1
|
Huber RJ, Kim WD. Trafficking of adhesion and aggregation-modulating proteins during the early stages of Dictyostelium development. Cell Signal 2024; 121:111292. [PMID: 38986731 DOI: 10.1016/j.cellsig.2024.111292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
The social amoeba Dictyostelium discoideum has been studied for close to a century to better understand conserved cellular and developmental processes. The life cycle of this model eukaryote is composed of a unicellular growth phase and a multicellular developmental phase that is induced by starvation. When starved, individual cells undergo chemotactic aggregation to form multicellular mounds that develop into slugs. Terminal differentiation of cells within slugs forms fruiting bodies, each composed of a stalk that supports a mass of viable spores that germinate and restart the life cycle when nutrients become available. Calcium-dependent cell adhesion protein A (CadA) and countin (CtnA) are two proteins that regulate adhesion and aggregation, respectively, during the early stages of D. discoideum development. While the functions of these proteins have been well-studied, the mechanisms regulating their trafficking are not fully understood. In this study, we reveal pathways and cellular components that regulate the intracellular and extracellular amounts of CadA and CtnA during aggregation. During growth and starvation, CtnA localizes to cytoplasmic vesicles and punctae. We show that CtnA is glycosylated and this post-translational modification is required for its secretion. Upon autophagy induction, a signal peptide for secretion facilitates the release of CtnA from cells via a pathway involving the μ subunit of the AP3 complex (Apm3) and the WASP and SCAR homolog, WshA. Additionally, CtnA secretion is negatively regulated by the D. discoideum orthologs of the human non-selective cation channel mucolipin-1 (Mcln) and sorting receptor sortilin (Sort1). As for CadA, it localizes to the cell periphery in growth-phase and starved cells. The intracellular and extracellular amounts of CadA are modulated by autophagy genes (atg1, atg9), Apm3, WshA, and Mcln. We integrate these data with previously published findings to generate a comprehensive model summarizing the trafficking of CadA and CtnA in D. discoideum. Overall, this study enhances our understanding of protein trafficking during D. discoideum aggregation, and more broadly, provides insight into the multiple pathways that regulate protein trafficking and secretion in all eukaryotes.
Collapse
Affiliation(s)
- Robert J Huber
- Department of Biology, Trent University, Peterborough, Ontario, Canada.
| | - William D Kim
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada
| |
Collapse
|
2
|
More KJ, Kaur H, Simpson AGB, Spiegel FW, Dacks JB. Contractile vacuoles: a rapidly expanding (and occasionally diminishing?) understanding. Eur J Protistol 2024; 94:126078. [PMID: 38688044 DOI: 10.1016/j.ejop.2024.126078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 05/02/2024]
Abstract
Osmoregulation is the homeostatic mechanism essential for the survival of organisms in hypoosmotic and hyperosmotic conditions. In freshwater or soil dwelling protists this is frequently achieved through the action of an osmoregulatory organelle, the contractile vacuole. This endomembrane organelle responds to the osmotic challenges and compensates by collecting and expelling the excess water to maintain the cellular osmolarity. As compared with other endomembrane organelles, this organelle is underappreciated and under-studied. Here we review the reported presence or absence of contractile vacuoles across eukaryotic diversity, as well as the observed variability in the structure, function, and molecular machinery of this organelle. Our findings highlight the challenges and opportunities for constructing cellular and evolutionary models for this intriguing organelle.
Collapse
Affiliation(s)
- Kiran J More
- Division of Infectious Diseases, Department of Medicine, and Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Harpreet Kaur
- Division of Infectious Diseases, Department of Medicine, and Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Alastair G B Simpson
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, NS, Canada; Department of Biology, Dalhousie University, Halifax, NS, Canada
| | - Frederick W Spiegel
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Joel B Dacks
- Division of Infectious Diseases, Department of Medicine, and Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada; Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic; Centre for Life's Origins and Evolution, Department of Genetics, Evolution, & Environment, University College, London, United Kingdom.
| |
Collapse
|
3
|
Larson BT. Perspectives on Principles of Cellular Behavior from the Biophysics of Protists. Integr Comp Biol 2023; 63:1405-1421. [PMID: 37496203 PMCID: PMC10755178 DOI: 10.1093/icb/icad106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023] Open
Abstract
Cells are the fundamental unit of biological organization. Although it may be easy to think of them as little more than the simple building blocks of complex organisms such as animals, single cells are capable of behaviors of remarkable apparent sophistication. This is abundantly clear when considering the diversity of form and function among the microbial eukaryotes, the protists. How might we navigate this diversity in the search for general principles of cellular behavior? Here, we review cases in which the intensive study of protists from the perspective of cellular biophysics has driven insight into broad biological questions of morphogenesis, navigation and motility, and decision making. We argue that applying such approaches to questions of evolutionary cell biology presents rich, emerging opportunities. Integrating and expanding biophysical studies across protist diversity, exploiting the unique characteristics of each organism, will enrich our understanding of general underlying principles.
