1
|
Liu XP, Liu CY, Feng YJ, Guo XK, Zhang LS, Wang MQ, Li YY, Zeng FR, Nolan T, Mao JJ. Male vitellogenin regulates gametogenesis through a testis-enriched big protein in Chrysopa pallens. INSECT MOLECULAR BIOLOGY 2024; 33:17-28. [PMID: 37707297 DOI: 10.1111/imb.12873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/30/2023] [Indexed: 09/15/2023]
Abstract
In insects, vitellogenin (Vg) is generally viewed as a female-specific protein. Its primary function is to supply nutrition to developing embryos. Here, we reported Vg from the male adults of a natural predator, Chrysopa pallens. The male Vg was depleted by RNAi. Mating with Vg-deficient male downregulated female Vg expression, suppressed ovarian development and decreased reproductive output. Whole-organism transcriptome analysis after male Vg knockdown showed no differential expression of the known spermatogenesis-related regulators and seminal fluid protein genes, but a sharp downregulation of an unknown gene, which encodes a testis-enriched big protein (Vcsoo). Separate knockdown of male Vg and Vcsoo disturbed the assembly of spermatid cytoplasmic organelles in males and suppressed the expansion of ovary germarium in mated females. These results demonstrated that C. pallens male Vg signals through the downstream Vcsoo and regulates male and female reproduction.
Collapse
Affiliation(s)
- Xiao-Ping Liu
- Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Chang-Yan Liu
- Institute of Food Crops, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Food Crop Germplasm and Genetic, Wuhan, People's Republic of China
| | - Yan-Jiao Feng
- Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Xing-Kai Guo
- Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Li-Sheng Zhang
- Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Meng-Qing Wang
- Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Yu-Yan Li
- Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Fan-Rong Zeng
- Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Tony Nolan
- Liverpool School of Tropical Medicine, Liverpool, UK
| | - Jian-Jun Mao
- Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| |
Collapse
|
2
|
Zhang S, Yi S, Wang L, Li S, Wang H, Song L, Ou J, Zhang M, Wang R, Wang M, Zheng Y, Yang K, Liu T, Ho MS. Cyclin-G-associated kinase GAK/dAux regulates autophagy initiation via ULK1/Atg1 in glia. Proc Natl Acad Sci U S A 2023; 120:e2301002120. [PMID: 37428930 PMCID: PMC10629559 DOI: 10.1073/pnas.2301002120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/08/2023] [Indexed: 07/12/2023] Open
Abstract
Autophagy is a major means for the elimination of protein inclusions in neurons in neurodegenerative diseases such as Parkinson's disease (PD). Yet, the mechanism of autophagy in the other brain cell type, glia, is less well characterized and remains largely unknown. Here, we present evidence that the PD risk factor, Cyclin-G-associated kinase (GAK)/Drosophila homolog Auxilin (dAux), is a component in glial autophagy. The lack of GAK/dAux increases the autophagosome number and size in adult fly glia and mouse microglia, and generally up-regulates levels of components in the initiation and PI3K class III complexes. GAK/dAux interacts with the master initiation regulator UNC-51like autophagy activating kinase 1/Atg1 via its uncoating domain and regulates the trafficking of Atg1 and Atg9 to autophagosomes, hence controlling the onset of glial autophagy. On the other hand, lack of GAK/dAux impairs the autophagic flux and blocks substrate degradation, suggesting that GAK/dAux might play additional roles. Importantly, dAux contributes to PD-like symptoms including dopaminergic neurodegeneration and locomotor function in flies. Our findings identify an autophagy factor in glia; considering the pivotal role of glia under pathological conditions, targeting glial autophagy is potentially a therapeutic strategy for PD.
Collapse
Affiliation(s)
- Shiping Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai201210, China
| | - Shuanglong Yi
- School of Life Science and Technology, ShanghaiTech University, Shanghai201210, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Linfang Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai201210, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Shuhua Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai201210, China
| | - Honglei Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai201210, China
| | - Li Song
- Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai200092, China
| | - Jiayao Ou
- Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai200092, China
| | - Min Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai201210, China
| | - Ruiqi Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai201210, China
| | - Mengxiao Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai201210, China
| | - Yuchen Zheng
- School of Life Science and Technology, ShanghaiTech University, Shanghai201210, China
| | - Kai Yang
- International Academic Center of Complex Systems, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai519087, China
| | - Tong Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai200031, China
| | - Margaret S. Ho
- School of Life Science and Technology, ShanghaiTech University, Shanghai201210, China
| |
Collapse
|
3
|
Shao L, Fingerhut JM, Falk BL, Han H, Maldonado G, Qiao Y, Lee V, Hall E, Chen L, Polevoy G, Hernández G, Lasko P, Brill JA. Eukaryotic translation initiation factor eIF4E-5 is required for spermiogenesis in Drosophila melanogaster. Development 2023; 150:286752. [PMID: 36695474 DOI: 10.1242/dev.200477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/16/2023] [Indexed: 01/26/2023]
Abstract
Drosophila sperm development is characterized by extensive post-transcriptional regulation whereby thousands of transcripts are preserved for translation during later stages. A key step in translation initiation is the binding of eukaryotic initiation factor 4E (eIF4E) to the 5' mRNA cap. In addition to canonical eIF4E-1, Drosophila has multiple eIF4E paralogs, including four (eIF4E-3, -4, -5, and -7) that are highly expressed in the testis. Among these, only eIF4E-3 has been characterized genetically. Here, using CRISPR/Cas9 mutagenesis, we determined that eIF4E-5 is essential for male fertility. eIF4E-5 protein localizes to the distal ends of elongated spermatid cysts, and eIF4E-5 mutants exhibit defects during post-meiotic stages, including a mild defect in spermatid cyst polarization. eIF4E-5 mutants also have a fully penetrant defect in individualization, resulting in failure to produce mature sperm. Indeed, our data indicate that eIF4E-5 regulates non-apoptotic caspase activity during individualization by promoting local accumulation of the E3 ubiquitin ligase inhibitor Soti. Our results further extend the diversity of non-canonical eIF4Es that carry out distinct spatiotemporal roles during spermatogenesis.
