1
|
Hu B, Rodriguez JJ, Kakkerla Balaraju A, Gao Y, Nguyen NT, Steen H, Suhaib S, Chen S, Lin F. Glypican 4 mediates Wnt transport between germ layers via signaling filopodia. J Cell Biol 2021; 220:212673. [PMID: 34591076 PMCID: PMC8488972 DOI: 10.1083/jcb.202009082] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 07/18/2021] [Accepted: 09/08/2021] [Indexed: 12/31/2022] Open
Abstract
Glypicans influence signaling pathways by regulating morphogen trafficking and reception. However, the underlying mechanisms in vertebrates are poorly understood. In zebrafish, Glypican 4 (Gpc4) is required for convergence and extension (C&E) of both the mesoderm and endoderm. Here, we show that transgenic expression of GFP-Gpc4 in the endoderm of gpc4 mutants rescued C&E defects in all germ layers. The rescue of mesoderm was likely mediated by Wnt5b and Wnt11f2 and depended on signaling filopodia rather than on cleavage of the Gpc4 GPI anchor. Gpc4 bound both Wnt5b and Wnt11f2 and regulated formation of the filopodia that transport Wnt5b and Wnt11f2 to neighboring cells. Moreover, this rescue was suppressed by blocking signaling filopodia that extend from endodermal cells. Thus, GFP-Gpc4–labeled protrusions that emanated from endodermal cells transported Wnt5b and Wnt11f2 to other germ layers, rescuing the C&E defects caused by a gpc4 deficiency. Our study reveals a new mechanism that could explain in vivo morphogen distribution involving Gpc4.
Collapse
Affiliation(s)
- Bo Hu
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, IA
| | - Juan J Rodriguez
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, IA
| | - Anurag Kakkerla Balaraju
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, IA
| | - Yuanyuan Gao
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, IA
| | - Nhan T Nguyen
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, IA
| | - Heston Steen
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, IA
| | - Saeb Suhaib
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, IA
| | - Songhai Chen
- Department of Neuroscience and Pharmacology, Carver College of Medicine, The University of Iowa, Iowa City, IA
| | - Fang Lin
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, IA
| |
Collapse
|
2
|
Kawatani K, Nambara T, Nawa N, Yoshimatsu H, Kusakabe H, Hirata K, Tanave A, Sumiyama K, Banno K, Taniguchi H, Arahori H, Ozono K, Kitabatake Y. A human isogenic iPSC-derived cell line panel identifies major regulators of aberrant astrocyte proliferation in Down syndrome. Commun Biol 2021; 4:730. [PMID: 34127780 PMCID: PMC8203796 DOI: 10.1038/s42003-021-02242-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 05/18/2021] [Indexed: 12/15/2022] Open
Abstract
Astrocytes exert adverse effects on the brains of individuals with Down syndrome (DS). Although a neurogenic-to-gliogenic shift in the fate-specification step has been reported, the mechanisms and key regulators underlying the accelerated proliferation of astrocyte precursor cells (APCs) in DS remain elusive. Here, we established a human isogenic cell line panel based on DS-specific induced pluripotent stem cells, the XIST-mediated transcriptional silencing system in trisomic chromosome 21, and genome/chromosome-editing technologies to eliminate phenotypic fluctuations caused by genetic variation. The transcriptional responses of genes observed upon XIST induction and/or downregulation are not uniform, and only a small subset of genes show a characteristic expression pattern, which is consistent with the proliferative phenotypes of DS APCs. Comparative analysis and experimental verification using gene modification reveal dose-dependent proliferation-promoting activity of DYRK1A and PIGP on DS APCs. Our collection of human isogenic cell lines provides a comprehensive set of cellular models for further DS investigations. Keiji Kawatani et al. developed a panel of Down syndrome (DS) isogenic astrocytes derived from iPSCs to observe the consequence of DS on astrocyte precursor proliferation, differentiation, and gene expression. Their results suggest a dose-dependent effect of DYRK1A and PIGP on DS-derived astrocyte precursor proliferation, and represent a valuable resource and cellular model for future DS research.
