS chains, is in its infancy. The crystalline lens is a relatively simple and well characterised ocular tissue that provides an ideal stage to showcase and model the expression and unique roles of individual HSPGs. Individual HSPG core proteins are differentially localised to eye tissues in a temporal and spatial developmental- and cell-type specific manner, and their loss or functional disruption results in unique phenotypic outcomes for the lens, and other ocular tissues. More recent work has found that different HS sulfation enzymes are also presented in a cell- and tissue-specific manner, and that disruption of these different sulfation patterns affects specific HS-protein interactions. Not surprisingly, these sulfated HS chains have also been reported to be required for lens and eye development, with dysregulation of HS chain structure and function leading to pathogenesis and eye-related phenotypes. In the lens, HSPGs undergo significant and specific changes in expression and function that can drive pathology, or in some cases, promote tissue repair. As master signalling regulators, HSPGs may one day serve as valuable biomarkers, and even as putative targets for the development of novel therapeutics, not only for the eye but for many other systemic pathologies.
Collapse
Affiliation(s)
- Tayler F L Wishart
- Molecular and Cellular Biomedicine, School of Medical Sciences, The University of Sydney, NSW, Australia.
| | - Frank J Lovicu
- Molecular and Cellular Biomedicine, School of Medical Sciences, The University of Sydney, NSW, Australia; Save Sight Institute, The University of Sydney, NSW, Australia.
| |
Collapse
|
2
|
Babu S, Takeuchi Y, Masai I. Banp regulates DNA damage response and chromosome segregation during the cell cycle in zebrafish retina. eLife 2022; 11:74611. [PMID: 35942692 PMCID: PMC9363121 DOI: 10.7554/elife.74611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 07/05/2022] [Indexed: 11/25/2022] Open
Abstract
Btg3-associated nuclear protein (Banp) was originally identified as a nuclear matrix-associated region (MAR)-binding protein and it functions as a tumor suppressor. At the molecular level, Banp regulates transcription of metabolic genes via a CGCG-containing motif called the Banp motif. However, its physiological roles in embryonic development are unknown. Here, we report that Banp is indispensable for the DNA damage response and chromosome segregation during mitosis. Zebrafish banp mutants show mitotic cell accumulation and apoptosis in developing retina. We found that DNA replication stress and tp53-dependent DNA damage responses were activated to induce apoptosis in banp mutants, suggesting that Banp is required for regulation of DNA replication and DNA damage repair. Furthermore, consistent with mitotic cell accumulation, chromosome segregation was not smoothly processed from prometaphase to anaphase in banp morphants, leading to a prolonged M-phase. Our RNA- and ATAC-sequencing identified 31 candidates for direct Banp target genes that carry the Banp motif. Interestingly, a DNA replication fork regulator, wrnip1, and two chromosome segregation regulators, cenpt and ncapg, are included in this list. Thus, Banp directly regulates transcription of wrnip1 for recovery from DNA replication stress, and cenpt and ncapg for chromosome segregation during mitosis. Our findings provide the first in vivo evidence that Banp is required for cell-cycle progression and cell survival by regulating DNA damage responses and chromosome segregation during mitosis. In order for a cell to divide, it must progress through a series of carefully controlled steps known as the cell cycle. First, the cell replicates its DNA and both copies get segregated to opposite ends. The cell then splits into two and each new cell receives a copy of the duplicated genetic material. If any of the stages in the cell cycle become disrupted or mis-regulated this can lead to uncontrolled divisions that may result in cancer. Researchers have often used a structure within the eye known as the retina to study the cell cycle in zebrafish and other animals as cells in the retina rapidly divide in a highly controlled manner. A protein called Banp is known to help stop tumors from growing in humans and mice, but its normal role in the body, particularly the cell cycle, has remained unclear. To investigate, Babu et al. studied the retina of mutant zebrafish that were unable to make the Banp protein. The experiments revealed that two stress responses indicating DNA damage or defects in copying DNA were active in the retinal cells of the mutant zebrafish. This suggested that Banp allows cell to progress through the cell cycle by repairing any DNA damage that may arise during replication. Banp does this by activating the gene for another protein called Wrnip1. Babu et al. also found that Banp helps segregate the two copies of DNA during cell division by promoting the activation of two other proteins called Cenpt and Ncapg. Further experiments identified 31 genes that were directly regulated by Banp. These findings demonstrate that Banp is required for zebrafish cells to be able to accurately copy their DNA and divide in to two new cells. In the future, the work of Babu et al. will provide a useful resource to investigate how tumors grow and spread around the body, and may contribute to the development of new treatments for cancer.