Collapse
Affiliation(s)
- Lisa Shao
- Cell Biology Program, The Hospital for Sick Children, PGCRL Building, 686 Bay Street, Toronto, Ontario, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Jaclyn M Fingerhut
- Whitehead Institute for Biomedical Research, Department of Biology, Massachusetts Institute of Technology, 455 Main Street, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, 455 Main Street, Cambridge, MA 02142, USA
| | - Brook L Falk
- Cell Biology Program, The Hospital for Sick Children, PGCRL Building, 686 Bay Street, Toronto, Ontario, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Hong Han
- Department of Biology, McGill University, 3649 Promenade Sir William Osler, Montréal, Quebec, H3G 0B1, Canada
| | - Giovanna Maldonado
- Laboratory of Translation and Cancer, Unit of Biomedical Research on Cancer, Instituto Nacional de Cancerología (INCan), Av San Fernando 22, Mexico City 14080, Mexico
| | - Yuemeng Qiao
- Cell Biology Program, The Hospital for Sick Children, PGCRL Building, 686 Bay Street, Toronto, Ontario, M5G 0A4, Canada
- Human Biology Program, University of Toronto, 300 Huron Street, Toronto, Ontario, M5S 3J6, Canada
| | - Vincent Lee
- Cell Biology Program, The Hospital for Sick Children, PGCRL Building, 686 Bay Street, Toronto, Ontario, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Elizabeth Hall
- Cell Biology Program, The Hospital for Sick Children, PGCRL Building, 686 Bay Street, Toronto, Ontario, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Liang Chen
- Department of Biology, McGill University, 3649 Promenade Sir William Osler, Montréal, Quebec, H3G 0B1, Canada
| | - Gordon Polevoy
- Cell Biology Program, The Hospital for Sick Children, PGCRL Building, 686 Bay Street, Toronto, Ontario, M5G 0A4, Canada
| | - Greco Hernández
- Laboratory of Translation and Cancer, Unit of Biomedical Research on Cancer, Instituto Nacional de Cancerología (INCan), Av San Fernando 22, Mexico City 14080, Mexico
| | - Paul Lasko
- Department of Biology, McGill University, 3649 Promenade Sir William Osler, Montréal, Quebec, H3G 0B1, Canada
| | - Julie A Brill
- Cell Biology Program, The Hospital for Sick Children, PGCRL Building, 686 Bay Street, Toronto, Ontario, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| |
Collapse
|
4
|
Jacquemyn J, Kuenen S, Swerts J, Pavie B, Vijayan V, Kilic A, Chabot D, Wang YC, Schoovaerts N, Corthout N, Verstreken P. Parkinsonism mutations in DNAJC6 cause lipid defects and neurodegeneration that are rescued by Synj1. NPJ Parkinsons Dis 2023; 9:19. [PMID: 36739293 PMCID: PMC9899244 DOI: 10.1038/s41531-023-00459-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 01/16/2023] [Indexed: 02/06/2023] Open
Abstract
Recent evidence links dysfunctional lipid metabolism to the pathogenesis of Parkinson's disease, but the mechanisms are not resolved. Here, we generated a new Drosophila knock-in model of DNAJC6/Auxilin and find that the pathogenic mutation causes synaptic dysfunction, neurological defects and neurodegeneration, as well as specific lipid metabolism alterations. In these mutants, membrane lipids containing long-chain polyunsaturated fatty acids, including phosphatidylinositol lipid species that are key for synaptic vesicle recycling and organelle function, are reduced. Overexpression of another protein mutated in Parkinson's disease, Synaptojanin-1, known to bind and metabolize specific phosphoinositides, rescues the DNAJC6/Auxilin lipid alterations, the neuronal function defects and neurodegeneration. Our work reveals a functional relation between two proteins mutated in Parkinsonism and implicates deregulated phosphoinositide metabolism in the maintenance of neuronal integrity and neuronal survival.
Collapse
Affiliation(s)
- Julie Jacquemyn
- VIB-KU Leuven Center for Brain & Disease Research, 3000, Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, 3000, Leuven, Belgium
- Neuroscience and Mental Health Institute, University of Alberta, Department of Physiology, Department of Cell Biology, Group on Molecular and Cell Biology of Lipids, Edmonton, Alberta, Canada
| | - Sabine Kuenen
- VIB-KU Leuven Center for Brain & Disease Research, 3000, Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, 3000, Leuven, Belgium
| | - Jef Swerts
- VIB-KU Leuven Center for Brain & Disease Research, 3000, Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, 3000, Leuven, Belgium
| | - Benjamin Pavie
- VIB-KU Leuven Center for Brain & Disease Research, 3000, Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, 3000, Leuven, Belgium
- VIB-Bioimaging Core, 3000, Leuven, Belgium
| | - Vinoy Vijayan
- VIB-KU Leuven Center for Brain & Disease Research, 3000, Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, 3000, Leuven, Belgium
| | - Ayse Kilic
- VIB-KU Leuven Center for Brain & Disease Research, 3000, Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, 3000, Leuven, Belgium
| | - Dries Chabot
- VIB-KU Leuven Center for Brain & Disease Research, 3000, Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, 3000, Leuven, Belgium
| | - Yu-Chun Wang
- VIB-KU Leuven Center for Brain & Disease Research, 3000, Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, 3000, Leuven, Belgium
- VIB Technology Watch, Technology Innovation Laboratory, VIB, Gent, Belgium
| | - Nils Schoovaerts
- VIB-KU Leuven Center for Brain & Disease Research, 3000, Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, 3000, Leuven, Belgium
| | - Nikky Corthout
- VIB-KU Leuven Center for Brain & Disease Research, 3000, Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, 3000, Leuven, Belgium
- VIB-Bioimaging Core, 3000, Leuven, Belgium
| | - Patrik Verstreken
- VIB-KU Leuven Center for Brain & Disease Research, 3000, Leuven, Belgium.