Collapse
Affiliation(s)
- Keiji Kawatani
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Toshihiko Nambara
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Nobutoshi Nawa
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hidetaka Yoshimatsu
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Haruna Kusakabe
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Katsuya Hirata
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.,Department of Neonatal Medicine, Osaka Women's and Children's Hospital, Izumi, Osaka, Japan
| | - Akira Tanave
- Laboratory for Mouse Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
| | - Kenta Sumiyama
- Laboratory for Mouse Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
| | - Kimihiko Banno
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.,Department of Physiology II, Nara Medical University, Kashihara, Nara, Japan
| | - Hidetoshi Taniguchi
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hitomi Arahori
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Keiichi Ozono
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yasuji Kitabatake
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
3
|
Loreti M, Shi DL, Carron C. The regulatory proteins DSCR6 and Ezh2 oppositely regulate Stat3 transcriptional activity in mesoderm patterning during Xenopus development. J Biol Chem 2020; 295:2724-2735. [PMID: 31996376 DOI: 10.1074/jbc.ra119.010719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 01/15/2020] [Indexed: 12/26/2022] Open
Abstract
Embryonic cell fate specification and axis patterning requires integration of several signaling pathways that orchestrate region-specific gene expression. The transcription factor signal transducer and activator of transcription 3 (Stat3) plays important roles during early development, but it is unclear how Stat3 is activated. Here, using Xenopus as a model, we analyzed the post-translational regulation and functional consequences of Stat3 activation in dorsoventral axis patterning. We show that Stat3 phosphorylation, lysine methylation, and transcriptional activity increase before gastrulation and induce ventral mesoderm formation. Down syndrome critical region gene 6 (DSCR6), a RIPPLY family member that induces dorsal mesoderm by releasing repressive polycomb group proteins from chromatin, bound to the Stat3 C-terminal region and antagonized its transcriptional and ventralizing activities by interfering with its lysine methylation. Enhancer of zeste 2 polycomb-repressive complex 2 subunit (Ezh2) also bound to this region; however, its methyltransferase activity was required for Stat3 methylation and activation. Loss of Ezh2 resulted in dorsalization of ventral mesoderm and formation of a secondary axis. Furthermore, interference with Ezh2 phosphorylation also prevented Stat3 lysine methylation and transcriptional activity. Thus, inhibition of either Ezh2 phosphorylation or Stat3 lysine methylation compensated for the absence of DSCR6 function. These results reveal that DSCR6 and Ezh2 critically and post-translationally regulate Stat3 transcriptional activity. Ezh2 promotes Stat3 activation in ventral mesoderm formation independently of epigenetic regulation, whereas DSCR6 specifies dorsal fate by counteracting this ventralizing activity. This antagonism helps pattern the mesoderm along the dorsoventral axis, representing a critical facet of cell identity regulation during development.
Collapse
Affiliation(s)
- Mafalda Loreti
- Sorbonne Université, CNRS UMR7622, IBPS-Developmental Biology Laboratory, 75005 Paris, France
| | - De-Li Shi
- Sorbonne Université, CNRS UMR7622, IBPS-Developmental Biology Laboratory, 75005 Paris, France.
| | - Clémence Carron
- Sorbonne Université, CNRS UMR7622, IBPS-Developmental Biology Laboratory, 75005 Paris, France.
