1
|
Gurgo J, Walter JC, Fiche JB, Houbron C, Schaeffer M, Cavalli G, Bantignies F, Nollmann M. Multiplexed chromatin imaging reveals predominantly pairwise long-range coordination between Drosophila Polycomb genes. Cell Rep 2024; 43:114167. [PMID: 38691452 DOI: 10.1016/j.celrep.2024.114167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 02/15/2024] [Accepted: 04/12/2024] [Indexed: 05/03/2024] Open
Abstract
Polycomb (Pc) group proteins are transcriptional regulators with key roles in development, cell identity, and differentiation. Pc-bound chromatin regions form repressive domains that interact in 3D to assemble repressive nuclear compartments. Here, we use multiplexed chromatin imaging to investigate whether Pc compartments involve the clustering of multiple Pc domains during Drosophila development. Notably, 3D proximity between Pc targets is rare and involves predominantly pairwise interactions. These 3D proximities are particularly enhanced in segments where Pc genes are co-repressed. In addition, segment-specific expression of Hox Pc targets leads to their spatial segregation from Pc-repressed genes. Finally, non-Hox Pc targets are more proximal in regions where they are co-expressed. These results indicate that long-range Pc interactions are temporally and spatially regulated during differentiation and development but do not induce frequent clustering of multiple distant Pc genes.
Collapse
Affiliation(s)
- Julian Gurgo
- Centre de Biochimie Structurale, CNRS UMR 5048, INSERM U1054, Université de Montpellier, 60 rue de Navacelles, 34090 Montpellier, France
| | - Jean-Charles Walter
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, Montpellier, France
| | - Jean-Bernard Fiche
- Centre de Biochimie Structurale, CNRS UMR 5048, INSERM U1054, Université de Montpellier, 60 rue de Navacelles, 34090 Montpellier, France
| | - Christophe Houbron
- Centre de Biochimie Structurale, CNRS UMR 5048, INSERM U1054, Université de Montpellier, 60 rue de Navacelles, 34090 Montpellier, France
| | - Marie Schaeffer
- Centre de Biochimie Structurale, CNRS UMR 5048, INSERM U1054, Université de Montpellier, 60 rue de Navacelles, 34090 Montpellier, France
| | - Giacomo Cavalli
- Institut de Génétique Humaine, CNRS UMR 9002, Université de Montpellier, 141 rue de la Cardonille, 34396 Montpellier, France
| | - Frédéric Bantignies
- Institut de Génétique Humaine, CNRS UMR 9002, Université de Montpellier, 141 rue de la Cardonille, 34396 Montpellier, France.
| | - Marcelo Nollmann
- Centre de Biochimie Structurale, CNRS UMR 5048, INSERM U1054, Université de Montpellier, 60 rue de Navacelles, 34090 Montpellier, France.
| |
Collapse
|
2
|
Kenworthy AK. What's past is prologue: FRAP keeps delivering 50 years later. Biophys J 2023; 122:3577-3586. [PMID: 37218127 PMCID: PMC10541474 DOI: 10.1016/j.bpj.2023.05.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/03/2023] [Accepted: 05/11/2023] [Indexed: 05/24/2023] Open
Abstract
Fluorescence recovery after photobleaching (FRAP) has emerged as one of the most widely utilized techniques to quantify binding and diffusion kinetics of biomolecules in biophysics. Since its inception in the mid-1970s, FRAP has been used to address an enormous array of questions including the characteristic features of lipid rafts, how cells regulate the viscosity of their cytoplasm, and the dynamics of biomolecules inside condensates formed by liquid-liquid phase separation. In this perspective, I briefly summarize the history of the field and discuss why FRAP has proven to be so incredibly versatile and popular. Next, I provide an overview of the extensive body of knowledge that has emerged on best practices for quantitative FRAP data analysis, followed by some recent examples of biological lessons learned using this powerful approach. Finally, I touch on new directions and opportunities for biophysicists to contribute to the continued development of this still-relevant research tool.
Collapse
Affiliation(s)
- Anne K Kenworthy
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia; Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia.
| |
Collapse
|
3
|
Lizana L, Nahali N, Schwartz YB. Polycomb proteins translate histone methylation to chromatin folding. J Biol Chem 2023; 299:105080. [PMID: 37499944 PMCID: PMC10470199 DOI: 10.1016/j.jbc.2023.105080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023] Open
Abstract
Epigenetic repression often involves covalent histone modifications. Yet, how the presence of a histone mark translates into changes in chromatin structure that ultimately benefits the repression is largely unclear. Polycomb group proteins comprise a family of evolutionarily conserved epigenetic repressors. They act as multi-subunit complexes one of which tri-methylates histone H3 at Lysine 27 (H3K27). Here we describe a novel Monte Carlo-Molecular Dynamics simulation framework, which we employed to discover that stochastic interaction of Polycomb Repressive Complex 1 (PRC1) with tri-methylated H3K27 is sufficient to fold the methylated chromatin. Unexpectedly, such chromatin folding leads to spatial clustering of the DNA elements bound by PRC1. Our results provide further insight into mechanisms of epigenetic repression and the process of chromatin folding in response to histone methylation.
Collapse
Affiliation(s)
- Ludvig Lizana
- Department of Physics, Integrated Science Lab, Umeå University, Umeå, Sweden.
| | - Negar Nahali
- Department of Physics, Integrated Science Lab, Umeå University, Umeå, Sweden; Department of Informatics, Centre for Bioinformatics, University of Oslo, Oslo, Norway
| | - Yuri B Schwartz
- Department of Molecular Biology, Umeå University, Umeå, Sweden.
| |
Collapse
|
4
|
King JT, Shakya A. Phase separation of DNA: From past to present. Biophys J 2021; 120:1139-1149. [PMID: 33582138 PMCID: PMC8059212 DOI: 10.1016/j.bpj.2021.01.033] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/11/2021] [Accepted: 01/22/2021] [Indexed: 02/08/2023] Open
Abstract
Phase separation of biological molecules, such as nucleic acids and proteins, has garnered widespread attention across many fields in recent years. For instance, liquid-liquid phase separation has been implicated not only in membraneless intracellular organization but also in many biochemical processes, including transcription, translation, and cellular signaling. Here, we present a historical background of biological phase separation and survey current work on nuclear organization and its connection to DNA phase separation from the perspective of DNA sequence, structure, and genomic context.
Collapse
Affiliation(s)
- John T King
- Center for Soft and Living Matter, Institute for Basic Science, Ulsan, Republic of Korea.
| | - Anisha Shakya
- Center for Soft and Living Matter, Institute for Basic Science, Ulsan, Republic of Korea.
| |
Collapse
|
5
|
Huseyin MK, Klose RJ. Live-cell single particle tracking of PRC1 reveals a highly dynamic system with low target site occupancy. Nat Commun 2021; 12:887. [PMID: 33563969 PMCID: PMC7873255 DOI: 10.1038/s41467-021-21130-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 01/13/2021] [Indexed: 01/04/2023] Open
Abstract
Polycomb repressive complex 1 (PRC1) is an essential chromatin-based repressor of gene transcription. How PRC1 engages with chromatin to identify its target genes and achieve gene repression remains poorly defined, representing a major hurdle to our understanding of Polycomb system function. Here, we use genome engineering and single particle tracking to dissect how PRC1 binds to chromatin in live mouse embryonic stem cells. We observe that PRC1 is highly dynamic, with only a small fraction stably interacting with chromatin. By integrating subunit-specific dynamics, chromatin binding, and abundance measurements, we discover that PRC1 exhibits low occupancy at target sites. Furthermore, we employ perturbation approaches to uncover how specific components of PRC1 define its kinetics and chromatin binding. Together, these discoveries provide a quantitative understanding of chromatin binding by PRC1 in live cells, suggesting that chromatin modification, as opposed to PRC1 complex occupancy, is central to gene repression.
Collapse
Affiliation(s)
- Miles K Huseyin
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Robert J Klose
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
6
|
Geng Z, Gao Z. Mammalian PRC1 Complexes: Compositional Complexity and Diverse Molecular Mechanisms. Int J Mol Sci 2020; 21:E8594. [PMID: 33202645 PMCID: PMC7697839 DOI: 10.3390/ijms21228594] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022] Open
Abstract
Polycomb group (PcG) proteins function as vital epigenetic regulators in various biological processes, including pluripotency, development, and carcinogenesis. PcG proteins form multicomponent complexes, and two major types of protein complexes have been identified in mammals to date, Polycomb Repressive Complexes 1 and 2 (PRC1 and PRC2). The PRC1 complexes are composed in a hierarchical manner in which the catalytic core, RING1A/B, exclusively interacts with one of six Polycomb group RING finger (PCGF) proteins. This association with specific PCGF proteins allows for PRC1 to be subdivided into six distinct groups, each with their own unique modes of action arising from the distinct set of associated proteins. Historically, PRC1 was considered to be a transcription repressor that deposited monoubiquitylation of histone H2A at lysine 119 (H2AK119ub1) and compacted local chromatin. More recently, there is increasing evidence that demonstrates the transcription activation role of PRC1. Moreover, studies on the higher-order chromatin structure have revealed a new function for PRC1 in mediating long-range interactions. This provides a different perspective regarding both the transcription activation and repression characteristics of PRC1. This review summarizes new advancements regarding the composition of mammalian PRC1 and accompanying explanations of how diverse PRC1-associated proteins participate in distinct transcription regulation mechanisms.