Collapse
Affiliation(s)
- Ben T Larson
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
4
|
Adiba S, Forget M, De Monte S. Evolving social behaviour through selection of single-cell adhesion in Dictyostelium discoideum. iScience 2022; 25:105006. [PMID: 36105585 PMCID: PMC9464967 DOI: 10.1016/j.isci.2022.105006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/09/2022] [Accepted: 08/19/2022] [Indexed: 11/30/2022] Open
Abstract
The social amoeba Dictyostelium discoideum commonly forms chimeric fruiting bodies. Genetic variants that produce a higher proportion of spores are predicted to undercut multicellular organization unless cooperators assort positively. Cell adhesion is considered a primary factor driving such assortment, but evolution of adhesion has not been experimentally connected to changes in social performance. We modified by experimental evolution the efficiency of individual cells in attaching to a surface. Surprisingly, evolution appears to have produced social cooperators irrespective of whether stronger or weaker adhesion was selected. Quantification of reproductive success, cell-cell adhesion, and developmental patterns, however, revealed two distinct social behaviors, as captured when the classical metric for social success is generalized by considering clonal spore production. Our work shows that cell mechanical interactions can constrain the evolution of development and sociality in chimeras and that elucidation of proximate mechanisms is necessary to understand the ultimate emergence of multicellular organization. Cooperative behavior evolved as a pleiotropic effect of selection for surface adhesion Multicellular development of evolved lines with the ancestor follows two different paths A metric of social behavior including clonal development differentiates these two paths
Collapse
Affiliation(s)
- Sandrine Adiba
- Institut de Biologie de l’ENS (IBENS), Département de biologie, Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
- Corresponding author
| | - Mathieu Forget
- Institut de Biologie de l’ENS (IBENS), Département de biologie, Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Silvia De Monte
- Institut de Biologie de l’ENS (IBENS), Département de biologie, Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
5
|
O'Day DH, Mathavarajah S, Myre MA, Huber RJ. Calmodulin-mediated events during the life cycle of the amoebozoan Dictyostelium discoideum. Biol Rev Camb Philos Soc 2020; 95:472-490. [PMID: 31774219 PMCID: PMC7079120 DOI: 10.1111/brv.12573] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 10/30/2019] [Accepted: 11/11/2019] [Indexed: 12/14/2022]
Abstract
This review focusses on the functions of intracellular and extracellular calmodulin, its target proteins and their binding proteins during the asexual life cycle of Dictyostelium discoideum. Calmodulin is a primary regulatory protein of calcium signal transduction that functions throughout all stages. During growth, it mediates autophagy, the cell cycle, folic acid chemotaxis, phagocytosis, and other functions. During mitosis, specific calmodulin-binding proteins translocate to alternative locations. Translocation of at least one cell adhesion protein is calmodulin dependent. When starved, cells undergo calmodulin-dependent chemotaxis to cyclic AMP generating a multicellular pseudoplasmodium. Calmodulin-dependent signalling within the slug sets up a defined pattern and polarity that sets the stage for the final events of morphogenesis and cell differentiation. Transected slugs undergo calmodulin-dependent transdifferentiation to re-establish the disrupted pattern and polarity. Calmodulin function is critical for stalk cell differentiation but also functions in spore formation, events that begin in the pseudoplasmodium. The asexual life cycle restarts with the calmodulin-dependent germination of spores. Specific calmodulin-binding proteins as well as some of their binding partners have been linked to each of these events. The functions of extracellular calmodulin during growth and development are also discussed. This overview brings to the forefront the central role of calmodulin, working through its numerous binding proteins, as a primary downstream regulator of the critical calcium signalling pathways that have been well established in this model eukaryote. This is the first time the function of calmodulin and its target proteins have been documented through the complete life cycle of any eukaryote.