| |
Collapse
|
4
|
Komath SS, Singh SL, Pratyusha VA, Sah SK. Generating anchors only to lose them: The unusual story of glycosylphosphatidylinositol anchor biosynthesis and remodeling in yeast and fungi. IUBMB Life 2019; 70:355-383. [PMID: 29679465 DOI: 10.1002/iub.1734] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/16/2018] [Accepted: 02/22/2018] [Indexed: 02/06/2023]
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) are present ubiquitously at the cell surface in all eukaryotes. They play a crucial role in the interaction of the cell with its external environment, allowing the cell to receive signals, respond to challenges, and mediate adhesion. In yeast and fungi, they also participate in the structural integrity of the cell wall and are often essential for survival. Roughly four decades after the discovery of the first GPI-APs, this review provides an overview of the insights gained from studies of the GPI biosynthetic pathway and the future challenges in the field. In particular, we focus on the biosynthetic pathway in Saccharomyces cerevisiae, which has for long been studied as a model organism. Where available, we also provide information about the GPI biosynthetic steps in other yeast/ fungi. Although the core structure of the GPI anchor is conserved across organisms, several variations are built into the biosynthetic pathway. The present Review specifically highlights these variations and their implications. There is growing evidence to suggest that several phenotypes are common to GPI deficiency and should be expected in GPI biosynthetic mutants. However, it appears that several phenotypes are unique to a specific step in the pathway and may even be species-specific. These could suggest the points at which the GPI biosynthetic pathway intersects with other important cellular pathways and could be points of regulation. They could be of particular significance in the study of pathogenic fungi and in identification of new and specific antifungal drugs/ drug targets. © 2018 IUBMB Life, 70(5):355-383, 2018.
Collapse
Affiliation(s)
| | - Sneh Lata Singh
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - Sudisht Kumar Sah
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
5
|
Down Syndrome, Obesity, Alzheimer's Disease, and Cancer: A Brief Review and Hypothesis. Brain Sci 2018; 8:brainsci8040053. [PMID: 29587359 PMCID: PMC5924389 DOI: 10.3390/brainsci8040053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 03/15/2018] [Accepted: 03/22/2018] [Indexed: 12/19/2022] Open
Abstract
Down syndrome (trisomy 21), a complex mix of physical, mental, and biochemical issues, includes an increased risk of Alzheimer’s disease and childhood leukemia, a decreased risk of other tumors, and a high frequency of overweight/obesity. Certain features related to the third copy of chromosome 21 (which carries the APP gene and several anti-angiogenesis genes) create an environment favorable for Alzheimer’s disease and unfavorable for cancer. This environment may be enhanced by two bioactive compounds from fat cells, leptin, and adiponectin. This paper outlines these fat-related disease mechanisms and suggests new avenues of research to reduce disease risk in Down syndrome.
Collapse
|
6
|
Leucine repeat adaptor protein 1 interacts with Dishevelled to regulate gastrulation cell movements in zebrafish. Nat Commun 2017; 8:1353. [PMID: 29116181 PMCID: PMC5677176 DOI: 10.1038/s41467-017-01552-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 09/27/2017] [Indexed: 01/08/2023] Open
Abstract
Gastrulation is a fundamental morphogenetic event that requires polarised cell behaviours for coordinated asymmetric cell movements. Wnt/PCP signalling plays a critical role in this process. Dishevelled is an important conserved scaffold protein that relays Wnt/PCP signals from membrane receptors to the modulation of cytoskeleton organisation. However, it remains unclear how its activity is regulated for the activation of downstream effectors. Here, we report that Lurap1 is a Dishevelled-interacting protein that regulates Wnt/PCP signalling in convergence and extension movements during vertebrate gastrulation. Its loss-of-function leads to enhanced Dishevelled membrane localisation and increased JNK activity. In maternal-zygotic lurap1 mutant zebrafish embryos, cell polarity and directional movement are disrupted. Time-lapse analyses indicate that Lurap1, Dishevelled, and JNK functionally interact to orchestrate polarised cellular protrusive activity, and Lurap1 is required for coordinated centriole/MTOC positioning in movement cells. These findings demonstrate that Lurap1 functions to regulate cellular polarisation and motile behaviours during gastrulation movements. Gastrulation is an early morphogenic event driven by coordinated asymmetric/polarised cell movements. Here, the authors show in zebrafish that Lurap1, a protein that interacts with Dishevelled, regulates Wnt and planar cell polarity, coordinating centriole positioning during convergence and extension.