Collapse
Affiliation(s)
- Zhuangzhuang Geng
- Departments of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA;
| | - Zhonghua Gao
- Departments of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA;
- Penn State Hershey Cancer Institute, Hershey, PA 17033, USA
- The Stem Cell and Regenerative Biology Program, Penn State College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
7
|
Reinig J, Ruge F, Howard M, Ringrose L. A theoretical model of Polycomb/Trithorax action unites stable epigenetic memory and dynamic regulation. Nat Commun 2020; 11:4782. [PMID: 32963223 PMCID: PMC7508846 DOI: 10.1038/s41467-020-18507-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/24/2020] [Indexed: 12/12/2022] Open
Abstract
Polycomb and Trithorax group proteins maintain stable epigenetic memory of gene expression states for some genes, but many targets show highly dynamic regulation. Here we combine experiment and theory to examine the mechanistic basis of these different modes of regulation. We present a mathematical model comprising a Polycomb/Trithorax response element (PRE/TRE) coupled to a promoter and including Drosophila developmental timing. The model accurately recapitulates published studies of PRE/TRE mediated epigenetic memory of both silencing and activation. With minimal parameter changes, the same model can also recapitulate experimental data for a different PRE/TRE that allows dynamic regulation of its target gene. The model predicts that both cell cycle length and PRE/TRE identity are critical for determining whether the system gives stable memory or dynamic regulation. Our work provides a simple unifying framework for a rich repertoire of PRE/TRE functions, and thus provides insights into genome-wide Polycomb/Trithorax regulation. Polycomb (PcG) and Trithorax (TrxG) group regulate several hundred target genes with important roles in development and disease. Here the authors combine experiment and theory to provide evidence that the Polycomb/Trithorax system has the potential for a rich repertoire of regulatory modes beyond simple epigenetic memory.
Collapse
Affiliation(s)
- Jeannette Reinig
- Humboldt Universität zu Berlin, IRI- Lifesciences, Philippstr. 13, 10115, Berlin, Germany
| | - Frank Ruge
- IMBA, Institute of Molecular Biotechnology, Dr. Bohr- Gasse 3, 1030, Vienna, Austria
| | - Martin Howard
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Leonie Ringrose
- Humboldt Universität zu Berlin, IRI- Lifesciences, Philippstr. 13, 10115, Berlin, Germany. .,IMBA, Institute of Molecular Biotechnology, Dr. Bohr- Gasse 3, 1030, Vienna, Austria.
| |
Collapse
|
8
|
Zhang Y, Li Z, Chen N, Huang Y, Huang S. Phase separation of Arabidopsis EMB1579 controls transcription, mRNA splicing, and development. PLoS Biol 2020; 18:e3000782. [PMID: 32692742 PMCID: PMC7413564 DOI: 10.1371/journal.pbio.3000782] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 08/07/2020] [Accepted: 07/06/2020] [Indexed: 11/19/2022] Open
Abstract
Tight regulation of gene transcription and mRNA splicing is essential for plant growth and development. Here we demonstrate that a plant-specific protein, EMBRYO DEFECTIVE 1579 (EMB1579), controls multiple growth and developmental processes in Arabidopsis. We demonstrate that EMB1579 forms liquid-like condensates both in vitro and in vivo, and the formation of normal-sized EMB1579 condensates is crucial for its cellular functions. We found that some chromosomal and RNA-related proteins interact with EMB1579 compartments, and loss of function of EMB1579 affects global gene transcription and mRNA splicing. Using floral transition as a physiological process, we demonstrate that EMB1579 is involved in FLOWERING LOCUS C (FLC)-mediated repression of flowering. Interestingly, we found that EMB1579 physically interacts with a homologue of Drosophila nucleosome remodeling factor 55-kDa (p55) called MULTIPLE SUPPRESSOR OF IRA 4 (MSI4), which has been implicated in repressing the expression of FLC by forming a complex with DNA Damage Binding Protein 1 (DDB1) and Cullin 4 (CUL4). This complex, named CUL4-DDB1MSI4, physically associates with a CURLY LEAF (CLF)-containing Polycomb Repressive Complex 2 (CLF-PRC2). We further demonstrate that EMB1579 interacts with CUL4 and DDB1, and EMB1579 condensates can recruit and condense MSI4 and DDB1. Furthermore, emb1579 phenocopies msi4 in terms of the level of H3K27 trimethylation on FLC. This allows us to propose that EMB1579 condensates recruit and condense CUL4-DDB1MSI4 complex, which facilitates the interaction of CUL4-DDB1MSI4 with CLF-PRC2 and promotes the role of CLF-PRC2 in establishing and/or maintaining the level of H3K27 trimethylation on FLC. Thus, we report a new mechanism for regulating plant gene transcription, mRNA splicing, and growth and development. This study reveals that a plant-specific protein, EMB1579, controls multiple growth and developmental processes in Arabidopsis thaliana by regulating gene transcription and mRNA splicing through the formation of liquid-like droplets via liquid-liquid phase separation.
Collapse
Affiliation(s)
- Yiling Zhang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Zhankun Li
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Naizhi Chen
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yao Huang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Shanjin Huang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
- * E-mail:
| |
Collapse
|
9
|
Cheutin T, Cavalli G. The multiscale effects of polycomb mechanisms on 3D chromatin folding. Crit Rev Biochem Mol Biol 2019; 54:399-417. [PMID: 31698957 DOI: 10.1080/10409238.2019.1679082] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/08/2019] [Accepted: 10/08/2019] [Indexed: 12/30/2022]
Abstract
Polycomb group (PcG) proteins silence master regulatory genes required to properly confer cell identity during the development of both Drosophila and mammals. They may act through chromatin compaction and higher-order folding of chromatin inside the cell nucleus. During the last decade, analysis on interphase chromosome architecture discovered self-interacting regions named topologically associated domains (TADs). TADs result from the 3D chromatin folding of a succession of transcribed and repressed epigenomic domains and from loop extrusion mediated by cohesin/CTCF in mammals. Polycomb silenced chromatin constitutes one type of repressed epigenomic domains which form compacted nano-compartments inside cell nuclei. Recruitment of canonical PcG proteins on chromatin relies on initial binding to discrete elements and further spreading into large chromatin domains covered with H3K27me3. Some of these discrete elements have a bivalent nature both in mammals and Drosophila and are dynamically regulated during development. Loops can occur between them, suggesting that their interaction plays both functional and structural roles. Formation of large chromatin domains covered by H3K27me3 seems crucial for PcG silencing and PcG proteins might exert their function through compaction of these domains in both mammals and flies, rather than by directly controlling the nucleosomal accessibility of discrete regulatory elements. In addition, PcG chromatin domains interact over long genomic distances, shaping a higher-order chromatin network. Therefore, PcG silencing might rely on multiscale chromatin folding to maintain cell identity during differentiation.
Collapse
Affiliation(s)
- Thierry Cheutin
- Institute of Human Genetics, CNRS and the University of Montpellier, Montpellier, France
| | - Giacomo Cavalli
- Institute of Human Genetics, CNRS and the University of Montpellier, Montpellier, France
| |
Collapse
|
10
|
Shu J, Chen C, Thapa RK, Bian S, Nguyen V, Yu K, Yuan Z, Liu J, Kohalmi SE, Li C, Cui Y. Genome-wide occupancy of histone H3K27 methyltransferases CURLY LEAF and SWINGER in Arabidopsis seedlings. PLANT DIRECT 2019; 3:e00100. [PMID: 31245749 PMCID: PMC6508855 DOI: 10.1002/pld3.100] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 11/14/2018] [Accepted: 11/19/2018] [Indexed: 05/25/2023]
Abstract
The Polycomb Group (PcG) proteins form two protein complexes, PcG Repressive Complex 1 (PRC1) and PRC2, which are key epigenetic regulators in eukaryotes. PRC2 represses gene expression by catalyzing the trimethylation of histone H3 lysine 27 (H3K27me3). In Arabidopsis (Arabidopsis thaliana), CURLY LEAF (CLF) and SWINGER (SWN) are two major H3K27 methyltransferases and core components of PRC2, playing essential roles in plant growth and development. Despite their importance, genome-wide binding profiles of CLF and SWN have not been determined and compared yet. In this study, we generated transgenic lines expressing GFP-tagged CLF/SWN under their respective native promoters and used them for ChIP-seq analyses to profile the genome-wide distributions of CLF and SWN in Arabidopsis seedlings. We also profiled and compared the global H3K27me3 levels in wild-type (WT) and PcG mutants (clf, swn, and clf swn). Our data show that CLF and SWN bind to almost the same set of genes, except that SWN has a few hundred more targets. Two short DNA sequences, the GAGA-like and Telo-box-like motifs, were found enriched in the CLF and SWN binding regions. The H3K27me3 levels in clf, but not in swn, were markedly reduced compared with WT; and the mark was undetectable in the clf swn double mutant. Further, we profiled the transcriptomes in clf, swn, and clf swn, and compared that with WT. Thus this work provides a useful resource for the plant epigenetics community for dissecting the functions of PRC2 in plant growth and development.
