1
|
Swartz SZ, Nguyen HT, McEwan BC, Adamo ME, Cheeseman IM, Kettenbach AN. Selective dephosphorylation by PP2A-B55 directs the meiosis I-meiosis II transition in oocytes. eLife 2021; 10:70588. [PMID: 34342579 PMCID: PMC8370769 DOI: 10.7554/elife.70588] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/02/2021] [Indexed: 12/17/2022] Open
Abstract
Meiosis is a specialized cell cycle that requires sequential changes to the cell division machinery to facilitate changing functions. To define the mechanisms that enable the oocyte-to-embryo transition, we performed time-course proteomics in synchronized sea star oocytes from prophase I through the first embryonic cleavage. Although we found that protein levels were broadly stable, our analysis reveals that dynamic waves of phosphorylation underlie each meiotic stage. We found that the phosphatase PP2A-B55 is reactivated at the meiosis I/meiosis II (MI/MII) transition, resulting in the preferential dephosphorylation of threonine residues. Selective dephosphorylation is critical for directing the MI/MII transition as altering PP2A-B55 substrate preferences disrupts key cell cycle events after MI. In addition, threonine to serine substitution of a conserved phosphorylation site in the substrate INCENP prevents its relocalization at anaphase I. Thus, through its inherent phospho-threonine preference, PP2A-B55 imposes specific phosphoregulated behaviors that distinguish the two meiotic divisions.
Collapse
Affiliation(s)
- S Zachary Swartz
- Whitehead Institute for Biomedical Research, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Hieu T Nguyen
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, United States
| | - Brennan C McEwan
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, United States
| | - Mark E Adamo
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, United States
| | - Iain M Cheeseman
- Whitehead Institute for Biomedical Research, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Arminja N Kettenbach
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, United States.,Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, United States
| |
Collapse
|
2
|
KISHIMOTO T. MPF-based meiotic cell cycle control: Half a century of lessons from starfish oocytes. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2018; 94:180-203. [PMID: 29643273 PMCID: PMC5968197 DOI: 10.2183/pjab.94.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 02/21/2018] [Indexed: 05/23/2023]
Abstract
In metazoans that undergo sexual reproduction, genomic inheritance is ensured by two distinct types of cell cycle, mitosis and meiosis. Mitosis maintains the genomic ploidy in somatic cells reproducing within a generation, whereas meiosis reduces by half the ploidy in germ cells to prepare for successive generations. The meiotic cell cycle is believed to be a derived form of the mitotic cell cycle; however, the molecular mechanisms underlying both of these processes remain elusive. My laboratory has long studied the meiotic cell cycle in starfish oocytes, particularly the control of meiotic M-phase by maturation- or M phase-promoting factor (MPF) and the kinase cyclin B-associated Cdk1 (cyclin B-Cdk1). Using this system, we have unraveled the molecular principles conserved in metazoans that modify M-phase progression from the mitotic type to the meiotic type needed to produce a haploid genome. Furthermore, we have solved a long-standing enigma concerning the molecular identity of MPF, a universal inducer of M-phase both in mitosis and meiosis of eukaryotic cells.