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, 3000, Leuven, Belgium.
| |
Collapse
|
5
|
Zhao H, Ren X, Kong R, Shi L, Li Z, Wang R, Ma R, Zhao H, Liu F, Chang HC, Chen CH, Li Z. Auxilin regulates intestinal stem cell proliferation through EGFR. Stem Cell Reports 2022; 17:1120-1137. [PMID: 35427486 PMCID: PMC9133653 DOI: 10.1016/j.stemcr.2022.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/11/2022] Open
Abstract
Adult tissue homeostasis is maintained by residential stem cells. The proliferation and differentiation of adult stem cells must be tightly balanced to avoid excessive proliferation or premature differentiation. However, how stem cell proliferation is properly controlled remains elusive. Here, we find that auxilin (Aux) restricts intestinal stem cell (ISC) proliferation mainly through EGFR signaling. aux depletion leads to excessive ISC proliferation and midgut homeostasis disruption, which is unlikely caused by defective Notch signaling. Aux is expressed in multiple types of intestinal cells. Interestingly, aux depletion causes a dramatic increase in EGFR signaling, with a strong accumulation of EGFR at the plasma membrane and an increased expression of EGFR ligands in response to tissue stress. Furthermore, Aux co-localizes and associates with EGFR. Finally, blocking EGFR signaling completely suppresses the defects caused by aux depletion. Together, these data demonstrate that Aux mainly safeguards EGFR activation to keep a proper ISC proliferation rate to maintain midgut homeostasis.
Collapse
Affiliation(s)
- Hang Zhao
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Xuejing Ren
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Ruiyan Kong
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Lin Shi
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Zhengran Li
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Runqi Wang
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Rui Ma
- Department of Neurology, Capital Medical University, Beijing 100053, China
| | - Huiqing Zhao
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Fuli Liu
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Henry C Chang
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Chun-Hong Chen
- Division of Molecular and Genomic Medicine, National Health Research Institute, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan
| | - Zhouhua Li
- College of Life Sciences, Capital Normal University, Beijing 100048, China.
| |
Collapse
|
6
|
UBR4/POE facilitates secretory trafficking to maintain circadian clock synchrony. Nat Commun 2022; 13:1594. [PMID: 35332162 PMCID: PMC8948264 DOI: 10.1038/s41467-022-29244-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 03/02/2022] [Indexed: 11/08/2022] Open
Abstract
Ubiquitin ligases control the degradation of core clock proteins to govern the speed and resetting properties of the circadian pacemaker. However, few studies have addressed their potential to regulate other cellular events within clock neurons beyond clock protein turnover. Here, we report that the ubiquitin ligase, UBR4/POE, strengthens the central pacemaker by facilitating neuropeptide trafficking in clock neurons and promoting network synchrony. Ubr4-deficient mice are resistant to jetlag, whereas poe knockdown flies are prone to arrhythmicity, behaviors reflective of the reduced axonal trafficking of circadian neuropeptides. At the cellular level, Ubr4 ablation impairs the export of secreted proteins from the Golgi apparatus by reducing the expression of Coronin 7, which is required for budding of Golgi-derived transport vesicles. In summary, UBR4/POE fulfills a conserved and unexpected role in the vesicular trafficking of neuropeptides, a function that has important implications for circadian clock synchrony and circuit-level signal processing. Although ubiquitin ligases are known to control clock protein degradation, their other roles in clock neurons are unclear. Here the authors report that UBR4 promotes export of neuropeptides from the Golgi for axonal trafficking, which is important for circadian clock synchrony in mice and flies.
Collapse
|
7
|
Kuang C, Wang F, Zhou Y, Cao J, Zhang H, Gong H, Zhou R, Zhou J. Molecular characterization of clathrin heavy chain (Chc) in Rhipicephalus haemaphysaloides and its effect on vitellogenin (Vg) expression via the clathrin-mediated endocytic pathway. EXPERIMENTAL & APPLIED ACAROLOGY 2020; 80:71-89. [PMID: 31828557 DOI: 10.1007/s10493-019-00438-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
Clathrin plays an important role in arthropods, but its function in ticks has not been explored. Here, we describe the molecular characteristics of the clathrin heavy chain of the tick Rhipicephalus haemaphysaloides and its effects on yolk development. The open reading frame of the clathrin heavy chain (Chc) (Rh-Chc) gene consists of 5103 nucleotides encoding 670 amino acids, which is most closely related to that of Ixodes scapularis and relatively close to Homo sapiens and Drosophila melanogaster. Real-time qPCR revealed that Rh-Chc was expressed at all developmental stages and organs. After Rh-Chc is silenced, ticks did not feed and mortality rate was 100%. Moreover, Rh-Chc co-localized with Vitellogenin receptor (VgR) on oocyte membrane. Immunofluorescence showed that the expression of Vitellogenin (Vg) (Rh-Vg) was also closely related to Rh-Chc. Immunofluorescence showed that the expression of Vg was also closely related to Rh-Chc, Rh-Chc silencing slowed the development of oocytes in tick, and culture of ovary in vitro silenced Rh-Chc, the development of oocytes in ticks also slowed down. Overall, the results of this study indicated that Rh-Chc is a vital gene in the tick R. haemaphysaloides that plays an important role in its growth, development, and reproduction.