Collapse
Affiliation(s)
- Jie Shu
- London Research and Development CentreAgriculture and Agri‐Food CanadaLondonOntarioCanada
- Department of BiologyWestern UniversityLondonOntarioCanada
| | - Chen Chen
- London Research and Development CentreAgriculture and Agri‐Food CanadaLondonOntarioCanada
- Department of BiologyWestern UniversityLondonOntarioCanada
| | - Raj Kumar Thapa
- London Research and Development CentreAgriculture and Agri‐Food CanadaLondonOntarioCanada
- Department of BiologyWestern UniversityLondonOntarioCanada
| | - Shaomin Bian
- London Research and Development CentreAgriculture and Agri‐Food CanadaLondonOntarioCanada
- College of Plant ScienceJilin UniversityChangchunChina
| | - Vi Nguyen
- London Research and Development CentreAgriculture and Agri‐Food CanadaLondonOntarioCanada
| | - Kangfu Yu
- Harrow Research and Development CentreAgriculture and Agri‐Food CanadaHarrowOntarioCanada
| | - Ze‐Chun Yuan
- London Research and Development CentreAgriculture and Agri‐Food CanadaLondonOntarioCanada
| | - Jun Liu
- Guangdong Academy of Agricultural SciencesGuangzhouChina
| | | | - Chenlong Li
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant ResourcesSchool of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Yuhai Cui
- London Research and Development CentreAgriculture and Agri‐Food CanadaLondonOntarioCanada
- Department of BiologyWestern UniversityLondonOntarioCanada
| |
Collapse
|
11
|
Stafford JM, Lee CH, Voigt P, Descostes N, Saldaña-Meyer R, Yu JR, Leroy G, Oksuz O, Chapman JR, Suarez F, Modrek AS, Bayin NS, Placantonakis DG, Karajannis MA, Snuderl M, Ueberheide B, Reinberg D. Multiple modes of PRC2 inhibition elicit global chromatin alterations in H3K27M pediatric glioma. SCIENCE ADVANCES 2018; 4:eaau5935. [PMID: 30402543 PMCID: PMC6209383 DOI: 10.1126/sciadv.aau5935] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/27/2018] [Indexed: 05/17/2023]
Abstract
A methionine substitution at lysine-27 on histone H3 variants (H3K27M) characterizes ~80% of diffuse intrinsic pontine gliomas (DIPG) and inhibits polycomb repressive complex 2 (PRC2) in a dominant-negative fashion. Yet, the mechanisms for this inhibition and abnormal epigenomic landscape have not been resolved. Using quantitative proteomics, we discovered that robust PRC2 inhibition requires levels of H3K27M greatly exceeding those of PRC2, seen in DIPG. While PRC2 inhibition requires interaction with H3K27M, we found that this interaction on chromatin is transient, with PRC2 largely being released from H3K27M. Unexpectedly, inhibition persisted even after PRC2 dissociated from H3K27M-containing chromatin, suggesting a lasting impact on PRC2. Furthermore, allosterically activated PRC2 is particularly sensitive to H3K27M, leading to the failure to spread H3K27me from PRC2 recruitment sites and consequently abrogating PRC2's ability to establish H3K27me2-3 repressive chromatin domains. In turn, levels of polycomb antagonists such as H3K36me2 are elevated, suggesting a more global, downstream effect on the epigenome. Together, these findings reveal the conditions required for H3K27M-mediated PRC2 inhibition and reconcile seemingly paradoxical effects of H3K27M on PRC2 recruitment and activity.
Collapse
Affiliation(s)
- James M. Stafford
- Department of Biochemistry and Molecular Pharmacology, NYUSoM, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Chul-Hwan Lee
- Department of Biochemistry and Molecular Pharmacology, NYUSoM, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Philipp Voigt
- Department of Biochemistry and Molecular Pharmacology, NYUSoM, New York, NY, USA
| | - Nicolas Descostes
- Department of Biochemistry and Molecular Pharmacology, NYUSoM, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Ricardo Saldaña-Meyer
- Department of Biochemistry and Molecular Pharmacology, NYUSoM, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Jia-Ray Yu
- Department of Biochemistry and Molecular Pharmacology, NYUSoM, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Gary Leroy
- Department of Biochemistry and Molecular Pharmacology, NYUSoM, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Ozgur Oksuz
- Department of Biochemistry and Molecular Pharmacology, NYUSoM, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | | | - Fernando Suarez
- Laura and Isaac Perlmutter Cancer Center, NYUSoM, New York, NY, USA
- Department of Pediatrics, NYUSoM, New York, NY, USA
| | - Aram S. Modrek
- Laura and Isaac Perlmutter Cancer Center, NYUSoM, New York, NY, USA
- Department of Neurosurgery, NYUSoM, New York, NY, USA
| | - N. Sumru Bayin
- Laura and Isaac Perlmutter Cancer Center, NYUSoM, New York, NY, USA
- Department of Neurosurgery, NYUSoM, New York, NY, USA
| | - Dimitris G. Placantonakis
- Laura and Isaac Perlmutter Cancer Center, NYUSoM, New York, NY, USA
- Department of Neurosurgery, NYUSoM, New York, NY, USA
- Kimmel Center for Stem Cell Biology, NYUSoM, New York, NY, USA
- Neuroscience Institute, NYUSoM, New York, NY, USA
| | - Matthias A. Karajannis
- Laura and Isaac Perlmutter Cancer Center, NYUSoM, New York, NY, USA
- Department of Pediatrics, NYUSoM, New York, NY, USA
| | - Matija Snuderl
- Laura and Isaac Perlmutter Cancer Center, NYUSoM, New York, NY, USA
- Department of Pathology, Division of Neuropathology, NYUSoM, New York, NY, USA
| | - Beatrix Ueberheide
- Department of Biochemistry and Molecular Pharmacology, NYUSoM, New York, NY, USA
- Proteomics Laboratory, NYUSoM, New York, NY, USA
| | - Danny Reinberg
- Department of Biochemistry and Molecular Pharmacology, NYUSoM, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| |
Collapse
|
12
|
Ehrlichia chaffeensis TRP120 Effector Targets and Recruits Host Polycomb Group Proteins for Degradation To Promote Intracellular Infection. Infect Immun 2018; 86:IAI.00845-17. [PMID: 29358333 DOI: 10.1128/iai.00845-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/12/2018] [Indexed: 02/08/2023] Open
Abstract
Ehrlichia chaffeensis has a group of well-characterized type I secreted tandem repeat protein (TRP) effectors that have moonlighting capabilities. TRPs modulate various cellular processes, reprogram host gene transcription as nucleomodulins, function as ubiquitin ligases, and directly activate conserved host cell signaling pathways to promote E. chaffeensis infection. One TRP-interacting host target is polycomb group ring finger protein 5 (PCGF5), a member of the polycomb group (PcG) protein family and a component of the polycomb repressive complex 1 (PRC1). The current study demonstrates that during early infection, PCGF5 strongly colocalizes with TRP120 in the nucleus and later dramatically redistributes to the ehrlichial vacuole along with other PCGF isoforms. Ectopic expression and immunoprecipitation of TRP120 confirmed the interaction of TRP120 with multiple different PCGF isoforms. At 48 h postinfection, a dramatic redistribution of PCGF isoforms from the nucleus to the ehrlichial vacuole was observed, which also temporally coincided with proteasomal degradation of PCGF isoforms and TRP120 expression on the vacuole. A decrease in PRC1-mediated repressive chromatin mark and an altered transcriptional activity in PRC1-associated Hox genes primarily from HOXB and HOXC clusters were observed along with the degradation of PCGF isoforms, suggesting disruption of the PRC1 in E. chaffeensis-infected cells. Notably, small interfering RNA (siRNA)-mediated knockdown of PCGF isoforms resulted in significantly increased E. chaffeensis infection. This study demonstrates a novel strategy in which E. chaffeensis manipulates PRC complexes through interactions between TRP120 and PCGF isoforms to promote infection.
Collapse
|
13
|
Shah FR, Bhat YA, Wani AH. Subnuclear distribution of proteins: Links with genome architecture. Nucleus 2018; 9:42-55. [PMID: 28910577 PMCID: PMC5973252 DOI: 10.1080/19491034.2017.1361578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 02/08/2023] Open
Abstract
Metazoan genomes have a hierarchal 3-dimensional (3D) organization scaling from nucleosomes, loops, topologically associating domains (TADs), compartments, to chromosome territories. The 3D organization of genome has been linked with development, differentiation and disease. However, the principles governing the 3D chromatin architecture are just beginning to get unraveled. The nucleus has very high concentration of proteins and these proteins are either diffusely distributed throughout the nucleus, or aggregated in the form of foci/bodies/clusters/speckles or in combination of both. Several evidences suggest that the distribution of proteins within the nuclear space is linked to the organization and function of genome. Here, we describe advances made in understanding the relationship between subnuclear distribution of proteins and genome architecture.