Collapse
Affiliation(s)
- Danton H. O'Day
- Cell and Systems BiologyUniversity of TorontoTorontoOntarioM5S 3G5Canada
- Department of BiologyUniversity of Toronto MississaugaMississaugaOntarioL5L 1C6Canada
| | | | - Michael A. Myre
- Department of Biological Sciences, Kennedy College of SciencesUniversity of Massachusetts LowellLowellMassachusetts01854USA
| | - Robert J. Huber
- Department of BiologyTrent UniversityPeterboroughOntarioK9L 0G2Canada
| |
Collapse
|
6
|
O’Day DH, Taylor RJ, Myre MA. Calmodulin and Calmodulin Binding Proteins in Dictyostelium: A Primer. Int J Mol Sci 2020; 21:E1210. [PMID: 32054133 PMCID: PMC7072818 DOI: 10.3390/ijms21041210] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/01/2020] [Accepted: 02/03/2020] [Indexed: 01/11/2023] Open
Abstract
Dictyostelium discoideum is gaining increasing attention as a model organism for the study of calcium binding and calmodulin function in basic biological events as well as human diseases. After a short overview of calcium-binding proteins, the structure of Dictyostelium calmodulin and the conformational changes effected by calcium ion binding to its four EF hands are compared to its human counterpart, emphasizing the highly conserved nature of this central regulatory protein. The calcium-dependent and -independent motifs involved in calmodulin binding to target proteins are discussed with examples of the diversity of calmodulin binding proteins that have been studied in this amoebozoan. The methods used to identify and characterize calmodulin binding proteins is covered followed by the ways Dictyostelium is currently being used as a system to study several neurodegenerative diseases and how it could serve as a model for studying calmodulinopathies such as those associated with specific types of heart arrythmia. Because of its rapid developmental cycles, its genetic tractability, and a richly endowed stock center, Dictyostelium is in a position to become a leader in the field of calmodulin research.
Collapse
Affiliation(s)
- Danton H. O’Day
- Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L6L 1X3, Canada
| | - Ryan J. Taylor
- Department of Biological Sciences, Kennedy College of Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA; (R.J.T.); (M.A.M.)
| | - Michael A. Myre
- Department of Biological Sciences, Kennedy College of Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA; (R.J.T.); (M.A.M.)
| |
Collapse
|
7
|
Farinholt T, Dinh C, Kuspa A. Social amoebae establish a protective interface with their bacterial associates by lectin agglutination. SCIENCE ADVANCES 2019; 5:eaav4367. [PMID: 31355329 PMCID: PMC6656538 DOI: 10.1126/sciadv.aav4367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 06/20/2019] [Indexed: 05/13/2023]
Abstract
Both animals and amoebae use phagocytosis and DNA-based extracellular traps as anti-bacterial defense mechanisms. Whether, like animals, amoebae also use tissue-level barriers to reduce direct contact with bacteria has remained unclear. We have explored this question in the social amoeba Dictyostelium discoideum, which forms plaques on lawns of bacteria that expand as amoebae divide and bacteria are consumed. We show that CadA, a cell adhesion protein that functions in D. discoideum development, is also a bacterial agglutinin that forms a protective interface at the plaque edge that limits exposure of vegetative amoebae to bacteria. This interface is important for amoebal survival when bacteria-to-amoebae ratios are high, optimizing amoebal feeding behavior, and protecting amoebae from oxidative stress. Lectins also control bacterial access to the gut epithelium of mammals to limit inflammatory processes; thus, this strategy of antibacterial defense is shared across a broad spectrum of eukaryotic taxa.
Collapse
Affiliation(s)
- Timothy Farinholt
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christopher Dinh
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Adam Kuspa
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Corresponding author.