Collapse
Affiliation(s)
- Swathy Babu
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| | - Yuki Takeuchi
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| | - Ichiro Masai
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| |
Collapse
|
3
|
Ranawat N, Masai I. Mechanisms underlying microglial colonization of developing neural retina in zebrafish. eLife 2021; 10:70550. [PMID: 34872632 PMCID: PMC8651297 DOI: 10.7554/elife.70550] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 11/02/2021] [Indexed: 12/13/2022] Open
Abstract
Microglia are brain-resident macrophages that function as the first line of defense in brain. Embryonic microglial precursors originate in peripheral mesoderm and migrate into the brain during development. However, the mechanism by which they colonize the brain is incompletely understood. The retina is one of the first brain regions to accommodate microglia. In zebrafish, embryonic microglial precursors use intraocular hyaloid blood vessels as a pathway to migrate into the optic cup via the choroid fissure. Once retinal progenitor cells exit the cell cycle, microglial precursors associated with hyaloid blood vessels start to infiltrate the retina preferentially through neurogenic regions, suggesting that colonization of retinal tissue depends upon the neurogenic state. Along with blood vessels and retinal neurogenesis, IL34 also participates in microglial precursor colonization of the retina. Altogether, CSF receptor signaling, blood vessels, and neuronal differentiation function as cues to create an essential path for microglial migration into developing retina. The immune system is comprised of many different cells which protect our bodies from infection and other illnesses. The brain contains its own population of immune cells called microglia. Unlike neurons, these cells form outside the brain during development. They then travel to the brain and colonize specific regions like the retina, the light-sensing part of the eye in vertebrates. It is poorly understood how newly formed microglia migrate to the retina and whether their entry depends on the developmental state of nerve cells (also known as neurons) in this region. To help answer these questions, Ranawat and Masai attached fluorescent labels that can be seen under a microscope to microglia in the embryos of zebrafish. Developing zebrafish are transparent, making it easy to trace the fluorescent microglia as they travel to the retina and insert themselves among its neurons. Ranawat and Masai found that blood vessels around the retina act as a pathway that microglia move along. Once they reach the retina, the microglia remain attached and only enter the retina at sites where brain cells are starting to mature in to adult neurons. Further experiments showed that microglia fail to infiltrate and colonize the retina when blood vessels are damaged or neuron maturation is blocked. These findings reveal some of the key elements that guide microglia to the retina during development. However, further work is needed to establish the molecular and biochemical processes that allow microglia to attach to blood vessels and detect when cells in the retina are starting to mature.
Collapse
Affiliation(s)
- Nishtha Ranawat
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| | - Ichiro Masai
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| |
Collapse
|
4
|
Becker C, Lust K, Wittbrodt J. Igf signaling couples retina growth with body growth by modulating progenitor cell division. Development 2021; 148:dev.199133. [PMID: 33722901 PMCID: PMC8077508 DOI: 10.1242/dev.199133] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/04/2021] [Indexed: 12/19/2022]
Abstract
How the body and organs balance their relative growth is of key importance for coordinating size and function. This is of particular relevance in organisms, which continue to grow over their entire life span. We addressed this issue in the neuroretina of medaka fish (Oryzias latipes), a well-studied system with which to address vertebrate organ growth. We reveal that a central growth regulator, Igf1 receptor (Igf1r), is necessary and sufficient for proliferation control in the postembryonic retinal stem cell niche: the ciliary marginal zone (CMZ). Targeted activation of Igf1r signaling in the CMZ uncouples neuroretina growth from body size control, and we demonstrate that Igf1r operates on progenitor cells, stimulating their proliferation. Activation of Igf1r signaling increases retinal size while preserving its structural integrity, revealing a modular organization in which progenitor differentiation and neurogenesis are self-organized and highly regulated. Our findings position Igf signaling as a key module for controlling retinal size and composition, with important evolutionary implications. Highlighted Article: Targeted activation of Igf1r signaling in the retinal stem cell niche increases retina size through expanding the progenitor but not stem cell population.