Collapse
Affiliation(s)
- Ceyan Kuang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
- College of Animal Science, Southwest University, Chongqing, 402460, China
| | - Fangfang Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Yongzhi Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Jie Cao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Houshuang Zhang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Haiyan Gong
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Rongqiong Zhou
- College of Animal Science, Southwest University, Chongqing, 402460, China
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| |
Collapse
|
8
|
Kim HK, Yadav RK, Bhattarai KR, Jung HW, Kim HR, Chae HJ. Transmembrane BAX Inhibitor Motif-6 (TMBIM6) protects against cisplatin-induced testicular toxicity. Hum Reprod 2019; 33:378-389. [PMID: 29309588 DOI: 10.1093/humrep/dex381] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 12/18/2017] [Indexed: 12/20/2022] Open
Abstract
STUDY QUESTION Is the Transmembrane BAX Inhibitor Motif-6 (TMBIM6) involved in the molecular mechanism by which cisplatin causes reproductive toxicity? SUMMARY ANSWER TMBIM6 protects against cisplatin-induced testicular toxicity through up-regulation of heme oxygenase-1 (HO-1),-which maintains the levels of steroidogenic enzymes by decreaseing oxidative stress in the endoplasmic reticulum (ER). WHAT IS KNOWN ALREADY Testosterone production is highly suppressed as a main complication of cisplatin (cis-diamminedichloroplatinum) anticancer therapy. STUDY DESIGN, SIZE, DURATION Groups of seven wild type or Tmbim6 KO C57BL/6J mice were given a single i.p., injection of cisplatin (30 mg/kg body wt) and testis and serum were collected 3 days later. Tmbim6-lentivirus-mediated testicular expression-rescued KO mice were analyzed to confirm function was restored. Tmbim6-over expressing TM3 mouse Leydig cells were exposed to cisplatin in vitro. PARTICIPANTS/MATERIALS, SETTING, METHODS After collection of the specimens serum testosterone level and testicular weight and structure were compared between the groups. Quantitative PCR, immunoblot, and assays for ROS, HO-1 activity and protein disulfide isomerase (PDI) carbonylation were performed. MAIN RESULTS AND THE ROLE OF CHANCE Phospho protein kinase B (p-Akt), nuclear factor erythroid 2 (NFE2)-related factor 2 (Nrf2), and its downstream gene product HO-1 and the levels of testosterone synthesis-associated enzymes, including steroidogenic acute regulatory protein (StAR), a rate limiting enzyme for testosterone production, were significantly expressed in the presence of Tmbim6 and maintained after cisplatin treament. Excessive post-translational oxidation of protein disulfide isomerase (PDI), altered folding capacitance and ROS accumulation, and ER stress were also decreased in the presence of Tmbim6. Higher levels of ER stress and protein hypercarbonylation were consistently observed in KO testis, compared with WT testis. In the Tmbim6 KO mice, lentivirus-mediated testicular expression of Tmbim6 rescued the above phenotypes. Furthermore, the protective role of Tmbim6 against testicular toxicity was consistently shown in Tmbim6-overexpressing TM3 Leydig cells (testosterone producing cells). We conclude that TMBIM6 protects against cisplatin-induced testicular toxicity by inducing HO-1 and enhancing ER folding capacitance. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION This study was performed using a short, 3-day cisplatin treatment condition. Therefore, the results need to be cautiously interpreted with regard to cisplatin-associated chronic toxicity. Moreover, to determine the clinical relevance of the role of TMBIM6, further studies in testicular cancer are needed. WIDER IMPLICATIONS OF THE FINDINGS Cisplatin-associated ER stress and redox imbalance might be implicated as toxicity mechanisms associated with anticancer therapy. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by the National Research Foundation of Korea (2015R1A2A1A13001849). The authors have no competing interests to disclose.
Collapse
Affiliation(s)
- Hyun-Kyoung Kim
- Department of Pharmacology and Institute of New Drug Development, Chonbuk National University, Jeonju 54689, Republic of Korea
| | - Raj Kumar Yadav
- Department of Pharmacology and Institute of New Drug Development, Chonbuk National University, Jeonju 54689, Republic of Korea
| | - Kashi Raj Bhattarai
- Department of Pharmacology and Institute of New Drug Development, Chonbuk National University, Jeonju 54689, Republic of Korea
| | - Han-Wool Jung
- Department of Pharmacology and Institute of New Drug Development, Chonbuk National University, Jeonju 54689, Republic of Korea
| | | | - Han-Jung Chae
- Department of Pharmacology and Institute of New Drug Development, Chonbuk National University, Jeonju 54689, Republic of Korea
| |
Collapse
|
9
|
|
10
|
Inoshita T, Cui C, Hattori N, Imai Y. Regulation of membrane dynamics by Parkinson's disease-associated genes. J Genet 2018; 97:715-725. [PMID: 30027905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Parkinson's disease (PD), the second most common neurodegenerative disease after Alzheimer's disease, develops sporadically, and its cause is unknown. However, 5-10% of PD cases are inherited as monogenic diseases, which provides a chance to understand the molecular mechanisms underlying neurodegeneration. Over 20 causative genes have already been identified and are being characterized. These PD-associated genes are broadly classified into two groups: genes involved in mitochondrial functions and genes related to membrane dynamics such as intracellular vesicle transport and the lysosomal pathway. In this review, we summarize the latest findings on the mechanism by which members of the latter group of PD-associated genes regulate membrane dynamics, and we discuss how mutations of these genes lead to dopaminergic neurodegeneration.