| |
Collapse
|
8
|
Evolutionary reconstruction of pattern formation in 98 Dictyostelium species reveals that cell-type specialization by lateral inhibition is a derived trait. EvoDevo 2014; 5:34. [PMID: 25904998 PMCID: PMC4406040 DOI: 10.1186/2041-9139-5-34] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 08/22/2014] [Indexed: 02/07/2023] Open
Abstract
Background Multicellularity provides organisms with opportunities for cell-type specialization, but requires novel mechanisms to position correct proportions of different cell types throughout the organism. Dictyostelid social amoebas display an early form of multicellularity, where amoebas aggregate to form fruiting bodies, which contain only spores or up to four additional cell-types. These cell types will form the stalk and support structures for the stalk and spore head. Phylogenetic inference subdivides Dictyostelia into four major groups, with the model organism D. discoideum residing in group 4. In D. discoideum differentiation of its five cell types is dominated by lateral inhibition-type mechanisms that trigger scattered cell differentiation, with tissue patterns being formed by cell sorting. Results To reconstruct the evolution of pattern formation in Dictyostelia, we used cell-type specific antibodies and promoter-reporter fusion constructs to investigate pattern formation in 98 species that represent all groupings. Our results indicate that in all early diverging Dictyostelia and most members of groups 1–3, cells differentiate into maximally two cell types, prestalk and prespore cells, with pattern formation being dominated by position-dependent transdifferentiation of prespore cells into prestalk cells. In clade 2A, prestalk and stalk cell differentiation are lost and the prespore cells construct an acellular stalk. Group 4 species set aside correct proportions of prestalk and prespore cells early in development, and differentiate into up to three more supporting cell types. Conclusions Our experiments show that positional transdifferentiation is the ancestral mode of pattern formation in Dictyostelia. The early specification of a prestalk population equal to the number of stalk cells is a derived trait that emerged in group 4 and a few late diverging species in the other groups. Group 4 spore masses are larger than those of other groups and the differentiation of supporting cell types by lateral inhibition may have facilitated this increase in size. The signal DIF-1, which is secreted by prespore cells, triggers differentiation of supporting cell types. The synthesis and degradation of DIF-1 were shown to be restricted to group 4. This suggests that the emergence of DIF-1 signalling caused increased cell-type specialization in this group. Electronic supplementary material The online version of this article (doi:10.1186/2041-9139-5-34) contains supplementary material, which is available to authorized users.
Collapse
|
9
|
Assembly of the TgrB1-TgrC1 cell adhesion complex during Dictyostelium discoideum development. Biochem J 2014; 459:241-9. [PMID: 24490801 DOI: 10.1042/bj20131594] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In Dictyostelium discoideum, TgrB1 and TgrC1 are partners of a heterophilic cell-adhesion system. To investigate its assembly process, the split GFP complementation assay was used to track the oligomeric status of both proteins. The ability of TgrC1 to form cis-homodimers spontaneously was demonstrated by fluorescence complementation studies and confirmed by chemical cross-linking. In contrast, TgrB1 failed to form cis-homodimers in the absence of TgrC1. Treatment of cell aggregates with antibodies against TgrB1 or TgrC1 did not affect TgrC1 dimerization, but inhibited TgrB1 dimer formation, suggesting that TgrB1 cis-homodimerization is dependent on trans-interaction with TgrC1. When TgrB1 and TgrC1 conjugated with the complementary halves of GFP were co-expressed in cells, cis-heterodimers were not detected. However, weak FRET signals were detected in cells expressing TgrB1-RFP and TgrC1-GFP, suggesting that TgrB1 dimers and TgrC1 dimers were arranged juxtapose to each other in the adhesion complex. The results of the present study suggest that the assembly process is initiated upon trans-interaction of monomeric TgrB1 with TgrC1 homodimers on adjacent cells, which triggers the formation of TgrB1 dimers. The homodimerization of TgrB1 in turn induces the clustering of TgrB1 and TgrC1, and the coalescence of TgrB1-TgrC1 clusters results in the formation of large adhesion complexes.
Collapse
|
10
|
Srivastava SS, Mishra A, Krishnan B, Sharma Y. Ca2+-binding motif of βγ-crystallins. J Biol Chem 2014; 289:10958-10966. [PMID: 24567326 DOI: 10.1074/jbc.o113.539569] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
βγ-Crystallin-type double clamp (N/D)(N/D)XX(S/T)S motif is an established but sparsely investigated motif for Ca(2+) binding. A βγ-crystallin domain is formed of two Greek key motifs, accommodating two Ca(2+)-binding sites. βγ-Crystallins make a separate class of Ca(2+)-binding proteins (CaBP), apparently a major group of CaBP in bacteria. Paralleling the diversity in βγ-crystallin domains, these motifs also show great diversity, both in structure and in function. Although the expression of some of them has been associated with stress, virulence, and adhesion, the functional implications of Ca(2+) binding to βγ-crystallins in mediating biological processes are yet to be elucidated.