Collapse
Affiliation(s)
- Takeo KISHIMOTO
- Professor Emeritus of Tokyo Institute of Technology
- Visiting Professor of Ochanomizu University, Japan
- Correspondence should be addressed: T. Kishimoto, Science and Education Center, Ochanomizu University, Ootsuka 2-1-1, Bunkyo-ku, Tokyo 112-8610, Japan (e-mail: ; )
| |
Collapse
|
3
|
Mulner-Lorillon O, Chassé H, Morales J, Bellé R, Cormier P. MAPK/ERK activity is required for the successful progression of mitosis in sea urchin embryos. Dev Biol 2016; 421:194-203. [PMID: 27913220 DOI: 10.1016/j.ydbio.2016.11.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 11/25/2016] [Indexed: 10/20/2022]
Abstract
Using sea urchin embryos, we demonstrate that the MEK/MAPK/ERK cascade is essential for the proper progression of the cell cycle. Activation of a limited fraction of MAPK/ERK is required between S-phase and M-phase. Neither DNA replication nor CDK1 activation are impacted by the inhibition of this small active MAPK/ERK fraction. Nonetheless, the chromatin and spindle organisations are profoundly altered. Early morphological disorders induced by the absence of MAPK/ERK activation are correlated with an important inhibition of global protein synthesis and modification in the cyclin B accumulation profile. After appearance of morphological disorders, there is an increase in the level of the inhibitor of protein synthesis, 4E-BP, and, ultimately, an activation of the spindle checkpoint. Altogether, our results suggest that MAPK/ERK activity is required for the synthesis of (a) protein(s) implicated in an early step of chromatin /microtubule attachment. If this MAPK/ERK-dependent step is not achieved, the cell activates a new checkpoint mechanism, involving the reappearance of 4E-BP that maintains a low level of protein translation, thus saving cellular energy.
Collapse
Affiliation(s)
- Odile Mulner-Lorillon
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Translation Cell Cycle and Development, Station Biologique de Roscoff, CS90074, F-29688 Roscoff cedex, France; CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS90074, F-29688 Roscoff cedex, France.
| | - Héloïse Chassé
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Translation Cell Cycle and Development, Station Biologique de Roscoff, CS90074, F-29688 Roscoff cedex, France; CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS90074, F-29688 Roscoff cedex, France
| | - Julia Morales
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Translation Cell Cycle and Development, Station Biologique de Roscoff, CS90074, F-29688 Roscoff cedex, France; CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS90074, F-29688 Roscoff cedex, France
| | - Robert Bellé
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Translation Cell Cycle and Development, Station Biologique de Roscoff, CS90074, F-29688 Roscoff cedex, France; CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS90074, F-29688 Roscoff cedex, France
| | - Patrick Cormier
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Translation Cell Cycle and Development, Station Biologique de Roscoff, CS90074, F-29688 Roscoff cedex, France; CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS90074, F-29688 Roscoff cedex, France
| |
Collapse
|
4
|
Ochi H, Chiba K. Hormonal stimulation of starfish oocytes induces partial degradation of the 3' termini of cyclin B mRNAs with oligo(U) tails, followed by poly(A) elongation. RNA (NEW YORK, N.Y.) 2016; 22:822-829. [PMID: 27048146 PMCID: PMC4878609 DOI: 10.1261/rna.054882.115] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 03/07/2016] [Indexed: 05/30/2023]
Abstract
In yeast, plant, and mammalian somatic cells, short poly(A) tails on mRNAs are subject to uridylation, which mediates mRNA decay. Although mRNA uridylation has never been reported in animal oocytes, maternal mRNAs with short poly(A) tails are believed to be translationally repressed. In this study, we found that 96% of cyclin B mRNAs with short poly(A) tails were uridylated in starfish oocytes. Hormonal stimulation induced poly(A) elongation of cyclin B mRNA, and 62% of long adenine repeats did not contain uridine residues. To determine whether uridylated short poly(A) tails destabilize cyclin B mRNA, we developed a method for producing RNAs with the strict 3' terminal sequences of cyclin B, with or without oligo(U) tails. When we injected these synthetic RNAs into starfish oocytes prior to hormonal stimulation, we found that uridylated RNAs were as stable as nonuridylated RNAs. Following hormonal stimulation, the 3' termini of short poly(A) tails of synthesized RNAs containing oligo(U) tails were trimmed, and their poly(A) tails were subsequently elongated. These results indicate that uridylation of short poly(A) tails in cyclin B mRNA of starfish oocytes does not mediate mRNA decay; instead, hormonal stimulation induces partial degradation of uridylated short poly(A) tails in the 3'-5' direction, followed by poly(A) elongation. Oligo(U) tails may be involved in translational inactivation of mRNAs.