Collapse
Affiliation(s)
- Tsuyoshi Inoshita
- Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.
| | | | | | | |
Collapse
|
11
|
Song L, He Y, Ou J, Zhao Y, Li R, Cheng J, Lin CH, Ho MS. Auxilin Underlies Progressive Locomotor Deficits and Dopaminergic Neuron Loss in a Drosophila Model of Parkinson’s Disease. Cell Rep 2017; 18:1132-1143. [DOI: 10.1016/j.celrep.2017.01.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 12/08/2016] [Accepted: 01/03/2017] [Indexed: 01/08/2023] Open
|
12
|
Steinhauer J. Separating from the pack: Molecular mechanisms of Drosophila spermatid individualization. SPERMATOGENESIS 2015; 5:e1041345. [PMID: 26413413 PMCID: PMC4581072 DOI: 10.1080/21565562.2015.1041345] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 03/26/2015] [Accepted: 03/26/2015] [Indexed: 12/18/2022]
|
13
|
Zhang L, Li W, Ni J, Wu J, Liu J, Zhang Z, Zhang Y, Li H, Shi Y, Teves ME, Song S, Strauss JF, Zhang Z. RC/BTB2 is essential for formation of primary cilia in mammalian cells. Cytoskeleton (Hoboken) 2015; 72:171-81. [PMID: 25762510 DOI: 10.1002/cm.21214] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 03/02/2015] [Accepted: 03/04/2015] [Indexed: 01/19/2023]
Abstract
RC/BTB2 is a binding partner of sperm associated antigen 16S (SPAG16S), which is a regulator of spermiogenesis in mice, a process during which sperm flagella are formed. The expression of Rc/btb2 is also regulated by multicilin, a protein that controls ciliogenesis. Given that mouse Rc/btb2 mRNA is not only expressed in tissues bearing motile cilia, but also in tissues without motile cilia, we investigated whether RC/BTB2 plays a role in the general process of ciliogenesis by studying two cell lines that have primary cilia, NIH3T3, and IMCD3. We discovered that the subcellular localization of RC/BTB2 in the NIH3T3 and IMCD3 cells encompasses the pathway for ciliogenesis. RC/BTB2 was found in the Golgi bodies and centrosomes, two key structures essential for normal ciliogenesis. Knockdown of Rc/btb2 gene expression in these cell lines disrupted ciliogenesis. The percentage of cells with primary cilia was significantly reduced in stable cell lines transduced with specific Rc/btb2 shRNA viruses as compared to the control cells. When cilia were formed in the knockdown cells, they were significantly shorter than those in the control cells. Knockdown of Rc/btb2 expression did not affect cell proliferation and the cell cycle. Exogenous expression of RC/BTB2 in these stable knockdown cells restored ciliogenesis. These findings suggest that RC/BTB2 is a necessary component of the process of formation of primary cilia in somatic cells, perhaps through the transportation of cargos from Golgi bodies to centrosomes for cilia assembling.
Collapse
Affiliation(s)
- Ling Zhang
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
- Department of Obstetrics & Gynecology, Virginia Commonwealth University, Richmond, Virginia
| | - Wei Li
- Department of Obstetrics & Gynecology, Virginia Commonwealth University, Richmond, Virginia
| | - Jin Ni
- Department of Radiation Medicine, Second Military Medical University, Shanghai, China
| | - Jinghua Wu
- Department of Obstetrics & Gynecology, Virginia Commonwealth University, Richmond, Virginia
| | - Junping Liu
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
- Department of Obstetrics & Gynecology, Virginia Commonwealth University, Richmond, Virginia
| | - Zhengang Zhang
- Department of Infectious Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yong Zhang
- Department of Obstetrics & Gynecology, Virginia Commonwealth University, Richmond, Virginia
- Department of Dermatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hongfei Li
- Department of Obstetrics & Gynecology, Virginia Commonwealth University, Richmond, Virginia
| | - Yuqin Shi
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Maria E Teves
- Department of Obstetrics & Gynecology, Virginia Commonwealth University, Richmond, Virginia
| | - Shizheng Song
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Jerome F Strauss
- Department of Obstetrics & Gynecology, Virginia Commonwealth University, Richmond, Virginia
| | - Zhibing Zhang
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
- Department of Obstetrics & Gynecology, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
14
|
Velu V, Shetty RD, Larsson M, Shankar EM. Role of PD-1 co-inhibitory pathway in HIV infection and potential therapeutic options. Retrovirology 2015; 12:14. [PMID: 25756928 PMCID: PMC4340294 DOI: 10.1186/s12977-015-0144-x] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 01/18/2015] [Indexed: 02/07/2023] Open
Abstract
Virus-specific CD8+ T cells play an important role in controlling viral infections including human immunodeficiency virus (HIV) infection. However, during chronic HIV infection, virus-specific CD8+ T cells undergo functional exhaustion, lose effector functions and fail to control viral infection. HIV-specific CD8 T cells expressing high levels of co-inhibitory molecule programmed death-1 (PD-1) during the chronic infection and are characterized by lower proliferation, cytokine production, and cytotoxic abilities. Although, antiretroviral therapy has resulted in dramatic decline in HIV replication, there is no effective treatment currently available to eradicate viral reservoirs or restore virus-specific T or B-cell functions that may complement ART in order to eliminate the virus. In recent years, studies in mice and non-human primate models of HIV infection demonstrated the functional exhaustion of virus-specific T and B cells could be reversed by blockade of interaction between PD-1 and its cognate ligands (PD-L1 and PD-L2). In this review, we discuss recent advances in our understanding of PD-1 pathway in HIV/SIV infection and discuss the beneficial effects of PD-1 blockade during chronic HIV/SIV infection and its potential role as immunotherapy for HIV/AIDS.