Collapse
Affiliation(s)
- Shanti Swaroop Srivastava
- Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Uppal Road, Hyderabad-500 007, India
| | - Amita Mishra
- Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Uppal Road, Hyderabad-500 007, India
| | - Bal Krishnan
- Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Uppal Road, Hyderabad-500 007, India
| | - Yogendra Sharma
- Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Uppal Road, Hyderabad-500 007, India.
| |
Collapse
|
11
|
TgrC1 mediates cell–cell adhesion by interacting with TgrB1 via mutual IPT/TIG domains during development of Dictyostelium discoideum. Biochem J 2013; 452:259-69. [DOI: 10.1042/bj20121674] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cell–cell adhesion plays crucial roles in cell differentiation and morphogenesis during development of Dictyostelium discoideum. The heterophilic adhesion protein TgrC1 (Tgr is transmembrane, IPT, IG, E-set, repeat protein) is expressed during cell aggregation, and disruption of the tgrC1 gene results in the arrest of development at the loose aggregate stage. We have used far-Western blotting coupled with MS to identify TgrB1 as the heterophilic binding partner of TgrC1. Co-immunoprecipitation and pull-down studies showed that TgrB1 and TgrC1 are capable of binding with each other in solution. TgrB1 and TgrC1 are encoded by a pair of adjacent genes which share a common promoter. Both TgrB1 and TgrC1 are type I transmembrane proteins, which contain three extracellular IPT/TIG (immunoglobulin, plexin, transcription factor-like/transcription factor immunoglobulin) domains. Antibodies raised against TgrB1 inhibit cell reassociation at the post-aggregation stage of development and block fruiting body formation. Ectopic expression of TgrB1 and TgrC1 driven by the actin15 promoter leads to heterotypic cell aggregation of vegetative cells. Using recombinant proteins that cover different portions of TgrB1 and TgrC1 in binding assays, we have mapped the cell-binding regions in these two proteins to Lys537–Ala783 in TgrB1 and Ile336–Val360 in TgrC1, corresponding to their respective TIG3 and TIG2 domain.
Collapse
|
12
|
The G alpha subunit Gα8 inhibits proliferation, promotes adhesion and regulates cell differentiation. Dev Biol 2013; 380:58-72. [PMID: 23665473 DOI: 10.1016/j.ydbio.2013.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 04/15/2013] [Accepted: 05/01/2013] [Indexed: 01/26/2023]
Abstract
Heterotrimeric G protein-mediated signal transduction plays a pivotal role in both vegetative and developmental stages in the eukaryote Dictyostelium discoideum. Here we describe novel functions of the G protein alpha subunit Gα8 during vegetative and development stages. Gα8 is expressed at low levels during vegetative growth. Loss of Gα8 promotes cell proliferation, whereas excess Gα8 expression dramatically inhibits growth and induces aberrant cytokinesis on substrates in a Gβ-dependent manner. Overexpression of Gα8 also leads to increased cell-cell cohesion and cell-substrate adhesion. We demonstrate that the increased cell-cell cohesion is mainly caused by induced CadA expression, and the induced cell-substrate adhesion is responsible for the cytokinesis defects. However, the expression of several putative constitutively active mutants of Gα8 does not augment the phenotypes caused by intact Gα8. Gα8 is strongly induced after starvation, and loss of Gα8 results in decreased expression of certain adhesion molecules including CsA and tgrC1. Interestingly, Gα8 is preferentially distributed in the upper and lower cup of the fruiting body. Lack of Gα8 decreases the expression of the specific marker of the anterior-like cells, suggesting that Gα8 is required for anterior-like cell differentiation.
Collapse
|
13
|
Yang C, Hou L, Yang Q, Siu CH. ATP-Binding Cassette Transporter B4 Anchors the Cell Adhesion Molecule DdCAD-1 to Cell Membrane in Dictyostelium discoideum. Indian J Microbiol 2013; 53:460-6. [PMID: 24426151 DOI: 10.1007/s12088-013-0393-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 03/16/2013] [Indexed: 12/13/2022] Open
Abstract
In Dictyostelium, soluble cell adhesion molecule, DdCAD-1, regulates cell-cell interaction through an unknown anchoring protein on the plasma membrane. Far western blot analysis using different probes revealed that the potential DdCAD-1 interacting protein was between 64 and 98 kDa. To isolate and identify the anchoring protein, GST-DdCAD-1 and anchoring protein were cross-linked in vivo by chemical cross-linker and stable protein complex was isolated by co-immunoprecipitation assays. The protein cross-linked to DdCAD-1 was extracted from the gel slice and trypsinized. The peptides were subjected to analysis by mass spectrometry, which showed that the putative anchoring protein belongs to ATP-binding cassette transporter family.