Collapse
Affiliation(s)
- Fouziya R. Shah
- Biotechnology, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Younus A. Bhat
- Biotechnology, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Ajazul H. Wani
- Biotechnology, School of Biological Sciences, University of Kashmir, Srinagar, India
| |
Collapse
|
14
|
Pherson M, Misulovin Z, Gause M, Mihindukulasuriya K, Swain A, Dorsett D. Polycomb repressive complex 1 modifies transcription of active genes. SCIENCE ADVANCES 2017; 3:e1700944. [PMID: 28782042 PMCID: PMC5540264 DOI: 10.1126/sciadv.1700944] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 06/28/2017] [Indexed: 05/21/2023]
Abstract
This study examines the role of Polycomb repressive complex 1 (PRC1) at active genes. The PRC1 and PRC2 complexes are crucial for epigenetic silencing during development of an organism. They are recruited to Polycomb response elements (PREs) and establish silenced domains over several kilobases. Recent studies show that PRC1 is also directly recruited to active genes by the cohesin complex. Cohesin participates broadly in control of gene transcription, but it is unknown whether cohesin-recruited PRC1 also plays a role in transcriptional control of active genes. We address this question using genome-wide RNA sequencing (RNA-seq) and chromatin immunoprecipitation sequencing (ChIP-seq). The results show that PRC1 influences transcription of active genes, and a significant fraction of its effects are likely direct. The roles of different PRC1 subunits can also vary depending on the gene. Depletion of PRC1 subunits by RNA interference alters phosphorylation of RNA polymerase II (Pol II) and occupancy by the Spt5 pausing-elongation factor at most active genes. These effects on Pol II phosphorylation and Spt5 are likely linked to changes in elongation and RNA processing detected by nascent RNA-seq, although the mechanisms remain unresolved. The experiments also reveal that PRC1 facilitates association of Spt5 with enhancers and PREs. Reduced Spt5 levels at these regulatory sequences upon PRC1 depletion coincide with changes in Pol II occupancy and phosphorylation. Our findings indicate that, in addition to its repressive roles in epigenetic gene silencing, PRC1 broadly influences transcription of active genes and may suppress transcription of nonpromoter regulatory sequences.
Collapse
|
15
|
Du J, Zhang J, He T, Li Y, Su Y, Tie F, Liu M, Harte PJ, Zhu AJ. Stuxnet Facilitates the Degradation of Polycomb Protein during Development. Dev Cell 2017; 37:507-19. [PMID: 27326929 DOI: 10.1016/j.devcel.2016.05.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 04/29/2016] [Accepted: 05/18/2016] [Indexed: 10/21/2022]
Abstract
Polycomb-group (PcG) proteins function to ensure correct deployment of developmental programs by epigenetically repressing target gene expression. Despite the importance, few studies have been focused on the regulation of PcG activity itself. Here, we report a Drosophila gene, stuxnet (stx), that controls Pc protein stability. We find that heightened stx activity leads to homeotic transformation, reduced Pc activity, and de-repression of PcG targets. Conversely, stx mutants, which can be rescued by decreased Pc expression, display developmental defects resembling hyperactivation of Pc. Our biochemical analyses provide a mechanistic basis for the interaction between stx and Pc; Stx facilitates Pc degradation in the proteasome, independent of ubiquitin modification. Furthermore, this mode of regulation is conserved in vertebrates. Mouse stx promotes degradation of Cbx4, an orthologous Pc protein, in vertebrate cells and induces homeotic transformation in Drosophila. Our results highlight an evolutionarily conserved mechanism of regulated protein degradation on PcG homeostasis and epigenetic activity.
Collapse
Affiliation(s)
- Juan Du
- State Key Laboratory of Membrane Biology, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Junzheng Zhang
- State Key Laboratory of Membrane Biology, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Tao He
- State Key Laboratory of Membrane Biology, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yajuan Li
- State Key Laboratory of Membrane Biology, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ying Su
- State Key Laboratory of Membrane Biology, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Feng Tie
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Min Liu
- State Key Laboratory of Membrane Biology, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Peter J Harte
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Alan Jian Zhu
- State Key Laboratory of Membrane Biology, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
| |
Collapse
|
16
|
An Unexpected Regulatory Cascade Governs a Core Function of the Drosophila PRC1 Chromatin Protein Su(z)2. Genetics 2016; 205:551-558. [PMID: 27881472 DOI: 10.1534/genetics.116.187849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 11/09/2016] [Indexed: 11/18/2022] Open
Abstract
Polycomb group (PcG) proteins are major chromatin-bound factors that can read and modify chromatin states to maintain gene silencing throughout development. Here we focus on a close homolog of the PcG protein Posterior sex combs to better understand how these proteins affect regulation. This homolog, called Suppressor 2 of zeste [Su(z)2] is composed of two regions: the N-terminal homology region (HR), which serves as a hub for protein interactions, and the C-terminal region (CTR), which is believed to harbor the core activity of compacting chromatin. Here, we describe our classical genetic studies to dissect the structure of Su(z)2 Surprisingly, we found that the CTR is dispensable for viability. Furthermore, the core activity of Su(z)2 seems to reside in the HR instead of the CTR. Remarkably, our data also suggest a regulatory cascade between CTR and HR of Su(z)2, which, in turn, may help prioritize the myriad of PcG interactions that occur with the HR.
Collapse
|
17
|
Following the Motion of Polycomb Bodies in Living Drosophila Embryos. Methods Mol Biol 2016. [PMID: 27659993 DOI: 10.1007/978-1-4939-6380-5_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
During the last two decades, observation of cell nuclei in live microscopy evidences motion of nuclear compartments. Drosophila embryos constitute a good model to study nuclear dynamic during cell differentiation because they can easily be observed in live microscopy. Inside the cell nucleus, Polycomb group proteins accumulate in foci named Pc bodies. Here, we describe a method to visualize and analyze the motion of these nuclear compartments inside cell nuclei of Drosophila embryos.
Collapse
|
18
|
Abstract
The Mendelian disorders of the epigenetic machinery are genetic disorders that involve disruption of the various components of the epigenetic machinery (writers, erasers, readers, and remodelers) and are thus expected to have widespread downstream epigenetic consequences. Studying this group may offer a unique opportunity to learn about the role of epigenetics in health and disease. Among these patients, neurological dysfunction and, in particular, intellectual disability appears to be a common phenotype; however, this is often seen in association with other more specific features in respective disorders. The specificity of some of the clinical features raises the question whether specific cell types are particularly sensitive to the loss of these factors. Most of these disorders demonstrate dosage sensitivity as loss of a single allele appears to be sufficient to cause the observed phenotypes. Although the pathogenic sequence is unknown for most of these disorders, there are several examples where disrupted expression of downstream target genes accounts for a substantial portion of the phenotype; hence, it may be useful to systematically map such disease-relevant target genes. Finally, two of these disorders (Rubinstein-Taybi and Kabuki syndromes) have shown post-natal rescue of markers of the neurological dysfunction with drugs that lead to histone deacetylase inhibition, indicating that some of these disorders may be treatable causes of intellectual disability.
Collapse
Affiliation(s)
- Hans Tomas Bjornsson
- McKusick-Nathans Institute of Genetic Medicine and Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| |
Collapse
|
19
|
Fahrner JA, Bjornsson HT. Mendelian disorders of the epigenetic machinery: tipping the balance of chromatin states. Annu Rev Genomics Hum Genet 2015; 15:269-93. [PMID: 25184531 DOI: 10.1146/annurev-genom-090613-094245] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mendelian disorders of the epigenetic machinery are a newly delineated group of multiple congenital anomaly and intellectual disability syndromes resulting from mutations in genes encoding components of the epigenetic machinery. The gene products affected in these inherited conditions act in trans and are expected to have widespread epigenetic consequences. Many of these syndromes demonstrate phenotypic overlap with classical imprinting disorders and with one another. The various writer and eraser systems involve opposing players, which we propose must maintain a balance between open and closed chromatin states in any given cell. An imbalance might lead to disrupted expression of disease-relevant target genes. We suggest that classifying disorders based on predicted effects on this balance would be informative regarding pathogenesis. Furthermore, strategies targeted at restoring this balance might offer novel therapeutic avenues, taking advantage of available agents such as histone deacetylase inhibitors and histone acetylation antagonists.
Collapse
Affiliation(s)
- Jill A Fahrner
- McKusick-Nathans Institute of Genetic Medicine and Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; ,
| | | |
Collapse
|
20
|
Rybakova KN, Bruggeman FJ, Tomaszewska A, Moné MJ, Carlberg C, Westerhoff HV. Multiplex Eukaryotic Transcription (In)activation: Timing, Bursting and Cycling of a Ratchet Clock Mechanism. PLoS Comput Biol 2015; 11:e1004236. [PMID: 25909187 PMCID: PMC4409292 DOI: 10.1371/journal.pcbi.1004236] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 03/11/2015] [Indexed: 12/12/2022] Open
Abstract
Activation of eukaryotic transcription is an intricate process that relies on a multitude of regulatory proteins forming complexes on chromatin. Chromatin modifications appear to play a guiding role in protein-complex assembly on chromatin. Together, these processes give rise to stochastic, often bursting, transcriptional activity. Here we present a model of eukaryotic transcription that aims to integrate those mechanisms. We use stochastic and ordinary-differential-equation modeling frameworks to examine various possible mechanisms of gene regulation by multiple transcription factors. We find that the assembly of large transcription factor complexes on chromatin via equilibrium-binding mechanisms is highly inefficient and insensitive to concentration changes of single regulatory proteins. An alternative model that lacks these limitations is a cyclic ratchet mechanism. In this mechanism, small protein complexes assemble sequentially on the promoter. Chromatin modifications mark the completion of a protein complex assembly, and sensitize the local chromatin for the assembly of the next protein complex. In this manner, a strict order of protein complex assemblies is attained. Even though the individual assembly steps are highly stochastic in duration, a sequence of them gives rise to a remarkable precision of the transcription cycle duration. This mechanism explains how transcription activation cycles, lasting for tens of minutes, derive from regulatory proteins residing on chromatin for only tens of seconds. Transcriptional bursts are an inherent feature of such transcription activation cycles. Bursting transcription can cause individual cells to remain in synchrony transiently, offering an explanation of transcriptional cycling as observed in cell populations, both on promoter chromatin status and mRNA levels.