Collapse
|
15
|
Roy A, Gupta S, Hess D, Das KP, Das S. Binding of insecticidal lectin Colocasia esculenta tuber agglutinin (CEA) to midgut receptors of Bemisia tabaci and Lipaphis erysimi provides clues to its insecticidal potential. Proteomics 2014; 14:1646-59. [PMID: 24753494 DOI: 10.1002/pmic.201300408] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 03/31/2014] [Accepted: 04/15/2014] [Indexed: 12/12/2022]
Abstract
The insecticidal potential of Galanthus nivalis agglutinin-related lectins against hemipterans has been experimentally proven. However, the basis behind the toxicity of these lectins against hemipterans remains elusive. The present study elucidates the molecular basis behind insecticidal efficacy of Colocasia esculenta tuber agglutinin (CEA) against Bemisia tabaci and Lipaphis erysimi. Confocal microscopic analyses highlighted the binding of 25 kDa stable homodimeric lectin to insect midgut. Ligand blots followed by LC MS/MS analyses identified binding partners of CEA as vacuolar ATP synthase and sarcoplasmic endoplasmic reticulum type Ca(2+) ATPase from B. tabaci, and ATP synthase, heat shock protein 70 and clathrin heavy chain assembly protein from L. erysimi. Internalization of CEA into hemolymph was confirmed by Western blotting. Glycoprotein nature of the receptors was identified through glycospecific staining. Deglycosylation assay indicated the interaction of CEA with its receptors to be probably glycan mediated. Surface plasmon resonance analysis revealed the interaction kinetics between ATP synthase of B. tabaci with CEA. Pathway prediction study based on Drosophila homologs suggested the interaction of CEA with insect receptors that probably led to disruption of cellular processes causing growth retardation and loss of fecundity of target insects. Thus, the present findings strengthen our current understanding of the entomotoxic potentiality of CEA, which will facilitate its future biotechnological applications.
Collapse
Affiliation(s)
- Amit Roy
- Division of Plant Biology, Bose Institute, Centenary Campus, Kankurgachi, Kolkata, West Bengal, India
| | | | | | | | | |
Collapse
|
16
|
GOLPH3 is essential for contractile ring formation and Rab11 localization to the cleavage site during cytokinesis in Drosophila melanogaster. PLoS Genet 2014; 10:e1004305. [PMID: 24786584 PMCID: PMC4006750 DOI: 10.1371/journal.pgen.1004305] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 02/28/2014] [Indexed: 01/02/2023] Open
Abstract
The highly conserved Golgi phosphoprotein 3 (GOLPH3) protein has been described as a Phosphatidylinositol 4-phosphate [PI(4)P] effector at the Golgi. GOLPH3 is also known as a potent oncogene, commonly amplified in several human tumors. However, the molecular pathways through which the oncoprotein GOLPH3 acts in malignant transformation are largely unknown. GOLPH3 has never been involved in cytokinesis. Here, we characterize the Drosophila melanogaster homologue of human GOLPH3 during cell division. We show that GOLPH3 accumulates at the cleavage furrow and is required for successful cytokinesis in Drosophila spermatocytes and larval neuroblasts. In premeiotic spermatocytes GOLPH3 protein is required for maintaining the organization of Golgi stacks. In dividing spermatocytes GOLPH3 is essential for both contractile ring and central spindle formation during cytokinesis. Wild type function of GOLPH3 enables maintenance of centralspindlin and Rho1 at cell equator and stabilization of Myosin II and Septin rings. We demonstrate that the molecular mechanism underlying GOLPH3 function in cytokinesis is strictly dependent on the ability of this protein to interact with PI(4)P. Mutations that abolish PI(4)P binding impair recruitment of GOLPH3 to both the Golgi and the cleavage furrow. Moreover telophase cells from mutants with defective GOLPH3-PI(4)P interaction fail to accumulate PI(4)P-and Rab11-associated secretory organelles at the cleavage site. Finally, we show that GOLPH3 protein interacts with components of both cytokinesis and membrane trafficking machineries in Drosophila cells. Based on these results we propose that GOLPH3 acts as a key molecule to coordinate phosphoinositide signaling with actomyosin dynamics and vesicle trafficking during cytokinesis. Because cytokinesis failures have been associated with premalignant disease and cancer, our studies suggest novel insight into molecular circuits involving the oncogene GOLPH3 in cytokinesis. In animal cell cytokinesis, constriction of an actomyosin ring at the equatorial cortex of dividing cells must be finely coordinated with plasma membrane remodeling and vesicle trafficking at the cleavage furrow. Accurate control of these events during cell cleavage is essential for maintaining ploidy and preventing neoplastic transformation. GOLPH3 has been recognized as a potent oncogene, involved in the development of several human tumors. However, the precise roles played by GOLPH3 in tumorigenesis are not yet understood. In this manuscript we demonstrate for the first time the requirement for GOLPH3 for cytokinesis. GOLPH3 protein localizes at the cleavage site of Drosophila dividing cells and is essential for cytokinesis in male meiotic cells and larval neuroblasts. We show that this protein acts as a key molecule in coupling plasma membrane remodeling with actomyosin ring assembly and stability during cytokinesis. Our studies indicate a novel connection between GOLPH3 and the molecular mechanisms of cytokinesis, opening new fields of investigation into the tumor cell biology of this oncogene.