Collapse
Affiliation(s)
- Clara Becker
- Centre for Organismal Studies, Heidelberg University, Heidelberg 69120, Germany.,Heidelberg Biosciences International Graduate School, Heidelberg 69120, Germany
| | - Katharina Lust
- Centre for Organismal Studies, Heidelberg University, Heidelberg 69120, Germany
| | - Joachim Wittbrodt
- Centre for Organismal Studies, Heidelberg University, Heidelberg 69120, Germany
| |
Collapse
|
5
|
Yu S, Liu D, Wang T, Lee YZ, Wong JCN, Song X. Micropatterning of polymer substrates for cell culture. J Biomed Mater Res B Appl Biomater 2021; 109:1525-1533. [PMID: 33590658 DOI: 10.1002/jbm.b.34811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/16/2020] [Accepted: 01/14/2021] [Indexed: 11/11/2022]
Abstract
The cell microenvironment such as substrate topology plays an important role in biological processes. In this study, microgrooves were successfully produced on surfaces of both thermoplastic and thermoset polymers using cost-effective techniques for mass production. The micropatterning of thermoplastic polystyrene (PS) petri dish was accomplished efficiently using an in-house developed low-cost hot embossing system. The high replication fidelity of the microgroove with depth and width of 2 μm and spacing of 2 μm was achieved by using silicone rubber as a soft counter mold. This patterned petri dish subsequently served as the cast to replicate the micropattern onto thermoset polydimethylsiloxane (PDMS). It was found that the micropattern increased the hydrophobicity of both PS and PDMS surfaces. The effect of the substrate micropattern on cellular behaviors was preliminarily investigated with untreated and treated PS petri dish as well as PDMS. The results show that the micropattern significantly improved cell adhesion and proliferation for cells cultured on untreated PS petri dish and PDMS substrates. Moreover, the micropattern induced obvious cell alignment along the microgrooves for culturing on all substrates which were studied.
Collapse
Affiliation(s)
- Suzhu Yu
- Polymer Processing Group, Singapore Institute of Manufacturing Technology, Singapore
| | - Dan Liu
- Polymer Processing Group, Singapore Institute of Manufacturing Technology, Singapore.,Biomanufacturing Technology Group 2, Bioprocessing Technology Institute, Singapore
| | - Tianyi Wang
- Polymer Processing Group, Singapore Institute of Manufacturing Technology, Singapore
| | - Yi Zhen Lee
- School of Materials Science and Engineering, Nanyang Technological University, Singapore
| | - Joshua Cheng Ning Wong
- Polymer Processing Group, Singapore Institute of Manufacturing Technology, Singapore.,Advanced Remanufacturing and Technology Centre, Singapore
| | - Xu Song
- Polymer Processing Group, Singapore Institute of Manufacturing Technology, Singapore.,Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong
| |
Collapse
|
6
|
Payne LB, Darden J, Suarez-Martinez AD, Zhao H, Hendricks A, Hartland C, Chong D, Kushner EJ, Murfee WL, Chappell JC. Pericyte migration and proliferation are tightly synchronized to endothelial cell sprouting dynamics. Integr Biol (Camb) 2021; 13:31-43. [PMID: 33515222 DOI: 10.1093/intbio/zyaa027] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 11/13/2020] [Accepted: 12/26/2020] [Indexed: 01/17/2023]
Abstract
Pericytes are critical for microvascular stability and maintenance, among other important physiological functions, yet their involvement in vessel formation processes remains poorly understood. To gain insight into pericyte behaviors during vascular remodeling, we developed two complementary tissue explant models utilizing 'double reporter' animals with fluorescently-labeled pericytes and endothelial cells (via Ng2:DsRed and Flk-1:eGFP genes, respectively). Time-lapse confocal imaging of active vessel remodeling within adult connective tissues and embryonic skin revealed a subset of pericytes detaching and migrating away from the vessel wall. Vessel-associated pericytes displayed rapid filopodial sampling near sprouting endothelial cells that emerged from parent vessels to form nascent branches. Pericytes near angiogenic sprouts were also more migratory, initiating persistent and directional movement along newly forming vessels. Pericyte cell divisions coincided more frequently with elongating endothelial sprouts, rather than sprout initiation sites, an observation confirmed with in vivo data from the developing mouse brain. Taken together, these data suggest that (i) pericyte detachment from the vessel wall may represent an important physiological process to enhance endothelial cell plasticity during vascular remodeling, and (ii) pericyte migration and proliferation are highly synchronized with endothelial cell behaviors during the coordinated expansion of a vascular network.