Collapse
Affiliation(s)
- Hiroe Ochi
- Department of Biological Sciences, Ochanomizu University, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Kazuyoshi Chiba
- Department of Biological Sciences, Ochanomizu University, Bunkyo-ku, Tokyo 112-8610, Japan
| |
Collapse
|
5
|
Houel-Renault L, Philippe L, Piquemal M, Ciapa B. Autophagy is used as a survival program in unfertilized sea urchin eggs that are destined to die by apoptosis after inactivation of MAPK1/3 (ERK2/1). Autophagy 2014; 9:1527-39. [DOI: 10.4161/auto.25712] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
6
|
Arakawa M, Takeda N, Tachibana K, Deguchi R. Polyspermy block in jellyfish eggs: Collaborative controls by Ca2+ and MAPK. Dev Biol 2014; 392:80-92. [DOI: 10.1016/j.ydbio.2014.04.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/19/2014] [Accepted: 04/25/2014] [Indexed: 11/30/2022]
|
7
|
Costache V, McDougall A, Dumollard R. Cell cycle arrest and activation of development in marine invertebrate deuterostomes. Biochem Biophys Res Commun 2014; 450:1175-81. [DOI: 10.1016/j.bbrc.2014.03.155] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 03/31/2014] [Indexed: 11/24/2022]
|
8
|
Moriwaki K, Nakagawa T, Nakaya F, Hirohashi N, Chiba K. Arrest at metaphase of meiosis I in starfish oocytes in the ovary is maintained by high CO2 and low O2 concentrations in extracellular fluid. Zoolog Sci 2014; 30:975-84. [PMID: 24199863 DOI: 10.2108/zsj.30.975] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
During the spawning process in starfish, oocytes are arrested at metaphase of meiosis I (MI) within the ovary, and reinitiate meiosis only after they have been released into the seawater. However, this arrest does not occur if the ovary is removed from the animal. As the pH of the coelomic fluid is buffered by CO2/H(+)/HCO3(-), we investigated the involvement of gas concentrations in MI arrest. In vivo, the CO2 level in the coelomic fluid was high (∼1.5% vs. 0.04% in air) and the O2 level was low (0.1-1.0% vs. ∼20% in air). When these gas conditions were reproduced in isolated coelomic fluid or seawater, ovarian oocytes arrested at MI, just as in vivo. Isolated oocytes from the ovary required the similar high CO2 and low O2 level to remain arrested in MI and had an intracellular pH of ∼6.9. Intracellular pH increased to ∼7.3 when oocytes were transferred to seawater equilibrated with air, a condition that mimics that of spawning. We used ammonium acetate to clamp intracellular pH at different levels and found that MI arrest occurred when intracellular pH was ∼6.9. Our results support the idea that high CO2 and low O2 in the ovarian environment lead to low intracellular pH and MI arrest, while spawning into the seawater with low CO2 and high O2 results in high intracellular pH and release from MI arrest. The biological significance of MI arrest is that oocytes are spawned into seawater at the optimal physiological state of MI when the least polyspermy occurs.
Collapse
Affiliation(s)
- Kei Moriwaki
- Department of Biological Sciences, Ochanomizu University, 2-1-1 Ohtsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| | | | | | | | | |
Collapse
|
9
|
Levasseur M, Dumollard R, Chambon JP, Hebras C, Sinclair M, Whitaker M, McDougall A. Release from meiotic arrest in ascidian eggs requires the activity of two phosphatases but not CaMKII. Development 2014; 140:4583-93. [PMID: 24194472 DOI: 10.1242/dev.096578] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The fertilising sperm triggers a transient Ca(2+) increase that releases eggs from cell cycle arrest in the vast majority of animal eggs. In vertebrate eggs, Erp1, an APC/C(cdc20) inhibitor, links release from metaphase II arrest with the Ca(2+) transient and its degradation is triggered by the Ca(2+)-induced activation of CaMKII. By contrast, many invertebrate groups have mature eggs that arrest at metaphase I, and these species do not possess the CaMKII target Erp1 in their genomes. As a consequence, it is unknown exactly how cell cycle arrest at metaphase I is achieved and how the fertilisation Ca(2+) transient overcomes the arrest in the vast majority of animal species. Using live-cell imaging with a novel cyclin reporter to study cell cycle arrest and its release in urochordate ascidians, the closest living invertebrate group to the vertebrates, we have identified a new signalling pathway for cell cycle resumption in which CaMKII plays no part. Instead, we find that the Ca(2+)-activated phosphatase calcineurin (CN) is required for egg activation. Moreover, we demonstrate that parthenogenetic activation of metaphase I-arrested eggs by MEK inhibition, independent of a Ca(2+) increase, requires the activity of a second egg phosphatase: PP2A. Furthermore, PP2A activity, together with CN, is required for normal egg activation during fertilisation. As ascidians are a sister group of the vertebrates, we discuss these findings in relation to cell cycle arrest and egg activation in chordates.