Collapse
|
17
|
Mendes Maia T, Gogendeau D, Pennetier C, Janke C, Basto R. Bug22 influences cilium morphology and the post-translational modification of ciliary microtubules. Biol Open 2014; 3:138-51. [PMID: 24414207 PMCID: PMC3925317 DOI: 10.1242/bio.20146577] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Cilia and flagella are organelles essential for motility and sensing of environmental stimuli. Depending on the cell type, cilia acquire a defined set of functions and, accordingly, are built with an appropriate length and molecular composition. Several ciliary proteins display a high degree of conservation throughout evolution and mutations in ciliary genes are associated with various diseases such as ciliopathies and infertility. Here, we describe the role of the highly conserved ciliary protein, Bug22, in Drosophila. Previous studies in unicellular organisms have shown that Bug22 is required for proper cilia function, but its exact role in ciliogenesis has not been investigated yet. Null Bug22 mutant flies display cilia-associated phenotypes and nervous system defects. Furthermore, sperm differentiation is blocked at the individualization stage, due to impaired migration of the individualization machinery. Tubulin post-translational modifications (PTMs) such as polyglycylation, polyglutamylation or acetylation, are determinants of microtubule (MT) functions and stability in centrioles, cilia and neurons. We found defects in the timely incorporation of polyglycylation in sperm axonemal MTs of Bug22 mutants. In addition, we found that depletion of human Bug22 in RPE1 cells resulted in the appearance of longer cilia and reduced axonemal polyglutamylation. Our work identifies Bug22 as a protein that plays a conserved role in the regulation of PTMs of the ciliary axoneme.
Collapse
|
18
|
Yasuno Y, Kawano JI, Inoue YH, Yamamoto MT. Distribution and morphological changes of the Golgi apparatus during Drosophila spermatogenesis. Dev Growth Differ 2013; 55:635-47. [PMID: 23855356 DOI: 10.1111/dgd.12070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 05/19/2013] [Accepted: 05/20/2013] [Indexed: 12/01/2022]
Abstract
In spermatogenesis, the Golgi apparatus is important for the formation of the acrosome, which is a sperm-specific organelle essential for fertilization. Comprehensive examinations of the spatiotemporal distribution and morphological characterizations of the Golgi in various cells during spermatogenesis are necessary for functional analyses and mutant screenings in the model eukaryote Drosophila. Here, we examined the distribution and morphology of the Golgi during Drosophila spermatogenesis with immunofluorescence and electron microscopy. In pre-meiotic germ cells, the Golgi apparatuses were distributed evenly in the cytoplasm. In contrast, they were located exclusively in two regions near the poles during the meiotic metaphase, where they were segregated prior to the chromosomes. In cells in anaphase to telophase, the Golgi were predominantly left behind in the equatorial region between the separating daughter nuclei. After completion of meiosis, the dispersed Golgi were assembled at the apical side of the spermatid nucleus to form the acrosome. Further investigation of the Golgi distribution in β2-tubulin mutants showed aberrant and uneven distributions of the Golgi among sister cells in the meiotic spermatocytes and in the post-meiotic spermatids. At the ultrastructural level, the Golgi apparatus in pre-meiotic spermatocytes comprised a pair of stacks. The two stacks were situated adjacent to each other, as if they had duplicated before entering into meiotic division. These results highlight the dynamic nature of the Golgi during spermatogenesis and provide a framework for analyzing the correlations between the dynamics of the Golgi and its function in sperm development.
Collapse
Affiliation(s)
- Yusaku Yasuno
- Drosophila Genetic Resource Center, Kyoto Institute of Technology, Saga-Ippongi-cho, Ukyo-ku, Kyoto, Japan.
| | | | | | | |
Collapse
|
19
|
Abdallah AM, Zhou X, Kim C, Shah KK, Hogden C, Schoenherr JA, Clemens JC, Chang HC. Activated Cdc42 kinase regulates Dock localization in male germ cells during Drosophila spermatogenesis. Dev Biol 2013; 378:141-53. [PMID: 23562806 DOI: 10.1016/j.ydbio.2013.02.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Revised: 02/15/2013] [Accepted: 02/16/2013] [Indexed: 11/25/2022]
Abstract
Deregulation of the non-receptor tyrosine kinase ACK1 (Activated Cdc42-associated kinase) correlates with poor prognosis in cancers and has been implicated in promoting metastasis. To further understand its in vivo function, we have characterized the developmental defects of a null mutation in Drosophila Ack, which bears a high degree of sequence similarity to mammalian ACK1 but lacks a CRIB domain. We show that Ack, while not essential for viability, is critical for sperm formation. This function depends on Ack tyrosine kinase activity and is required cell autonomously in differentiating male germ cells at or after the spermatocyte stage. Ack associates predominantly with endocytic clathrin sites in spermatocytes, but disruption of Ack function has no apparent effect on clathrin localization and receptor-mediated internalization of Boss (Bride of sevenless) protein in eye discs. Instead, Ack is required for the subcellular distribution of Dock (dreadlocks), the Drosophila homolog of the SH2- and SH3-containing adaptor protein Nck. Moreover, Dock forms a complex with Ack, and the localization of Dock in male germ cells depends on its SH2 domain. Together, our results suggest that Ack-dependent tyrosine phosphorylation recruits Dock to promote sperm differentiation.