Collapse
|
7
|
Shao M, Cheng XN, Liu YY, Li JT, Shi DL. Transplantation of Zebrafish Cells by Conventional Pneumatic Microinjector. Zebrafish 2017; 15:73-76. [PMID: 29023202 DOI: 10.1089/zeb.2017.1495] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Generating chimeric zebrafish by transplantation is extremely useful for live imaging in developmental, stem cell, and cancer biology, and to answer the questions of how cells acquire, keep, and/or change their fate. However, as it is technically challenging, the use of transplantation approach remains very limited by the zebrafish community. In this study, we show that this cell grafting operation can be easily achieved by using a conventional pneumatic microinjector normally used for microinjections. Compared with previously published protocols, which need additional transplantation apparatus, this alternative transplantation method works well, but needs a simpler experimental setup, and is more accessible to all investigators.
Collapse
Affiliation(s)
- Ming Shao
- 1 School of Life Science, Shandong University , Jinan, China
| | - Xiao-Ning Cheng
- 1 School of Life Science, Shandong University , Jinan, China
| | - Yuan-Yuan Liu
- 1 School of Life Science, Shandong University , Jinan, China
| | - Ji-Tong Li
- 1 School of Life Science, Shandong University , Jinan, China
| | - De-Li Shi
- 1 School of Life Science, Shandong University , Jinan, China .,2 IBPS-Developmental Biology Laboratory, UPMC Univ Paris 06, CNRS UMR7622, Sorbonne Universités , Paris, France
| |
Collapse
|
8
|
Qi J, Lee HJ, Saquet A, Cheng XN, Shao M, Zheng JJ, Shi DL. Autoinhibition of Dishevelled protein regulated by its extreme C terminus plays a distinct role in Wnt/β-catenin and Wnt/planar cell polarity (PCP) signaling pathways. J Biol Chem 2017; 292:5898-5908. [PMID: 28223363 DOI: 10.1074/jbc.m116.772509] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/19/2017] [Indexed: 12/20/2022] Open
Abstract
Dishevelled (Dvl) is a key intracellular signaling molecule that mediates the activation of divergent Wnt pathways. It contains three highly conserved domains known as DIX, PDZ, and DEP, the functions of which have been well characterized in β-catenin-dependent canonical and β-catenin-independent noncanonical Wnt signaling. The C-terminal region is also highly conserved from invertebrates to vertebrates. However, its function in regulating the activation of different Wnt signals remains unclear. We reported previously that Dvl conformational change triggered by the highly conserved PDZ-binding C terminus is important for the pathway specificity. Here we provide further evidence demonstrating that binding of the C terminus to the PDZ domain results in Dvl autoinhibition in the Wnt signaling pathways. Therefore, the forced binding of the C terminus to the PDZ domain reduces the activity of Dvl in noncanonical Wnt signaling, whereas obstruction of this interaction releases Dvl autoinhibition, impairs its functional interaction with LRP6 in canonical Wnt signaling, and increases its specificity in noncanonical Wnt signaling, which is closely correlated with an enhanced Dvl membrane localization. Our findings highlight the importance of the C terminus in keeping Dvl in an appropriate autoinhibited state, accessible for regulation by other partners to switch pathway specificity. Particularly, the C-terminally tagged Dvl fusion proteins that have been widely used to study the function and cellular localization of Dvl may not truly represent the wild-type Dvl because those proteins cannot be autoinhibited.