Collapse
Affiliation(s)
- Mark Levasseur
- Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | | | | | | | | | | | | |
Collapse
|
10
|
Philippe L, Tosca L, Zhang WL, Piquemal M, Ciapa B. Different routes lead to apoptosis in unfertilized sea urchin eggs. Apoptosis 2013; 19:436-50. [DOI: 10.1007/s10495-013-0950-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Ucar H, Tachibana K, Kishimoto T. The Mos-MAPK pathway regulates Diaphanous-related formin activity to drive cleavage furrow closure during polar body extrusion in starfish oocytes. J Cell Sci 2013; 126:5153-65. [PMID: 24046444 DOI: 10.1242/jcs.130476] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Maintenance of spindle attachment to the cortex and formation of the cleavage furrow around the protruded spindle are essential for polar body extrusion (PBE) during meiotic maturation of oocytes. Although spindle movement to the cortex has been well-studied, how the spindle is maintained at the cortex during PBE is unknown. Here, we show that activation of Diaphanous-related formin mediated by mitogen-activated protein kinase (MAPK) is required for tight spindle attachment to the cortex and cleavage furrow closure during PBE in starfish (Asterina pectinifera) oocytes. A. pectinifera Diaphanous-related formin (ApDia) had a distinct localization in immature oocytes and was localized to the cleavage furrow during PBE. Inhibition of the Mos-MAPK pathway or the actin nucleating activity of formin homology 2 domain prevented cleavage furrow closure and resulted in PBE failure. In MEK/MAPK-inhibited oocytes, activation of ApDia by relief of its intramolecular inhibition restored PBE. In summary, this study elucidates a link between the Mos-MAPK pathway and Diaphanous-related formins, that is responsible for maintaining tight spindle attachment to the cortex and cleavage furrow closure during PBE.
Collapse
Affiliation(s)
- Hasan Ucar
- Laboratory of Cell and Developmental Biology, Graduate School of Bioscience, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | | | | |
Collapse
|
12
|
Kashir J, Deguchi R, Jones C, Coward K, Stricker SA. Comparative biology of sperm factors and fertilization-induced calcium signals across the animal kingdom. Mol Reprod Dev 2013; 80:787-815. [PMID: 23900730 DOI: 10.1002/mrd.22222] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 07/23/2013] [Indexed: 11/08/2022]
Abstract
Fertilization causes mature oocytes or eggs to increase their concentrations of intracellular calcium ions (Ca²⁺) in all animals that have been examined, and such Ca²⁺ elevations, in turn, provide key activating signals that are required for non-parthenogenetic development. Several lines of evidence indicate that the Ca²⁺ transients produced during fertilization in mammals and other taxa are triggered by soluble factors that sperm deliver into oocytes after gamete fusion. Thus, for a broad-based analysis of Ca²⁺ dynamics during fertilization in animals, this article begins by summarizing data on soluble sperm factors in non-mammalian species, and subsequently reviews various topics related to a sperm-specific phospholipase C, called PLCζ, which is believed to be the predominant activator of mammalian oocytes. After characterizing initiation processes that involve sperm factors or alternative triggering mechanisms, the spatiotemporal patterns of Ca²⁺ signals in fertilized oocytes or eggs are compared in a taxon-by-taxon manner, and broadly classified as either a single major transient or a series of repetitive oscillations. Both solitary and oscillatory types of fertilization-induced Ca²⁺ signals are typically propagated as global waves that depend on Ca²⁺ release from the endoplasmic reticulum in response to increased concentrations of inositol 1,4,5-trisphosphate (IP₃). Thus, for taxa where relevant data are available, upstream pathways that elevate intraoocytic IP3 levels during fertilization are described, while other less-common modes of producing Ca²⁺ transients are also examined. In addition, the importance of fertilization-induced Ca²⁺ signals for activating development is underscored by noting some major downstream effects of these signals in various animals.