Collapse
Affiliation(s)
- Katja N. Rybakova
- Molecular Cell Physiology, VU University Amsterdam, Amsterdam, The Netherlands
| | - Frank J. Bruggeman
- Systems Bioinformatics, VU University Amsterdam, Amsterdam, The Netherlands
| | - Aleksandra Tomaszewska
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Martijn J. Moné
- Molecular Cell Physiology, VU University Amsterdam, Amsterdam, The Netherlands
| | - Carsten Carlberg
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Hans V. Westerhoff
- Molecular Cell Physiology, VU University Amsterdam, Amsterdam, The Netherlands
- Manchester Centre for Integrative Systems Biology, University of Manchester, Manchester, United Kingdom
- Synthetic Systems Biology, Netherlands Institute for Systems Biology, University of Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
21
|
Razin SV, Borunova VV, Iarovaia OV, Vassetzky YS. Nuclear matrix and structural and functional compartmentalization of the eucaryotic cell nucleus. BIOCHEMISTRY (MOSCOW) 2015; 79:608-18. [PMID: 25108324 DOI: 10.1134/s0006297914070037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Becoming popular at the end of the 20th century, the concept of the nuclear matrix implies the existence of a nuclear skeleton that organizes functional elements in the cell nucleus. This review presents a critical analysis of the results obtained in the study of nuclear matrix in the light of current views on the organization of the cell nucleus. Numerous studies of nuclear matrix have failed to provide evidence of the existence of such a structure. Moreover, the existence of a filamentous structure that supports the nuclear compartmentalization appears to be unnecessary, since this function is performed by the folded genome itself.
Collapse
Affiliation(s)
- S V Razin
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| | | | | | | |
Collapse
|
22
|
Gavrilov AA, Razin SV. Compartmentalization of the cell nucleus and spatial organization of the genome. Mol Biol 2015. [DOI: 10.1134/s0026893315010033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Dodson AE, Rine J. Heritable capture of heterochromatin dynamics in Saccharomyces cerevisiae. eLife 2015; 4:e05007. [PMID: 25581000 PMCID: PMC4337651 DOI: 10.7554/elife.05007] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 01/09/2015] [Indexed: 01/10/2023] Open
Abstract
Heterochromatin exerts a heritable form of eukaryotic gene repression and contributes to chromosome segregation fidelity and genome stability. However, to date there has been no quantitative evaluation of the stability of heterochromatic gene repression. We designed a genetic strategy to capture transient losses of gene silencing in Saccharomyces as permanent, heritable changes in genotype and phenotype. This approach revealed rare transcription within heterochromatin that occurred in approximately 1/1000 cell divisions. In concordance with multiple lines of evidence suggesting these events were rare and transient, single-molecule RNA FISH showed that transcription was limited. The ability to monitor fluctuations in heterochromatic repression uncovered previously unappreciated roles for Sir1, a silencing establishment factor, in the maintenance and/or inheritance of silencing. In addition, we identified the sirtuin Hst3 and its histone target as contributors to the stability of the silenced state. These approaches revealed dynamics of a heterochromatin function that have been heretofore inaccessible.
Collapse
Affiliation(s)
- Anne E Dodson
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States
| | - Jasper Rine
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
24
|
Ulianov SV, Gavrilov AA, Razin SV. Nuclear Compartments, Genome Folding, and Enhancer-Promoter Communication. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 315:183-244. [DOI: 10.1016/bs.ircmb.2014.11.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
25
|
Kolybaba A, Classen AK. Sensing cellular states--signaling to chromatin pathways targeting Polycomb and Trithorax group function. Cell Tissue Res 2014; 356:477-93. [PMID: 24728925 DOI: 10.1007/s00441-014-1824-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 01/22/2014] [Indexed: 02/06/2023]
Abstract
Cells respond to extra- and intra-cellular signals by dynamically changing their gene expression patterns. After termination of the original signal, new expression patterns are maintained by epigenetic DNA and histone modifications. This represents a powerful mechanism that enables long-term phenotypic adaptation to transient signals. Adaptation of epigenetic landscapes is important for mediating cellular differentiation during development and allows adjustment to altered environmental conditions throughout life. Work over the last decade has begun to elucidate the way that extra- and intra-cellular signals lead to changes in gene expression patterns by directly modulating the function of chromatin-associated proteins. Here, we review key signaling-to-chromatin pathways that are specifically thought to target Polycomb and Trithorax group complexes, a classic example of epigenetically acting gene silencers and activators important in development, stem cell differentiation and cancer. We discuss the influence that signals triggered by kinase cascades, metabolic fluctuations and cell-cycle dynamics have on the function of these protein complexes. Further investigation into these pathways will be important for understanding the mechanisms that maintain epigenetic stability and those that promote epigenetic plasticity.
Collapse
Affiliation(s)
- Addie Kolybaba
- Ludwig Maximilians University Munich, Faculty of Biology, Grosshaderner Strasse 2-4, 82152, Planegg-Martinsried, Germany
| | | |
Collapse
|
26
|
Vandenbunder B, Fourré N, Leray A, Mueller F, Völkel P, Angrand PO, Héliot L. PRC1 components exhibit different binding kinetics in Polycomb bodies. Biol Cell 2014; 106:111-25. [PMID: 24460908 DOI: 10.1111/boc.201300077] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 01/21/2014] [Indexed: 11/29/2022]
Abstract
BACKGROUND INFORMATION Polycomb group (PcG) proteins keep the memory of cell identity by maintaining the repression of numerous target genes. They accumulate into nuclear foci called Polycomb bodies, which function in Drosophila cells as silencing compartments where PcG target genes convene. PcG proteins also exert their activities elsewhere in the nucleoplasm. In mammalian cells, the dynamic organisation and function of Polycomb bodies remain to be determined. RESULTS Fluorescently tagged PcG proteins CBXs and their partners BMI1 and RING1 form foci of different sizes and intensities in human U2OS cells. Fluorescence recovery after photobleaching (FRAP) analysis reveals that PcG dynamics outside foci is governed by diffusion as complexes and transient binding. In sharp contrast, recovery curves inside foci are substantially slower and exhibit large variability. The slow binding component amplitudes correlate with the intensities and sizes of these foci, suggesting that foci contained varying numbers of binding sites. CBX4-green fluorescent protein (GFP) foci were more stable than CBX8-GFP foci; yet the presence of CBX4 or CBX8-GFP in the same focus had a minor impact on BMI1 and RING1 recovery kinetics. CONCLUSION We propose that FRAP recovery curves provide information about PcG binding to their target genes outside foci and about PcG spreading onto chromatin inside foci.
Collapse
Affiliation(s)
- Bernard Vandenbunder
- Biophotonique Cellulaire Fonctionnelle, Interdisciplinary Research Institute, Université Lille 1 - CNRS USR 3078, Parc de la Haute Borne, Villeneuve d'Ascq, 59658, France
| | | | | | | | | | | | | |
Collapse
|
27
|
Biomolecular dynamics and binding studies in the living cell. Phys Life Rev 2014; 11:1-30. [DOI: 10.1016/j.plrev.2013.11.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 11/20/2013] [Indexed: 11/22/2022]
|
28
|
Cheutin T, Cavalli G. Polycomb silencing: from linear chromatin domains to 3D chromosome folding. Curr Opin Genet Dev 2014; 25:30-7. [PMID: 24434548 DOI: 10.1016/j.gde.2013.11.016] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 11/29/2013] [Indexed: 12/22/2022]
Abstract
Polycomb group (PcG) proteins are conserved chromatin factors that regulate key developmental genes. Genome wide studies have shown that PcG proteins and their associated H3K27me3 histone mark cover long genomic domains. PcG proteins and H3K27me3 accumulate in Pc nuclear foci, which are the cellular counterparts of genomic domains silenced by PcG proteins. One explanation for how large genomic domains form nuclear foci may rely on loops occurring between specific elements located within domains. However, recent improvement of the chromosome conformation capture (3C) technology, which allowed monitoring genome wide contacts depicts a more complex picture in which chromosomes are composed of many topologically associating domains (TADs). Chromatin regions marked with H3K27me3 correspond to one class of TADs and PcG proteins participate in long-range interactions of H3K27me3 TADs, whereas insulator proteins seem to be important for separating TADs and may also participate in the regulation of intra TAD architecture. Recent data converge to suggest that this hierarchical organization of chromosome domains plays an important role in genome function during cell proliferation and differentiation.
Collapse
Affiliation(s)
- Thierry Cheutin
- Institute of Human Genetics, CNRS UPR 1142, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France.
| | - Giacomo Cavalli
- Institute of Human Genetics, CNRS UPR 1142, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France.
| |
Collapse
|
29
|
Isono K, Endo TA, Ku M, Yamada D, Suzuki R, Sharif J, Ishikura T, Toyoda T, Bernstein BE, Koseki H. SAM domain polymerization links subnuclear clustering of PRC1 to gene silencing. Dev Cell 2013; 26:565-77. [PMID: 24091011 DOI: 10.1016/j.devcel.2013.08.016] [Citation(s) in RCA: 239] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 06/29/2013] [Accepted: 08/19/2013] [Indexed: 01/01/2023]
Abstract
The Polycomb-group (PcG) repressive complex-1 (PRC1) forms microscopically visible clusters in nuclei; however, the impact of this cluster formation on transcriptional regulation and the underlying mechanisms that regulate this process remain obscure. Here, we report that the sterile alpha motif (SAM) domain of a PRC1 core component Phc2 plays an essential role for PRC1 clustering through head-to-tail macromolecular polymerization, which is associated with stable target binding of PRC1/PRC2 and robust gene silencing activity. We propose a role for SAM domain polymerization in this repression by two distinct mechanisms: first, through capturing and/or retaining PRC1 at the PcG targets, and second, by strengthening the interactions between PRC1 and PRC2 to stabilize transcriptional repression. Our findings reveal a regulatory mechanism mediated by SAM domain polymerization for PcG-mediated repression of developmental loci that enables a robust yet reversible gene repression program during development.