Collapse
Affiliation(s)
- Laura Beth Payne
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute, Roanoke, VA 24014, USA
| | - Jordan Darden
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute, Roanoke, VA 24014, USA.,Graduate Program in Translational Biology, Medicine, & Health, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Ariana D Suarez-Martinez
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Huaning Zhao
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute, Roanoke, VA 24014, USA.,Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Alissa Hendricks
- Graduate Program in Translational Biology, Medicine, & Health, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Caitlin Hartland
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute, Roanoke, VA 24014, USA
| | - Diana Chong
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Erich J Kushner
- Department of Biological Sciences, University of Denver, Denver, CO 80208 USA
| | - Walter L Murfee
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - John C Chappell
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute, Roanoke, VA 24014, USA.,Graduate Program in Translational Biology, Medicine, & Health, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.,Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.,Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
| |
Collapse
|
7
|
Vierstraete J, Fieuws C, Willaert A, Vral A, Claes KBM. Zebrafish as an in vivo screening tool to establish PARP inhibitor efficacy. DNA Repair (Amst) 2020; 97:103023. [PMID: 33341473 DOI: 10.1016/j.dnarep.2020.103023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 09/12/2020] [Accepted: 11/09/2020] [Indexed: 01/02/2023]
Abstract
Double strand break (DSB) repair through Homologous Recombination (HR) is essential in maintaining genomic stability of the cell. Mutations in the HR pathway confer an increased risk for breast, ovarian, pancreatic and prostate cancer. PARP inhibitors (PARPi) are compounds that specifically target tumours deficient in HR. Novel PARPi are constantly being developed, but research is still heavily focussed on in vitro data, with mouse xenografts only being used in late stages of development. There is a need for assays that can: 1) provide in vivo data, 2) early in the development process of novel PARPi, 3) provide fast results and 4) at an affordable cost. Here we propose a combination of in vivo zebrafish assays to accurately quantify PARP inhibitor efficacy. We showed that PARPi display functional effects in zebrafish, generally correlating with their PARP trapping capacities. Furthermore, we displayed how olaparib mediated radiosensitization is conserved in our zebrafish model. These assays could aid the development of novel PARPi by providing early in vivo data. In addition, using zebrafish allows for high-throughput testing of combination therapies in search of novel treatment strategies.
Collapse
Affiliation(s)
- Jeroen Vierstraete
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Department of Human Structure and Repair, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Charlotte Fieuws
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Andy Willaert
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Zebrafish Facility Ghent, Ghent University, Ghent, Belgium
| | - Anne Vral
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Kathleen Bertha Michaël Claes
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University and Ghent University Hospital, Ghent, Belgium.
| |
Collapse
|
8
|
You MS, Wang WP, Wang JY, Jiang YJ, Chi YH. Sun1 Mediates Interkinetic Nuclear Migration and Notch Signaling in the Neurogenesis of Zebrafish. Stem Cells Dev 2019; 28:1116-1127. [PMID: 31140357 DOI: 10.1089/scd.2019.0063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Interkinetic nuclear migration (INM) is a process by which nuclei oscillate between the basal and apical surfaces of epithelial cells in coordination with the cell cycle. The cytoskeletal machinery including microtubules and actin has been reported to drive apical INM; however, the role of nuclear proteins in this process has yet to be fully elucidated. Here, we investigated the function of a SUN-domain protein, Sun1, in zebrafish. We found that zebrafish sun1 is highly expressed in the ventricular zone of the brain. Knocking down sun1 with antisense morpholino oligonucleotides reduced the abundance of nestin- and gfap-expressing neural stem cells and progenitor cells. The live-cell imaging results showed that sun1 morphant cells migrated toward the basal side during the S phase but failed to migrate apically during the G2 phase. On the contrary, the passive stochastic movement during the G2 phase was unaffected. Furthermore, down regulation of sun1 was shown to reduce the expression of genes associated with the Notch pathway, whereas the expression of genes in the Wnt pathway was less perturbed. Findings from this research suggest that the Sun1-mediated nucleo-cytoskeletal interaction contributes to apical nuclear migration, and may thus affect exposure to Notch signal, thereby altering the composition of the progenitor pool in the embryonic neurogenesis of zebrafish.