Collapse
Affiliation(s)
- Abbas M Abdallah
- Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907-2054, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Belloni G, Sechi S, Riparbelli MG, Fuller MT, Callaini G, Giansanti MG. Mutations in Cog7 affect Golgi structure, meiotic cytokinesis and sperm development during Drosophila spermatogenesis. J Cell Sci 2012; 125:5441-52. [PMID: 22946051 DOI: 10.1242/jcs.108878] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The conserved oligomeric Golgi (COG) complex plays essential roles in Golgi function, vesicle trafficking and glycosylation. Deletions in the human COG7 gene are associated with a rare multisystemic congenital disorder of glycosylation that causes mortality within the first year of life. In this paper, we characterise the Drosophila orthologue of COG7 (Cog7). Loss-of-function Cog7 mutants are viable but male sterile. The Cog7 gene product is enriched in the Golgi stacks and in Golgi-derived structures throughout spermatogenesis. Mutations in the Cog7 gene disrupt Golgi architecture and reduce the number of Golgi stacks in primary spermatocytes. During spermiogenesis, loss of the Cog7 protein impairs the assembly of the Golgi-derived acroblast in spermatids and affects axoneme architecture. Similar to the Cog5 homologue, four way stop (Fws), Cog7 enables furrow ingression during cytokinesis. We show that the recruitment of the small GTPase Rab11 and the phosphatidylinositol transfer protein Giotto (Gio) to the cleavage site requires a functioning wild-type Cog7 gene. In addition, Gio coimmunoprecipitates with Cog7 and with Rab11 in the testes. Our results altogether implicate Cog7 as an upstream component in a gio-Rab11 pathway controlling membrane addition during cytokinesis.
Collapse
Affiliation(s)
- Giorgio Belloni
- Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Biologia e Biotecnologie Università di Roma Sapienza, P.le A Moro 5, 00185 Roma, Italy
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
Drosophila melanogaster spermatids undergo dramatic morphological changes as they differentiate from small round cells approximately 12 μm in diameter into highly polarized, 1.8 mm long, motile sperm capable of participating in fertilization. During spermiogenesis, syncytial cysts of 64 haploid spermatids undergo synchronous differentiation. Numerous changes occur at a subcellular level, including remodeling of existing organelles (mitochondria, nuclei), formation of new organelles (flagellar axonemes, acrosomes), polarization of elongating cysts and plasma membrane addition. At the end of spermatid morphogenesis, organelles, mitochondrial DNA and cytoplasmic components not needed in mature sperm are stripped away in a caspase-dependent process called individualization that results in formation of individual sperm. Here, we review the stages of Drosophila spermiogenesis and examine our current understanding of the cellular and molecular mechanisms involved in shaping male germ cell-specific organelles and forming mature, fertile sperm.
Collapse
Affiliation(s)
- Lacramioara Fabian
- Cell Biology Program; The Hospital for Sick Children (SickKids); Toronto, ON Canada
| | - Julie A. Brill
- Cell Biology Program; The Hospital for Sick Children (SickKids); Toronto, ON Canada
- Department of Molecular Genetics; University of Toronto; Toronto, ON Canada
| |
Collapse
|
22
|
Hirst J, Carmichael J. A potential role for the clathrin adaptor GGA in Drosophila spermatogenesis. BMC Cell Biol 2011; 12:22. [PMID: 21599933 PMCID: PMC3127973 DOI: 10.1186/1471-2121-12-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 05/20/2011] [Indexed: 12/01/2022] Open
Abstract
Background GGAs (Golgi-localised, γ-ear containing, ADP ribosylation factor-binding) are a family of clathrin adaptors that sort a number of biologically important transmembrane proteins into clathrin-coated vesicles. Knockout and knockdown studies to determine GGA function are confounded by the fact that there are 3 GGA genes in mammalian cells. Thus Drosophila melanogaster is a useful model system to study tissue expression profiles and knockdown phenotypes as there is a single GGA ortholog. Results Here we have quantified protein expression in Drosophila and show that there is >3-fold higher expression of GGA in male flies relative to female flies. In female flies the majority of GGA expression is in the head. In male flies GGA is not only expressed at high levels in the head but there is a gender specific increased expression which is due to the abundant expression of GGA in the testes. Using a highly specific antibody we have localised endogenous GGA protein in testes squashes, and visualised it in somatic and germ line cells. We show that GGA is expressed during multiple stages of sperm development, and co-stains with a marker of the trans-Golgi Network. This is most striking at the acroblast of early spermatids. In spite of the high expression of GGA in testes, knocking down its expression by >95% using transgenic RNAi fly lines did not affect male fertility. Therefore spermatogenesis in the male flies appears to progress normally with <5% GGA, most likely because alternative adaptors may be able to substitute partially or completely for the function of GGA. We also identify 'cueball' as a novel cargo for GGA, and mutants of cueball have been shown to have a male sterility phenotype. Conclusion In Drosophila we have uncovered a potential role for GGA in the testes of male flies. The gender specific higher expression of GGA, its specific enrichment in testes and its localisation to developing spermatocytes and at the acroblast of spermatids supports a role for GGA function in Drosophila spermatogenesis, even though spermatogenesis still occurs when GGA expression is depleted to <5% of control.
Collapse
Affiliation(s)
- Jennifer Hirst
- University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK.
| | | |
Collapse
|
23
|
Zhou X, Fabian L, Bayraktar JL, Ding HM, Brill JA, Chang HC. Auxilin is required for formation of Golgi-derived clathrin-coated vesicles during Drosophila spermatogenesis. J Cell Sci 2011. [DOI: 10.1242/jcs.088567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|