Collapse
Affiliation(s)
- Jing Qi
- From the School of Life Sciences, Shandong University, 27 Shanda Nan Road, Jinan 250100, China.,the Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China, and
| | - Ho-Jin Lee
- the Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105-3678
| | - Audrey Saquet
- the Institut de Biologie Paris-Seine (IBPS)-Developmental Biology Laboratory, Sorbonne Universités-Université Pierre et Marie Curie (UPMC), University of Paris 06, CNRS UMR7622, 75005 Paris, France
| | - Xiao-Ning Cheng
- From the School of Life Sciences, Shandong University, 27 Shanda Nan Road, Jinan 250100, China
| | - Ming Shao
- From the School of Life Sciences, Shandong University, 27 Shanda Nan Road, Jinan 250100, China
| | - Jie J Zheng
- the Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105-3678, .,the Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095.,the Molecular Biology Institute, UCLA, Los Angeles, California 90095
| | - De-Li Shi
- From the School of Life Sciences, Shandong University, 27 Shanda Nan Road, Jinan 250100, China, .,the Institut de Biologie Paris-Seine (IBPS)-Developmental Biology Laboratory, Sorbonne Universités-Université Pierre et Marie Curie (UPMC), University of Paris 06, CNRS UMR7622, 75005 Paris, France
| |
Collapse
|
9
|
Levetiracetam resistance: Synaptic signatures & corresponding promoter SNPs in epileptic hippocampi. Neurobiol Dis 2013; 60:115-25. [DOI: 10.1016/j.nbd.2013.08.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/22/2013] [Accepted: 08/27/2013] [Indexed: 01/16/2023] Open
|
10
|
Kong W, Yang Y, Zhang T, Shi DL, Zhang Y. Characterization of sFRP2-like in amphioxus: insights into the evolutionary conservation of Wnt antagonizing function. Evol Dev 2013; 14:168-77. [PMID: 23017025 DOI: 10.1111/j.1525-142x.2012.00533.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Wnt signaling plays a key role in embryonic patterning and morphogenetic movements. The secreted Frizzled-related proteins (sFRPs) antagonize Wnt signaling, but their roles in development are poorly understood. To determine whether function of sFRPs is conserved between amphioxus and vertebrates, we characterized sFRP2-like function in the amphioxus, Branchiostoma belcheri tsingtauense (B. belcheri). As in other species of Branchiostome, in B. belcheri, expression of sFRP2-like is restricted to the mesendoderm during gastrulation and to the anterior mesoderm and endoderm during neurulation. Functional analyses in frog (Xenopus laevis) indicate that amphioxus sFRP2-like potently inhibits both canonical and non-canonical Wnts. Thus, sFRP-2 probably functions in amphioxus embryos to inhibit Wnt signaling anteriorly. Moreover, dorsal overexpression of amphioxus sFRP2-like in Xenopus embryos, like inhibition of Wnt11, blocks gastrulation movements. This implies that sFRP2-like may also modulate Wnt signaling during gastrulation movements in amphioxus.
Collapse
Affiliation(s)
- Weihua Kong
- Institute of Developmental Biology, School of Life Sciences, Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Shandong University, Jinan, 250100, China
| | | | | | | | | |
Collapse
|
11
|
Kwan HT, Chan DW, Cai PCH, Mak CSL, Yung MMH, Leung THY, Wong OGW, Cheung ANY, Ngan HYS. AMPK activators suppress cervical cancer cell growth through inhibition of DVL3 mediated Wnt/β-catenin signaling activity. PLoS One 2013; 8:e53597. [PMID: 23301094 PMCID: PMC3534705 DOI: 10.1371/journal.pone.0053597] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 11/30/2012] [Indexed: 12/18/2022] Open
Abstract
Recent evidence has suggested that AMPK activators may be applied as therapeutic drugs in suppressing cancer cell growth. However, the molecular mechanism of their suppressive function in cancer cells is still unclear. Here we show that AMPK activators impair cervical cancer cell growth through the reduction of DVL3, a positive regulator in Wnt/β-catenin signaling and an oncogenic player in cervical cancer tumorigenesis. By western blot and immunohistochemical analyses, we demonstrated that DVL3 was frequently upregulated and significantly associated with elevated β-catenin (P = 0.009) and CyclinD1 (P = 0.009) expressions in cervical cancer. Enforced expression of DVL3 elevated β-catenin and augmented cervical cancer cell growth, verifying that DVL3-mediated Wnt/β-catenin activation is involved in cervical cancer oncogenesis. On the other aspect, we noted that the cervical cancer cell growth was remarkably suppressed by AMPK activators and such cell growth inhibition was in concomitant with the reduction of DVL3 protein level in dose- and time-dependent manners. Besides, impaired mTOR signaling activity also reduced DVL3 expression. In contrast, co-treatment with Compound C (AMPK inhibitor) could significantly abrogate metformin induced DVL3 reduction. In addition, co-treatment with AM114 or MG132 (proteosomal inhibitors) could partially restore DVL3 expression under the treatment of metformin. Further in vivo ubiquitination assay revealed that metformin could reduce DVL3 by ubiquitin/proteasomal degradation. To our knowledge, this is the first report showing the probable molecular mechanisms of that the AMPK activators suppress cervical cancer cell growth by impairing DVL3 protein synthesis via AMPK/mTOR signaling and/or partially promoting the proteasomal degradation of DVL3.