Collapse
Affiliation(s)
- May-Su You
- 1Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Wan-Ping Wang
- 2Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan
| | - Jing-Ya Wang
- 2Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan
| | - Yun-Jin Jiang
- 1Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Ya-Hui Chi
- 2Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan.,3Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| |
Collapse
|
9
|
Martin JL, Sanders EN, Moreno-Roman P, Jaramillo Koyama LA, Balachandra S, Du X, O'Brien LE. Long-term live imaging of the Drosophila adult midgut reveals real-time dynamics of division, differentiation and loss. eLife 2018; 7:36248. [PMID: 30427308 PMCID: PMC6277200 DOI: 10.7554/elife.36248] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 11/12/2018] [Indexed: 12/18/2022] Open
Abstract
Organ renewal is governed by the dynamics of cell division, differentiation and loss. To study these dynamics in real time, we present a platform for extended live imaging of the adult Drosophila midgut, a premier genetic model for stem-cell-based organs. A window cut into a living animal allows the midgut to be imaged while intact and physiologically functioning. This approach prolongs imaging sessions to 12–16 hr and yields movies that document cell and tissue dynamics at vivid spatiotemporal resolution. By applying a pipeline for movie processing and analysis, we uncover new and intriguing cell behaviors: that mitotic stem cells dynamically re-orient, that daughter cells use slow kinetics of Notch activation to reach a fate-specifying threshold, and that enterocytes extrude via ratcheted constriction of a junctional ring. By enabling real-time study of midgut phenomena that were previously inaccessible, our platform opens a new realm for dynamic understanding of adult organ renewal.
Collapse
Affiliation(s)
- Judy Lisette Martin
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
| | - Erin Nicole Sanders
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States.,Department of Developmental Biology, Stanford University School of Medicine, Stanford, United States
| | - Paola Moreno-Roman
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States.,Department of Biology, Stanford University, Stanford, United States
| | - Leslie Ann Jaramillo Koyama
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States.,Department of Developmental Biology, Stanford University School of Medicine, Stanford, United States
| | - Shruthi Balachandra
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
| | - XinXin Du
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
| | - Lucy Erin O'Brien
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
10
|
Vierstraete J, Willaert A, Vermassen P, Coucke PJ, Vral A, Claes KBM. Accurate quantification of homologous recombination in zebrafish: brca2 deficiency as a paradigm. Sci Rep 2017; 7:16518. [PMID: 29184099 PMCID: PMC5705637 DOI: 10.1038/s41598-017-16725-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 11/16/2017] [Indexed: 11/09/2022] Open
Abstract
Homologous Recombination (HR) repair is essential for repairing DNA double strand breaks (DSB) in dividing cells and preventing tumorigenesis. BRCA2 plays an important role in HR by recruiting the DNA recombinase RAD51 to the DSB. Despite being a popular model organism in genetic and cancer research, knowledge on the conservation of the HR pathway and function of zebrafish Brca2 is limited. To evaluate this, we developed a Rad51 foci assay in zebrafish embryos. We identified the zebrafish embryonic intestinal tissue as an ideal target for Rad51 immunostaining. After inducing DSB through irradiation, Rad51 foci were present in irradiated embryos but not in unirradiated controls. We present a method for accurate quantification of HR. Both morpholino-induced knockdown and knockout of Brca2 lead to almost complete absence of Rad51 foci in irradiated embryos. These findings indicate conserved function of Brca2 in zebrafish. Interestingly, a statistically significant decrease in Rad51 foci was observed in Brca2 heterozygous carriers compared to wild types, indicative of haploinsufficiency, a hypothesised cause of some tumours in patients with a germline BRCA2 mutation. In conclusion, we demonstrated the suitability of zebrafish as an excellent in vivo model system for studying the HR pathway and its functionality.