Collapse
Affiliation(s)
- Junaid Kashir
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford, UK
| | | | | | | | | |
Collapse
|
13
|
Intracellular and extracellular pH and Ca are bound to control mitosis in the early sea urchin embryo via ERK and MPF activities. PLoS One 2013; 8:e66113. [PMID: 23785474 PMCID: PMC3681939 DOI: 10.1371/journal.pone.0066113] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 05/01/2013] [Indexed: 11/19/2022] Open
Abstract
Studies aiming to predict the impact on marine life of ocean acidification and of altered salinity have shown altered development in various species including sea urchins. We have analyzed how external Na, Ca, pH and bicarbonate control the first mitotic divisions of sea urchin embryos. Intracellular free Ca (Cai) and pH (pHi) and the activities of the MAP kinase ERK and of MPF regulate mitosis in various types of cells including oocytes and early embryos. We found that intracellular acidification of fertilized eggs by Na-acetate induces a huge activation of ERK at time of mitosis. This also stops the cell cycle and leads to cell death, which can be bypassed by treatment with the MEK inhibitor U0126. Similar intracellular acidification induced in external medium containing low sodium or 5-(N-Methyl-N-isobutyl) amiloride, an inhibitor of the Na+/H+ exchanger, also stops the cell cycle and leads to cell death. In that case, an increase in Cai and in the phosphorylation of tyr-cdc2 occurs during mitosis, modifications that depend on external Ca. Our results indicate that the levels of pHi and Cai determine accurate levels of Ptyr-Cdc2 and P-ERK capable of ensuring progression through the first mitotic cycles. These intracellular parameters rely on external Ca, Na and bicarbonate, alterations of which during climate changes could act synergistically to perturb the early marine life.
Collapse
|
14
|
Wada T, Hara M, Taneda T, Qingfu C, Takata R, Moro K, Takeda K, Kishimoto T, Handa H. Antisense morpholino targeting just upstream from a poly(A) tail junction of maternal mRNA removes the tail and inhibits translation. Nucleic Acids Res 2012; 40:e173. [PMID: 22904086 PMCID: PMC3526265 DOI: 10.1093/nar/gks765] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Gene downregulation by antisense morpholino oligonucleotides (MOs) is achieved by either hybridization around the translation initiation codon or by targeting the splice donor site. In the present study, an antisense MO method is introduced that uses a 25-mer MO against a region at least 40-nt upstream from a poly(A) tail junction in the 3'-untranslated region (UTR) of maternal mRNA. The MO removed the poly(A) tail and blocked zebrafish cdk9 (zcdk9) mRNA translation, showing functional mimicry between miRNA and MO. A PCR-based assay revealed MO-mediated specific poly(A) tail removal of zebrafish mRNAs, including those for cyclin B1, cyclin B2 and tbp. The MO activity targeting cyclins A and B mRNAs was validated in unfertilized starfish oocytes and eggs. The MO removed the elongated poly(A) tail from maternal matured mRNA. This antisense method introduces a new application for the targeted downregulation of maternal mRNAs in animal oocytes, eggs and early embryos.