Collapse
Affiliation(s)
- H. T. Kwan
- Departments of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - David W. Chan
- Departments of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P. R. China
- * E-mail: (HYSN); (DWC)
| | - Patty C. H. Cai
- Departments of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Celia S. L. Mak
- Departments of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Mingo M. H. Yung
- Departments of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Thomas H. Y. Leung
- Departments of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Oscar G. W. Wong
- Department of Pathology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Annie N. Y. Cheung
- Department of Pathology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Hextan Y. S. Ngan
- Departments of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P. R. China
- * E-mail: (HYSN); (DWC)
| |
Collapse
|
12
|
Cao JM, Li SQ, Zhang HW, Shi DL. High mobility group B proteins regulate mesoderm formation and dorsoventral patterning during zebrafish and Xenopus early development. Mech Dev 2012; 129:263-74. [DOI: 10.1016/j.mod.2012.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 06/29/2012] [Accepted: 07/02/2012] [Indexed: 10/28/2022]
|
13
|
Mutual co-regulation between GPI-N-acetylglucosaminyltransferase and ergosterol biosynthesis in Candida albicans. Biochem J 2012; 443:619-25. [DOI: 10.1042/bj20120143] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A novel co-regulation exists between the first step of GPI (glycosylphosphatidylinositol) anchor biosynthesis and the rate-determining step of ergosterol biosynthesis in Candida albicans. Depleting CaGpi19p, an accessory subunit of the enzyme complex that initiates GPI biosynthesis, down-regulates ERG11, altering ergosterol levels and drug response. This effect is specific to CaGpi19p depletion and is not due to cell wall defects or GPI deficiency. Additionally, down-regulation of ERG11 down-regulates CaGPI19 and GPI biosynthesis.
Collapse
|
14
|
Victoria GS, Kumar P, Komath SS. The Candida albicans homologue of PIG-P, CaGpi19p: gene dosage and role in growth and filamentation. Microbiology (Reading) 2010; 156:3041-3051. [DOI: 10.1099/mic.0.039628-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Glycosylphosphatidyl inositol (GPI)-anchored proteins in Candida albicans are responsible for a vast range of functions, and deletions in certain GPI-anchored proteins severely reduce adhesion and virulence of this organism. In addition, completely modified GPIs are necessary for virulence. GPI anchor biosynthesis is essential for viability and starts with the transfer of N-acetylglucosamine to phosphatidylinositol. This step is catalysed by a multi-subunit complex, GPI–N-acetylglucosaminyltransferase (GPI–GnT). In this, the first report to our knowledge on a subunit of the Candida GPI–GnT complex, we show that CaGpi19p is the functional equivalent of the Saccharomyces cerevisiae Gpi19p. An N-terminal truncation mutant of CaGpi19p functionally complements a conditionally lethal S. cerevisiae gpi19 mutant. Further, we constructed a conditional null mutant of CaGPI19 by disrupting one allele and placing the remaining copy under the control of the MET3 promoter. Repression leads to growth defects, cell wall biogenesis aberrations, azole sensitivity and hyperfilamention. In addition, there is a noticeable gene dosage effect, with the heterozygote also displaying intermediate degrees of most phenotypes. The mutants also displayed a reduced susceptibility to the antifungal agent amphotericin B. Collectively, the results suggest that CaGPI19 is required for normal morphology and cell wall architecture.