Collapse
Affiliation(s)
- Jeroen Vierstraete
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium.,Department for Basic Medical Sciences, Ghent University, Ghent, Belgium
| | - Andy Willaert
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
| | - Petra Vermassen
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
| | - Paul J Coucke
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
| | - Anne Vral
- Department for Basic Medical Sciences, Ghent University, Ghent, Belgium
| | - Kathleen B M Claes
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium.
| |
Collapse
|
11
|
Mochizuki T, Luo YJ, Tsai HF, Hagiwara A, Masai I. Cell division and cadherin-mediated adhesion regulate lens epithelial cell movement in zebrafish. Development 2017; 144:708-719. [PMID: 28196805 DOI: 10.1242/dev.138909] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 01/04/2017] [Indexed: 11/20/2022]
Abstract
In vertebrates, lens epithelial cells cover the anterior half of the lens fiber core. During development, lens epithelial cells proliferate, move posteriorly and differentiate into lens fiber cells after passing through the equator. To elucidate the mechanisms underlying lens epithelial cell movement, we conducted time-lapse imaging of zebrafish lens epithelium. Lens epithelial cells do not intermingle but maintain their relative positions during development. Cell division induces epithelial rearrangement, which subsequently promotes cell movement towards the equator. These data suggest that cell division is the major driving force for cell movement. In zebrafish, E-cadherin is expressed in lens epithelium, whereas N-cadherin is required for lens fiber growth. E-cadherin reduced lens epithelial cell movement, whereas N-cadherin enhanced it. Laser ablation experiments revealed that lens epithelium is governed by pulling tension, which is modulated by these cadherins. Thus, cell division and cadherin-mediated adhesion regulate lens epithelial cell movement via modulation of epithelial tension.
Collapse
Affiliation(s)
- Toshiaki Mochizuki
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan
| | - Yi-Jyun Luo
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan
| | - Hsieh-Fu Tsai
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan
| | - Akane Hagiwara
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan
| | - Ichiro Masai
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan
| |
Collapse
|
12
|
Zhang H, Sinclair R. Namibian fairy circles and epithelial cells share emergent geometric order. ECOLOGICAL COMPLEXITY 2015. [DOI: 10.1016/j.ecocom.2015.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Zielke N, Edgar BA. FUCCI sensors: powerful new tools for analysis of cell proliferation. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 4:469-87. [PMID: 25827130 PMCID: PMC6681141 DOI: 10.1002/wdev.189] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 02/11/2015] [Accepted: 02/26/2015] [Indexed: 01/09/2023]
Abstract
Visualizing the cell cycle behavior of individual cells within living organisms can facilitate the understanding of developmental processes such as pattern formation, morphogenesis, cell differentiation, growth, cell migration, and cell death. Fluorescence Ubiquitin Cell Cycle Indicator (FUCCI) technology offers an accurate, versatile, and universally applicable means of achieving this end. In recent years, the FUCCI system has been adapted to several model systems including flies, fish, mice, and plants, making this technology available to a wide range of researchers for studies of diverse biological problems. Moreover, a broad range of FUCCI‐expressing cell lines originating from diverse cell types have been generated, hence enabling the design of advanced studies that combine in vivo experiments and cell‐based methods such as high‐content screening. Although only a short time has passed since its introduction, the FUCCI technology has already provided fundamental insight into how cells establish quiescence and how G1 phase length impacts the balance between pluripotency and stem cell differentiation. Further discoveries using the FUCCI technology are sure to come. WIREs Dev Biol 2015, 4:469–487. doi: 10.1002/wdev.189 This article is categorized under:
Adult Stem Cells, Tissue Renewal, and Regeneration > Methods and Principles Technologies > Generating Chimeras and Lineage Analysis Technologies > Analysis of Cell, Tissue, and Animal Phenotypes
Collapse
Affiliation(s)
- N Zielke
- Deutsches Krebsforschungszentrum (DKFZ), Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH) Allianz, Heidelberg, Germany
| | - B A Edgar
- Deutsches Krebsforschungszentrum (DKFZ), Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH) Allianz, Heidelberg, Germany
| |
Collapse
|