Collapse
Affiliation(s)
- Kyoichi Isono
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), 1-7-22 Suehiro, Tsurumi-ku, Yokohama 230-0045, Japan; CREST, Japan Science and Technology Agency, 1-7-22 Suehiro, Tsurumi-ku, Yokohama 230-0045, Japan; PREST, Japan Science and Technology Agency, 1-7-22 Suehiro, Tsurumi-ku, Yokohama 230-0045, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Polycomb group (PcG) proteins regulate gene expression by modifying chemical and structural properties of chromatin. Isono et al. (2013) now report in Developmental Cell a polymerization-dependent mechanism used by PcG proteins to form higher-order chromatin structures, referred to as Polycomb bodies, and demonstrate its necessity for gene silencing.
Collapse
Affiliation(s)
- Cem Sievers
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | | |
Collapse
|
31
|
Deng W, Buzas DM, Ying H, Robertson M, Taylor J, Peacock WJ, Dennis ES, Helliwell C. Arabidopsis Polycomb Repressive Complex 2 binding sites contain putative GAGA factor binding motifs within coding regions of genes. BMC Genomics 2013; 14:593. [PMID: 24001316 PMCID: PMC3766684 DOI: 10.1186/1471-2164-14-593] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 08/14/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Polycomb Repressive Complex 2 (PRC2) is an essential regulator of gene expression that maintains genes in a repressed state by marking chromatin with trimethylated Histone H3 lysine 27 (H3K27me3). In Arabidopsis, loss of PRC2 function leads to pleiotropic effects on growth and development thought to be due to ectopic expression of seed and embryo-specific genes. While there is some understanding of the mechanisms by which specific genes are targeted by PRC2 in animal systems, it is still not clear how PRC2 is recruited to specific regions of plant genomes. RESULTS We used ChIP-seq to determine the genome-wide distribution of hemagglutinin (HA)-tagged FERTLIZATION INDEPENDENT ENDOSPERM (FIE-HA), the Extra Sex Combs homolog protein present in all Arabidopsis PRC2 complexes. We found that the FIE-HA binding sites co-locate with a subset of the H3K27me3 sites in the genome and that the associated genes were more likely to be de-repressed in mutants of PRC2 components. The FIE-HA binding sites are enriched for three sequence motifs including a putative GAGA factor binding site that is also found in Drosophila Polycomb Response Elements (PREs). CONCLUSIONS Our results suggest that PRC2 binding sites in plant genomes share some sequence features with Drosophila PREs. However, unlike Drosophila PREs which are located in promoters and devoid of H3K27me3, Arabidopsis FIE binding sites tend to be in gene coding regions and co-localize with H3K27me3.
Collapse
Affiliation(s)
- Weiwei Deng
- CSIRO Plant Industry, GPO Box 1600, Canberra ACT 2601, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Liu Y, Chakravarty S, Dey M. Phenethylisothiocyanate alters site- and promoter-specific histone tail modifications in cancer cells. PLoS One 2013; 8:e64535. [PMID: 23724058 PMCID: PMC3665791 DOI: 10.1371/journal.pone.0064535] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 04/16/2013] [Indexed: 01/05/2023] Open
Abstract
Site-specific histone modifications are important epigenetic regulators of gene expression. As deregulation of genes often results in complex disorders, corrective modulation of site-specific histone marks could be a powerful therapeutic or disease-preventive strategy. However, such modulation by dietary compounds and the resulting impact on disease risk remain relatively unexplored. Here we examined phenethylisothiocyanate (PEITC), a common dietary compound derived from cruciferous vegetables with known chemopreventive properties under experimental conditions, as a possible modulator of histone modifications in human colon cancer cells. The present study reports novel, dynamic, site-specific chemical changes to histone H3 in a gene-promoter-specific manner, associated with PEITC exposure in human colon tumor-derived SW480 epithelial cells. In addition, PEITC attenuated cell proliferation in a concentration- and time-dependent manner, likely mediated by caspase-dependent apoptotic signalling. The effects of PEITC on histone modifications and gene expression changes were achieved at low, non-cytotoxic concentrations, in contrast to the higher concentrations necessary to halt cancer cell proliferation. Increased understanding of specific epigenetic alterations by dietary compounds may provide improved chemopreventive strategies for reducing the healthcare burden of cancer and other human diseases.
Collapse
Affiliation(s)
- Yi Liu
- Department of Health & Nutritional Sciences, South Dakota State University, Brookings, South Dakota, United States of America
| | - Suvobrata Chakravarty
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota, United States of America
| | - Moul Dey
- Department of Health & Nutritional Sciences, South Dakota State University, Brookings, South Dakota, United States of America
| |
Collapse
|
33
|
Bantignies F. [Three-dimensional genome organization: a lesson from the Polycomb-Group proteins]. Biol Aujourdhui 2013; 207:19-31. [PMID: 23694722 DOI: 10.1051/jbio/2013002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Indexed: 11/14/2022]
Abstract
As more and more genomes are being explored and annotated, important features of three-dimensional (3D) genome organization are just being uncovered. In the light of what we know about Polycomb group (PcG) proteins, we will present the latest findings on this topic. The PcG proteins are well-conserved chromatin factors that repress transcription of numerous target genes. They bind the genome at specific sites, forming chromatin domains of associated histone modifications as well as higher-order chromatin structures. These 3D chromatin structures involve the interactions between PcG-bound regulatory regions at short- and long-range distances, and may significantly contribute to PcG function. Recent high throughput "Chromosome Conformation Capture" (3C) analyses have revealed many other higher order structures along the chromatin fiber, partitioning the genomes into well demarcated topological domains. This revealed an unprecedented link between linear epigenetic domains and chromosome architecture, which might be intimately connected to genome function.
Collapse
Affiliation(s)
- Frédéric Bantignies
- Institut de Génétique Humaine, CNRS UPR-1142, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France.
| |
Collapse
|
34
|
Razin SV, Gavrilov AA, Ioudinkova ES, Iarovaia OV. Communication of genome regulatory elements in a folded chromosome. FEBS Lett 2013; 587:1840-7. [PMID: 23651551 DOI: 10.1016/j.febslet.2013.04.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 04/22/2013] [Accepted: 04/24/2013] [Indexed: 10/26/2022]
Abstract
The most popular model of gene activation by remote enhancers postulates that the enhancers interact directly with target promoters via the looping of intervening DNA fragments. This interaction is thought to be necessary for the stabilization of the Pol II pre-initiation complex and/or for the transfer of transcription factors and Pol II, which are initially accumulated at the enhancer, to the promoter. The direct interaction of enhancer(s) and promoter(s) is only possible when these elements are located in close proximity within the nuclear space. Here, we discuss the molecular mechanisms for maintaining the close proximity of the remote regulatory elements of the eukaryotic genome. The models of an active chromatin hub (ACH) and an active nuclear compartment are considered, focusing on the role of chromatin folding in juxtaposing remote DNA sequences. The interconnection between the functionally dependent architecture of the interphase chromosome and nuclear compartmentalization is also discussed.
Collapse
Affiliation(s)
- Sergey V Razin
- Institute of Gene Biology of the Russian Academy of Sciences, 119334 Moscow, Russia.
| | | | | | | |
Collapse
|
35
|
Steffen PA, Fonseca JP, Gänger C, Dworschak E, Kockmann T, Beisel C, Ringrose L. Quantitative in vivo analysis of chromatin binding of Polycomb and Trithorax group proteins reveals retention of ASH1 on mitotic chromatin. Nucleic Acids Res 2013; 41:5235-50. [PMID: 23580551 PMCID: PMC3664806 DOI: 10.1093/nar/gkt217] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The Polycomb (PcG) and Trithorax (TrxG) group proteins work antagonistically on several hundred developmentally important target genes, giving stable mitotic memory, but also allowing flexibility of gene expression states. How this is achieved in quantitative terms is poorly understood. Here, we present a quantitative kinetic analysis in living Drosophila of the PcG proteins Enhancer of Zeste, (E(Z)), Pleiohomeotic (PHO) and Polycomb (PC) and the TrxG protein absent, small or homeotic discs 1 (ASH1). Fluorescence recovery after photobleaching and fluorescence correlation spectroscopy reveal highly dynamic chromatin binding behaviour for all proteins, with exchange occurring within seconds. We show that although the PcG proteins substantially dissociate from mitotic chromatin, ASH1 remains robustly associated with chromatin throughout mitosis. Finally, we show that chromatin binding by ASH1 and PC switches from an antagonistic relationship in interphase, to a cooperative one during mitosis. These results provide quantitative insights into PcG and TrxG chromatin-binding dynamics and have implications for our understanding of the molecular nature of epigenetic memory.