Collapse
Affiliation(s)
| | - Pravin Kumar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sneha Sudha Komath
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
15
|
Zhang Y, Shao M, Wang L, Liu Z, Gao M, Liu C, Zhang H. Ethanol exposure affects cell movement during gastrulation and induces split axes in zebrafish embryos. Int J Dev Neurosci 2010; 28:283-8. [PMID: 20394815 DOI: 10.1016/j.ijdevneu.2010.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2008] [Revised: 03/15/2010] [Accepted: 04/07/2010] [Indexed: 11/24/2022] Open
Abstract
To explore the toxic effects of ethanol on axis formation during embryogenesis, zebrafish embryos at different developmental stages were treated with 3% ethanol for 3h. The effects of ethanol exposure appeared to be stage-dependent. The dome stage embryo was most sensible to form posterior split axes upon ethanol exposure. Morphological and histological observations and whole-mount in situ hybridization results showed that ethanol exposure at this stage caused a general gastrulation delay, and induced double notochords, double neural tubes and two sets of somites in the posterior trunk. Mechanistically, no ectopic organizer was found by examining the expression patterns of dorsoventral markers including goosecoid, chordin and eve1 at the onset of gastrulation. However, radial intercalation, epiboly and convergence extension were inhibited by ethanol exposure as revealed by cell labeling, phenotypic observation and the expression patterns of axial or paraxial markers. Further investigation showed that the cell aggregation might be affected by ethanol exposure, as indicated by the much more scattered expression pattern of chordin, eve1 and wnt11 at the early gastrula stage, and the discontinuous gsc positive cells during migration. These results imply that ethanol might affect cell movement before and during gastrulation and as a consequence, induces a split axes phenotype.
Collapse
Affiliation(s)
- Ying Zhang
- Institute of Developmental Biology, College of Life Science, Key Lab of Experimental Teratology of Ministry of Education, Shandong University, 27 Shanda South Road, Jinan, Shandong 250100, China.
| | | | | | | | | | | | | |
Collapse
|
16
|
Ahrens MJ, Li Y, Jiang H, Dudley AT. Convergent extension movements in growth plate chondrocytes require gpi-anchored cell surface proteins. Development 2009; 136:3463-74. [PMID: 19762422 DOI: 10.1242/dev.040592] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Proteins that are localized to the cell surface via glycosylphosphatidylinositol (gpi) anchors have been proposed to regulate cell signaling and cell adhesion events involved in tissue patterning. Conditional deletion of Piga, which encodes the catalytic subunit of an essential enzyme in the gpi-biosynthetic pathway, in the lateral plate mesoderm results in normally patterned limbs that display chondrodysplasia. Analysis of mutant and mosaic Piga cartilage revealed two independent cell autonomous defects. First, loss of Piga function interferes with signal reception by chondrocytes as evidenced by delayed maturation. Second, the proliferative chondrocytes, although present, fail to flatten and arrange into columns. We present evidence that the abnormal organization of mutant proliferative chondrocytes results from errors in cell intercalation. Collectively, our data suggest that the distinct morphological features of the proliferative chondrocytes result from a convergent extension-like process that is regulated independently of chondrocyte maturation.
Collapse
Affiliation(s)
- Molly J Ahrens
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, IL 60208, USA
| | | | | | | |
Collapse
|