Collapse
Affiliation(s)
- Tadashi Wada
- Division of Molecular and Cellular Biology, Department of Supramolecular Biology, Graduate School of Nanobioscience, Yokohama City University, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Chiba K. Evolution of the acquisition of fertilization competence and polyspermy blocks during meiotic maturation. Mol Reprod Dev 2011; 78:808-13. [PMID: 21887719 DOI: 10.1002/mrd.21378] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 07/24/2011] [Indexed: 11/07/2022]
Abstract
In many animals, fully grown oocytes are arrested at prophase of meiosis I. Before or after ovulation/spawning, a secondary arrest occurs at metaphase of meiosis I or II (MI or II, respectively). MI arrest in the ovary is released after spawning, and is followed by fertilization, whereas MI and MII arrest after ovulation are released by fertilization. Insemination of isolated oocytes from the ovaries at an inappropriate time increases the rate of polyspermy, indicating that ovaries provide the proper environment for acquisition of the polyspermy blocks and the development of competence to be fertilized normally. Due to MI arrest in the ovaries or MI/MII arrest after ovulation/spawning, the fertilizable period can be elongated. Thus, MI and MII arrest may play a role in maintaining the cell-cycle phases to enable normal fertilization. Here, the evolution of fertilization timing is discussed.
Collapse
Affiliation(s)
- Kazuyoshi Chiba
- Department of Biological Sciences, Ochanomizu University, Tokyo, Japan.
| |
Collapse
|
16
|
Turn motif phosphorylation negatively regulates activation loop phosphorylation in Akt. Oncogene 2011; 30:4487-97. [PMID: 21577208 DOI: 10.1038/onc.2011.155] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Akt, also known as protein kinase B, has a central role in various signaling pathways that regulate cellular processes such as metabolism, proliferation and survival. On stimulation, phosphorylation of the activation loop (A-loop) and hydrophobic motif (HM) of Akt by the kinase phosphoinositide-dependent kinase 1 (PDK1) and the mammalian target of rapamycin complex 2 (mTORC2), respectively, results in Akt activation. A well-conserved threonine in the turn motif (TM) is also constitutively phosphorylated by mTORC2 and contributes to the stability of Akt. The role of TM phosphorylation in HM and A-loop phosphorylation has not been sufficiently evaluated. Using starfish oocytes as a model system, this study provides the first evidence that TM phosphorylation has a negative role in A-loop phosphorylation. In this system, the maturation-inducing hormone, 1-methyladenine, stimulates Akt to reinitiate meiosis through activation of cyclin B-Cdc2. The phosphorylation status of Akt was monitored via introduction of exogenous human Akt (hAkt) in starfish oocytes. TM and HM phosphorylation was inhibited by microinjection of an anti-starfish TOR antibody, but not by rapamycin treatment, suggesting that both phosphorylation events depend on TORC2, as reported in mammalian cells. A single or double alanine substitution at each of three phosphorylation residues revealed that TM phosphorylation renders Akt susceptible to dephosphorylation on the A-loop. When A-loop phosphatase was inhibited by okadaic acid (OA), TM phosphorylation still reduced A-loop phosphorylation, suggesting that the effect is caused at least partially through reduction of sensitivity to PDK1. Negative regulation by TM phosphorylation was also observed in constitutively active Akt and was functionally reflected in meiosis resumption. By contrast, HM phosphorylation enhanced A-loop phosphorylation and achieved full activation of Akt via a mechanism at least partially independent of TM phosphorylation. These observations provide new insight into the mechanism controlling Akt phosphorylation in the cell.