Collapse
Affiliation(s)
- Philipp A Steffen
- Institute of Molecular Biotechnology, Dr Bohr-Gasse 3, 1030 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Methylation of the cytosine base in DNA, DNA methylation, is an essential epigenetic mark in mammals that contributes to the regulation of transcription. Several advances have been made in this area in recent years, leading to a leap forward in our understanding of how this pathway contributes to gene regulation during embryonic development, and the functional consequences of its perturbation in human disease. Critical to these advances is a comprehension of the genomic distribution of modified cytosine bases in unprecedented detail, drawing attention to genomic regions beyond gene promoters. In addition, we have a more complete understanding of the multifactorial manner by which DNA methylation influences gene regulation at the molecular level, and which genes rely directly on the DNA methylome for their normal transcriptional regulation. It is becoming apparent that a major role of DNA modification is to act as a relatively stable, and mitotically heritable, template that contributes to the establishment and maintenance of chromatin states. In this regard, interplay is emerging between DNA methylation and the PcG (Polycomb group) proteins, which act as evolutionarily conserved mediators of cell identity. In the present paper we review these aspects of DNA methylation, and discuss how a multifunctional view of DNA modification as an integral part of chromatin organization is influencing our understanding of this epigenetic mark's contribution to transcriptional regulation.
Collapse
|
37
|
Schuettengruber B, Cavalli G. Polycomb domain formation depends on short and long distance regulatory cues. PLoS One 2013; 8:e56531. [PMID: 23437158 PMCID: PMC3577894 DOI: 10.1371/journal.pone.0056531] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 01/10/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Polycomb group (PcG) proteins dynamically define cellular identities through the epigenetic repression of key developmental genes. In Drosophila, cis-regulatory regions termed PcG response elements (PREs) act as nucleation sites for PcG proteins to create large repressive PcG domains that are marked by trimethylation of lysine 27 on histone H3 (H3K27me3). In addition to an action in cis, PREs can interact over long distances, thereby enhancing PcG dependent silencing. How PcG domains are established, which factors limit their propagation in cis, and how long range interactions of PREs in trans affect the chromatin structure is largely unknown. PRINCIPAL FINDINGS We demonstrate that the insertion of a PRE-containing transgene in the Drosophila genome generates an artificial PcG domain and we analyze its organization by quantitative ChIP and ChIP-on-chip experiments. Intriguingly, a boundary element and known insulator proteins do not necessarily interfere with spreading of H3K27me3. Instead, domain borders correlate with the presence of promoter regions bound by RNA Polymerase II and active chromatin marks. In contrast, genes that are silent during early fly development get included within the PcG domain and this incorporation interferes with gene activation at later developmental stages. Moreover, trans-interaction of the transgenic PRE with its homologous endogenous PRE results in increased PcG binding, correlating with reinforced silencing of genes within the domain borders. CONCLUSIONS Our results suggest that higher-order organization of PcG-bound chromatin can stabilize gene silencing within PcG domains. Further we propose that multi-protein complexes associated with active promoters are able to define the limits of PcG domains. Future work aimed to pinpoint the factors providing this barrier function will be required to understand the precise molecular mechanism by which active promoter regions can act as boundaries to stop spreading of H3K27me3.
Collapse
Affiliation(s)
- Bernd Schuettengruber
- Institut de Génétique Humaine, Centre National de la Recherche Scientifique, Montpellier, France
- * E-mail: (GC); (BS)
| | - Giacomo Cavalli
- Institut de Génétique Humaine, Centre National de la Recherche Scientifique, Montpellier, France
- * E-mail: (GC); (BS)
| |
Collapse
|
38
|
H3K36me3 key to Polycomb-mediated gene silencing in lineage specification. Nat Struct Mol Biol 2013; 19:1214-5. [PMID: 23211767 DOI: 10.1038/nsmb.2458] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
39
|
Basic properties of epigenetic systems: lessons from the centromere. Curr Opin Genet Dev 2012; 23:219-27. [PMID: 23219400 DOI: 10.1016/j.gde.2012.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 10/30/2012] [Accepted: 11/05/2012] [Indexed: 11/20/2022]
Abstract
Chromatin-based epigenetic inheritance cooperates with cis-acting DNA sequence information to propagate gene expression states and chromosome architecture across cell division cycles. Histone proteins and their modifications are central components of epigenetic systems but how, and to what extent, they are propagated is a matter of continued debate. Centromeric nucleosomes, marked by the histone H3 variant CENP-A, are stable across mitotic divisions and are assembled in a locus specific and cell cycle controlled manner. The mechanism of inheritance of this unique chromatin domain has important implications for how general nucleosome transmission is controlled in space and time.
Collapse
|
40
|
Casa V, Gabellini D. A repetitive elements perspective in Polycomb epigenetics. Front Genet 2012; 3:199. [PMID: 23060903 PMCID: PMC3465993 DOI: 10.3389/fgene.2012.00199] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 09/17/2012] [Indexed: 01/10/2023] Open
Abstract
Repetitive elements comprise over two-thirds of the human genome. For a long time, these elements have received little attention since they were considered non-functional. On the contrary, recent evidence indicates that they play central roles in genome integrity, gene expression, and disease. Indeed, repeats display meiotic instability associated with disease and are located within common fragile sites, which are hotspots of chromosome re-arrangements in tumors. Moreover, a variety of diseases have been associated with aberrant transcription of repetitive elements. Overall this indicates that appropriate regulation of repetitive elements' activity is fundamental. Polycomb group (PcG) proteins are epigenetic regulators that are essential for the normal development of multicellular organisms. Mammalian PcG proteins are involved in fundamental processes, such as cellular memory, cell proliferation, genomic imprinting, X-inactivation, and cancer development. PcG proteins can convey their activity through long-distance interactions also on different chromosomes. This indicates that the 3D organization of PcG proteins contributes significantly to their function. However, it is still unclear how these complex mechanisms are orchestrated and which role PcG proteins play in the multi-level organization of gene regulation. Intriguingly, the greatest proportion of Polycomb-mediated chromatin modifications is located in genomic repeats and it has been suggested that they could provide a binding platform for Polycomb proteins. Here, these lines of evidence are woven together to discuss how repetitive elements could contribute to chromatin organization in the 3D nuclear space.
Collapse
Affiliation(s)
- Valentina Casa
- Division of Regenerative Medicine, Stem Cells, and Gene Therapy, Dulbecco Telethon Institute and San Raffaele Scientific Institute Milano, Italy ; Università Vita-Salute San Raffaele Milano, Italy
| | | |
Collapse
|
41
|
ter Haar WM, Meester-Smoor MA, van Wely KHM, Schot CCMM, Janssen MJFW, Geverts B, Bonten J, Grosveld GC, Houtsmuller AB, Zwarthoff EC. The leukemia-associated fusion protein MN1-TEL blocks TEL-specific recognition sequences. PLoS One 2012; 7:e46085. [PMID: 23049943 PMCID: PMC3458806 DOI: 10.1371/journal.pone.0046085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 08/28/2012] [Indexed: 11/18/2022] Open
Abstract
The leukemia-associated fusion protein MN1-TEL combines the transcription-activating domains of MN1 with the DNA-binding domain of the transcriptional repressor TEL. Quantitative photobleaching experiments revealed that ∼20% of GFP-tagged MN1 and TEL is transiently immobilised, likely due to indirect or direct DNA binding, since transcription inhibition abolished immobilisation. Interestingly, ∼50% of the MN1-TEL fusion protein was immobile with much longer binding times than unfused MN1 and TEL. MN1-TEL immobilisation was not observed when the TEL DNA-binding domain was disrupted, suggesting that MN1-TEL stably occupies TEL recognition sequences, preventing binding of factors required for proper transcription regulation, which may contribute to leukemogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | - Bart Geverts
- Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Jacqueline Bonten
- Department of Genetics and Tumor Cell Biology, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Gerard C. Grosveld
- Department of Genetics and Tumor Cell Biology, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | | | | |
Collapse
|
42
|
Abstract
The first genes composing the Polycomb group (PcG) were identified 50 years ago in Drosophila melanogaster as essential developmental functions that regulate the correct segmental expression of homeotic selector genes. In the past two decades, what was initially described as a large family of chromatin-associated proteins involved in the maintenance of transcriptional repression to maintain cellular memory of homeotic genes turned out to be a highly conserved and sophisticated network of epigenetic regulators that play key roles in multiple aspects of cell physiology and identity, including regulation of all developmental genes, cell differentiation, stem and somatic cell reprogramming and response to environmental stimuli. These myriad phenotypes further spread interest for the contribution that PcG proteins revealed in the pathogenesis and progression of cancer and other complex diseases. Recent novel insights have increasingly clarified the molecular regulatory mechanisms at the basis of PcG-mediated epigenetic silencing and opened new visions about PcG functions in cells. In this review, we focus on the multiple modes of action of the PcG complexes and describe their biological roles.
Collapse
Affiliation(s)
- Chiara Lanzuolo
- Dulbecco Telethon Institute, Epigenetics and Genome Reprogramming, IRCCS Santa Lucia Foundation, 00143 Rome, Italy
| | | |
Collapse
|
43
|
Steffen PA, Fonseca JP, Ringrose L. Epigenetics meets mathematics: towards a quantitative understanding of chromatin biology. Bioessays 2012; 34:901-13. [PMID: 22911103 DOI: 10.1002/bies.201200076] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
How fast? How strong? How many? So what? Why do numbers matter in biology? Chromatin binding proteins are forever in motion, exchanging rapidly between bound and free pools. How do regulatory systems whose components are in constant flux ensure stability and flexibility? This review explores the application of quantitative and mathematical approaches to mechanisms of epigenetic regulation. We discuss methods for measuring kinetic parameters and protein quantities in living cells, and explore the insights that have been gained by quantifying and modelling dynamics of chromatin binding proteins.