Collapse
|
17
|
Dumollard R, Levasseur M, Hebras C, Huitorel P, Carroll M, Chambon JP, McDougall A. Mos limits the number of meiotic divisions in urochordate eggs. Development 2011; 138:885-95. [DOI: 10.1242/dev.057133] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mos kinase is a universal mediator of oocyte meiotic maturation and is produced during oogenesis and destroyed after fertilization. The hallmark of maternal meiosis is that two successive M phases (meiosis I and II) drive two rounds of asymmetric cell division (ACD). However, how the egg limits the number of meioses to just two, thereby preventing gross aneuploidy, is poorly characterized. Here, in urochordate eggs, we show that loss of Mos/MAPK activity is necessary to prevent entry into meiosis III. Remarkably, maintaining the Mos/MAPK pathway active after fertilization at near physiological levels induces additional rounds of meiotic M phase (meiosis III, IV and V). During these additional rounds of meiosis, the spindle is positioned asymmetrically resulting in further rounds of ACD. In addition, inhibiting meiotic exit with Mos prevents pronuclear formation, cyclin A accumulation and maintains sperm-triggered Ca2+ oscillations, all of which are hallmarks of the meiotic cell cycle in ascidians. It will be interesting to determine whether Mos availability in mammals can also control the number of meioses as it does in the urochordates. Our results demonstrate the power of urochordate eggs as a model to dissect the egg-to-embryo transition.
Collapse
Affiliation(s)
- Rémi Dumollard
- Developmental Biology Unit UMR 7009, UMPC Univ. Paris 06 and Centre National de la Recherche (CNRS), Observatoire Océanologique, 06230 Villefranche-sur-Mer, France
| | - Mark Levasseur
- Institute of Cell and Molecular Bioscences, The Medical School, Framlington Place, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, UK
| | - Céline Hebras
- Developmental Biology Unit UMR 7009, UMPC Univ. Paris 06 and Centre National de la Recherche (CNRS), Observatoire Océanologique, 06230 Villefranche-sur-Mer, France
| | - Philippe Huitorel
- Developmental Biology Unit UMR 7009, UMPC Univ. Paris 06 and Centre National de la Recherche (CNRS), Observatoire Océanologique, 06230 Villefranche-sur-Mer, France
| | - Michael Carroll
- Developmental Biology Unit UMR 7009, UMPC Univ. Paris 06 and Centre National de la Recherche (CNRS), Observatoire Océanologique, 06230 Villefranche-sur-Mer, France
| | - Jean-Philippe Chambon
- Developmental Biology Unit UMR 7009, UMPC Univ. Paris 06 and Centre National de la Recherche (CNRS), Observatoire Océanologique, 06230 Villefranche-sur-Mer, France
| | - Alex McDougall
- Developmental Biology Unit UMR 7009, UMPC Univ. Paris 06 and Centre National de la Recherche (CNRS), Observatoire Océanologique, 06230 Villefranche-sur-Mer, France
| |
Collapse
|
18
|
Mos in the oocyte: how to use MAPK independently of growth factors and transcription to control meiotic divisions. JOURNAL OF SIGNAL TRANSDUCTION 2010; 2011:350412. [PMID: 21637374 PMCID: PMC3101788 DOI: 10.1155/2011/350412] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 11/01/2010] [Indexed: 01/12/2023]
Abstract
In many cell types, the mitogen-activated protein kinase (MAPK) also named extracellular signal-regulated kinase (ERK) is activated in response to a variety of extracellular growth factor-receptor interactions and leads to the transcriptional activation of immediate early genes, hereby influencing a number of tissue-specific biological activities, as cell proliferation, survival and differentiation. In one specific cell type however, the female germ cell, MAPK does not follow this canonical scheme. In oocytes, MAPK is activated independently of growth factors and tyrosine kinase receptors, acts independently of transcriptional regulation, plays a crucial role in controlling meiotic divisions, and is under the control of a peculiar upstream regulator, the kinase Mos. Mos was originally identified as the transforming gene of Moloney murine sarcoma virus and its cellular homologue was the first proto-oncogene to be molecularly cloned. What could be the specific roles of Mos that render it necessary for meiosis? Which unique functions could explain the evolutionary cost to have selected one gene to only serve for few hours in one very specific cell type? This review discusses the original features of MAPK activation by Mos and the roles of this module in oocytes.
Collapse
|
19
|
Abe Y, Okumura E, Hosoya T, Hirota T, Kishimoto T. A single starfish Aurora kinase performs the combined functions of Aurora-A and Aurora-B in human cells. J Cell Sci 2010; 123:3978-88. [DOI: 10.1242/jcs.076315] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aurora, an essential mitotic kinase, is highly conserved during evolution. Most vertebrates have at least two Aurora kinases, Aurora-A and Aurora-B, which have distinct functions in the centrosome–spindle and inner centromere–midbody, respectively. However, some non-vertebrate deuterostomes have only a single Aurora. It remains to be verified whether the single Aurora performs the same functions as vertebrate Auroras A and B combined. We have isolated a cDNA of a single Aurora (ApAurora) from the echinoderm starfish, Asterina pectinifera, and show that ApAurora displays most features of both Aurora-A and Aurora-B in starfish oocytes and early embryos. Furthermore, ApAurora that is stably expressed in HeLa cells can substitute for both human Aurora-A and Aurora-B when either is reduced by RNAi. A single ApAurora thus has properties of both Aurora-A and Aurora-B in starfish eggs and HeLa cells. Together with phylogenetic analysis indicating that ApAurora forms a clade with all types of vertebrate Auroras and single Auroras of non-vertebrate deuterostomes, our observations support the idea that the single Aurora found in non-vertebrate deuterostomes represents the ancestor that gave rise to various types of vertebrate Auroras. This study thus provides functional evidence for phylogenetic considerations.
Collapse
Affiliation(s)
- Yusuke Abe
- Laboratory of Cell and Developmental Biology, Graduate School of Bioscience, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Eiichi Okumura
- Laboratory of Cell and Developmental Biology, Graduate School of Bioscience, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Takamitsu Hosoya
- Department of Biological Information, Graduate School of Bioscience, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Toru Hirota
- Department of Experimental Pathology, Cancer Institute of the Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - Takeo Kishimoto
- Laboratory of Cell and Developmental Biology, Graduate School of Bioscience, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
20
|
Aze A, Fayet C, Lapasset L, Genevière A. Replication origins are already licensed in G1 arrested unfertilized sea urchin eggs. Dev Biol 2010; 340:557-70. [DOI: 10.1016/j.ydbio.2010.02.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2009] [Revised: 02/02/2010] [Accepted: 02/04/2010] [Indexed: 11/24/2022]
|
21
|
Initiation of DNA replication after fertilization is regulated by p90Rsk at pre-RC/pre-IC transition in starfish eggs. Proc Natl Acad Sci U S A 2010; 107:5006-11. [PMID: 20185755 DOI: 10.1073/pnas.1000587107] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Initiation of DNA replication in eukaryotic cells is controlled through an ordered assembly of protein complexes at replication origins. The molecules involved in this process are well conserved but diversely regulated. Typically, initiation of DNA replication is regulated in response to developmental events in multicellular organisms. Here, we elucidate the regulation of the first S phase of the embryonic cell cycle after fertilization. Unless fertilization occurs, the Mos-MAPK-p90Rsk pathway causes the G1-phase arrest after completion of meiosis in starfish eggs. Fertilization shuts down this pathway, leading to the first S phase with no requirement of new protein synthesis. However, how and in which stage the initiation complex for DNA replication is arrested by p90Rsk remains unclear. We find that in G1-arrested eggs, chromatin is loaded with the Mcm complex to form the prereplicative complex (pre-RC). Inactivation of p90Rsk is necessary and sufficient for further loading of Cdc45 onto chromatin to form the preinitiation complex (pre-IC) and the subsequent initiation of DNA replication. However, cyclin A-, B-, and E-Cdk's activity and Cdc7 accumulation are dispensable for these processes. These observations define the stage of G1 arrest in unfertilized eggs at transition point from pre-RC to pre-IC, and reveal a unique role of p90Rsk for a negative regulator of this transition. Thus, initiation of DNA replication in the meiosis-to-mitosis transition is regulated at the pre-RC stage as like in the G1 checkpoint, but in a manner different from the checkpoint.
Collapse
|