Collapse
|
44
|
Abstract
Long-range interactions between transcription regulatory elements play an important role in gene activation, epigenetic silencing, and chromatin organization. Transcriptional activation or repression of developmentally regulated genes is often accomplished through tissue-specific chromatin architecture and dynamic localization between active transcription factories and repressive Polycomb bodies. However, the mechanisms underlying the structural organization of chromatin and the coordination of physical interactions are not fully understood. Insulators and Polycomb group proteins form highly conserved multiprotein complexes that mediate functional long-range interactions and have proposed roles in nuclear organization. In this review, we explore recent findings that have broadened our understanding of the function of these proteins and provide an integrative model for the roles of insulators in nuclear organization.
Collapse
Affiliation(s)
- Kevin Van Bortle
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
45
|
Fonseca JP, Steffen PA, Müller S, Lu J, Sawicka A, Seiser C, Ringrose L. In vivo Polycomb kinetics and mitotic chromatin binding distinguish stem cells from differentiated cells. Genes Dev 2012; 26:857-71. [PMID: 22508729 DOI: 10.1101/gad.184648.111] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Epigenetic memory mediated by Polycomb group (PcG) proteins must be maintained during cell division, but must also be flexible to allow cell fate transitions. Here we quantify dynamic chromatin-binding properties of PH::GFP and PC::GFP in living Drosophila in two cell types that undergo defined differentiation and mitosis events. Quantitative fluorescence recovery after photobleaching (FRAP) analysis demonstrates that PcG binding has a higher plasticity in stem cells than in more determined cells and identifies a fraction of PcG proteins that binds mitotic chromatin with up to 300-fold longer residence times than in interphase. Mathematical modeling examines which parameters best distinguish stem cells from differentiated cells. We identify phosphorylation of histone H3 at Ser 28 as a potential mechanism governing the extent and rate of mitotic PC dissociation in different lineages. We propose that regulation of the kinetic properties of PcG-chromatin binding is an essential factor in the choice between stability and flexibility in the establishment of cell identities.
Collapse
|
46
|
Cheutin T, Cavalli G. Progressive polycomb assembly on H3K27me3 compartments generates polycomb bodies with developmentally regulated motion. PLoS Genet 2012; 8:e1002465. [PMID: 22275876 PMCID: PMC3262012 DOI: 10.1371/journal.pgen.1002465] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 11/22/2011] [Indexed: 11/24/2022] Open
Abstract
Polycomb group (PcG) proteins are conserved chromatin factors that maintain silencing of key developmental genes outside of their expression domains. Recent genome-wide analyses showed a Polycomb (PC) distribution with binding to discrete PcG response elements (PREs). Within the cell nucleus, PcG proteins localize in structures called PC bodies that contain PcG-silenced genes, and it has been recently shown that PREs form local and long-range spatial networks. Here, we studied the nuclear distribution of two PcG proteins, PC and Polyhomeotic (PH). Thanks to a combination of immunostaining, immuno-FISH, and live imaging of GFP fusion proteins, we could analyze the formation and the mobility of PC bodies during fly embryogenesis as well as compare their behavior to that of the condensed fraction of euchromatin. Immuno-FISH experiments show that PC bodies mainly correspond to 3D structural counterparts of the linear genomic domains identified in genome-wide studies. During early embryogenesis, PC and PH progressively accumulate within PC bodies, which form nuclear structures localized on distinct euchromatin domains containing histone H3 tri-methylated on K27. Time-lapse analysis indicates that two types of motion influence the displacement of PC bodies and chromatin domains containing H2Av-GFP. First, chromatin domains and PC bodies coordinately undergo long-range motions that may correspond to the movement of whole chromosome territories. Second, each PC body and chromatin domain has its own fast and highly constrained motion. In this motion regime, PC bodies move within volumes slightly larger than those of condensed chromatin domains. Moreover, both types of domains move within volumes much smaller than chromosome territories, strongly restricting their possibility of interaction with other nuclear structures. The fast motion of PC bodies and chromatin domains observed during early embryogenesis strongly decreases in late developmental stages, indicating a possible contribution of chromatin dynamics in the maintenance of stable gene silencing. The three-dimensional organization of genes and associated proteins is critical for gene regulation. Polycomb group proteins are important developmental regulators controlling the expression of hundreds of genes. They are not homogeneously distributed in the cell nucleus, instead forming nuclear subcompartments called Polycomb bodies. We investigated the dynamics of Polycomb bodies during Drosophila embryonic development, demonstrating that two Polycomb proteins, Polycomb and Polyhomeotic, gradually assemble onto bodies enriched in histone H3 trimethylated on lysine 27, a hallmark of Polycomb silencing. Polycomb bodies are not the most condensed euchromatic part of the genome. Instead, a large amount of genomic chromatin is organized in a histone- and DNA–dense structure distinct from Polycomb bodies. Polycomb bodies move, meet, and split dynamically during development. Their motion has two regimes: a fast, highly constrained motion and a slower regime where multiple bodies undergo long-range coordinated movements potentially corresponding to chromosome territory movements. These regimes are not restricted to Polycomb but also extend to bulk “condensed euchromatin,” which is characterized by slower motion and a narrower radius of confinement. Both motion regimes progressively slow down during development, suggesting that regulation of chromatin dynamics may play an important role in the maintenance of gene silencing in differentiated cells.
Collapse
Affiliation(s)
- Thierry Cheutin
- Institut de Génétique Humaine, CNRS UPR 1142, Montpellier, France
| | - Giacomo Cavalli
- Institut de Génétique Humaine, CNRS UPR 1142, Montpellier, France
- * E-mail:
| |
Collapse
|
47
|
Pirrotta V, Li HB. A view of nuclear Polycomb bodies. Curr Opin Genet Dev 2011; 22:101-9. [PMID: 22178420 DOI: 10.1016/j.gde.2011.11.004] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Revised: 11/10/2011] [Accepted: 11/28/2011] [Indexed: 12/27/2022]
Abstract
Polycomb group (PcG) proteins are concentrated in nuclear foci called PcG bodies. Although some of these foci are due to the tendency of PcG binding sites in the genome to occur in linear clusters, distant PcG sites can contact one another and in some cases congregate in the same PcG body when they are repressed. Experiments using transgenes containing PcG binding sites reveal that co-localization depends on the presence of insulator elements rather than of Polycomb Response Elements (PREs) and that it can occur also when the transgenes are in the active state. A model is proposed according to which insulator proteins mediate shuttling of PcG target genes between PcG bodies when repressed to transcription factories when transcriptionally active.
Collapse
Affiliation(s)
- Vincenzo Pirrotta
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA.
| | | |
Collapse
|
48
|
PcG complexes set the stage for epigenetic inheritance of gene silencing in early S phase before replication. PLoS Genet 2011; 7:e1002370. [PMID: 22072989 PMCID: PMC3207895 DOI: 10.1371/journal.pgen.1002370] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 09/20/2011] [Indexed: 11/19/2022] Open
Abstract
Polycomb group (PcG) proteins are part of a conserved cell memory system that conveys epigenetic inheritance of silenced transcriptional states through cell division. Despite the considerable amount of information about PcG mechanisms controlling gene silencing, how PcG proteins maintain repressive chromatin during epigenome duplication is still unclear. Here we identified a specific time window, the early S phase, in which PcG proteins are recruited at BX-C PRE target sites in concomitance with H3K27me3 repressive mark deposition. Notably, these events precede and are uncoupled from PRE replication timing, which occurs in late S phase when most epigenetic signatures are reduced. These findings shed light on one of the key mechanisms for PcG-mediated epigenetic inheritance during S phase, suggesting a conserved model in which the PcG-dependent H3K27me3 mark is inherited by dilution and not by de novo methylation occurring at the time of replication.
Collapse
|
49
|
Abstract
Remote distal enhancers may be located tens or thousands of kilobases away from their promoters. How they control gene expression is still poorly understood. Here, we analyze the influence of a remote enhancer on the balance between repression (Polycomb-PcG) and activation (Trithorax-TrxG) of a developmentally regulated gene associated with a CpG island. We reveal its essential, nonredundant role in clearing the PcG complex and H3K27me3 from the CpG island. In the absence of the enhancer, the H3K27me3 demethylase (JMJD3) is not recruited to the CpG island. We propose a new role of long-range regulatory elements in removing repressive PcG complexes.
Collapse
|
50
|
Bantignies F, Cavalli G. Polycomb group proteins: repression in 3D. Trends Genet 2011; 27:454-64. [PMID: 21794944 DOI: 10.1016/j.tig.2011.06.008] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 06/17/2011] [Accepted: 06/20/2011] [Indexed: 10/17/2022]
Abstract
Polycomb group (PcG) proteins are well-conserved chromatin factors that repress the transcription of their target genes. They bind to the genome at specific sites and act on chromatin through the regulation of both post-translational histone modifications and higher-order chromatin structure. Recent work has revealed that PcG-bound regulatory regions can interact with promoters and modulate their activity via mechanisms involving looping between regulatory elements and also long-distance interactions in cis or in trans (on different chromosomes). This indicates that the 3D organization of PcG proteins contributes significantly to their function. Moreover, because long-range chromosomal contacts have been shown to involve many genomic loci in addition to Polycomb target genes, their regulatory impact could extend beyond the function of Polycomb proteins.
Collapse
Affiliation(s)
- Frédéric Bantignies
- Institut de Génétique Humaine, Centre National de la Recherche Scientifique (CNRS) Unité Propre de Recherche 1142, 141, rue de la Cardonille, 34396 Montpellier CEDEX 5, France.
| | | |
Collapse
|