Collapse
Affiliation(s)
- Chunxia Yang
- School of Life Science, East China Normal University, 200062 Shanghai, China
| | - Liansheng Hou
- School of Life Science, East China Normal University, 200062 Shanghai, China
| | - Qixiu Yang
- Banting and Best Department of Medical Research and the Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8 Canada
| | - Chi-Hung Siu
- Banting and Best Department of Medical Research and the Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8 Canada
| |
Collapse
|
14
|
Sriskanthadevan S, Brar SK, Manoharan K, Siu CH. Ca(2+) -calmodulin interacts with DdCAD-1 and promotes DdCAD-1 transport by contractile vacuoles in Dictyostelium cells. FEBS J 2013; 280:1795-806. [PMID: 23441816 DOI: 10.1111/febs.12203] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 01/18/2013] [Accepted: 01/25/2013] [Indexed: 11/28/2022]
Abstract
UNLABELLED The Ca(2+) -dependent cell-cell adhesion molecule DdCAD-1, encoded by the cadA gene of Dictyostelium discoideum, is synthesized at the onset of development as a soluble protein and then transported to the plasma membrane by contractile vacuoles. Calmodulin associates with contractile vacuoles in a Ca(2+) -dependent manner, and co-localizes with DdCAD-1 on the surface of contractile vacuoles. Bioinformatics analysis revealed multiple calmodulin-binding motifs in DdCAD-1. Co-immunoprecipitation and pull-down studies showed that only Ca(2+) -bound calmodulin was able to bind DdCAD-1. Structural integrity of DdCAD-1, but not the native conformation, was required for its interaction with calmodulin. To investigate the role of calmodulin in the import of DdCAD-1 into contractile vacuoles, an in vitro import assay consisting of contractile vacuoles derived from cadA(-) cells and recombinant proteins was employed. Prior stripping of the bound calmodulin from contractile vacuoles by EGTA impaired import of DdCAD-1, which was restored by addition of exogenous calmodulin. The calmodulin antagonists W-7 and compound 48/80 blocked the binding of calmodulin onto stripped contractile vacuoles, and inhibited the import of DdCAD-1. Together, the data show that calmodulin forms a complex with DdCAD-1 and promotes the docking and import of DdCAD-1 into contractile vacuoles. STRUCTURED DIGITAL ABSTRACT CaM physically interacts with DdCAD-1 by pull down (View Interaction: 1, 2) DdCAD-1 binds to CaM by far western blotting (View interaction) DdCAD-1 physically interacts with CaM by anti bait coimmunoprecipitation (View interaction).
Collapse
|
15
|
Foty RA, Steinberg MS. Differential adhesion in model systems. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2013; 2:631-45. [DOI: 10.1002/wdev.104] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
New insights into roles of acidocalcisomes and contractile vacuole complex in osmoregulation in protists. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 305:69-113. [PMID: 23890380 DOI: 10.1016/b978-0-12-407695-2.00002-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
While free-living protists are usually subjected to hyposmotic environments, parasitic protists are also in contact with hyperosmotic habitats. Recent work in one of these parasites, Trypanosoma cruzi, has revealed that its contractile vacuole complex, which usually collects and expels excess water as a mechanism of regulatory volume decrease after hyposmotic stress, has also a role in cell shrinking when the cells are submitted to hyperosmotic stress. Trypanosomes also have an acidic calcium store rich in polyphosphate (polyP), named the acidocalcisome, which is involved in their response to osmotic stress. Here, we review newly emerging insights on the role of acidocalcisomes and the contractile vacuole complex in the cellular response to hyposmotic and hyperosmotic stresses. We also review the current state of knowledge on the composition of these organelles and their other roles in calcium homeostasis and protein trafficking.
Collapse
|
17
|
Crossin KL. Oxygen levels and the regulation of cell adhesion in the nervous system: a control point for morphogenesis in development, disease and evolution? Cell Adh Migr 2012; 6:49-58. [PMID: 22647940 DOI: 10.4161/cam.19582] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In this article, I discuss the hallmarks of hypoxia in vitro and in vivo and review work showing that many types of stem cell proliferate more robustly in lowered oxygen. I then discuss recent studies showing that alterations in the levels and the types of cell and substrate adhesion molecules are a notable response to reduced O(2) levels in both cultured primary neural stem cells and brain tissues in response to hypoxia in vivo. The ability of O(2) levels to regulate adhesion molecule expression is linked to the Wnt signaling pathway, which can control and be controlled by adhesion events. The ability of O(2) levels to influence cell adhesion also has far-reaching implications for development, ischemic trauma and neural regeneration, as well as for cancer and other diseases. Finally I discuss the possibility that the fluctuations in O(2) levels known to have occurred over evolutionary time could, by influencing adhesion systems, have contributed to early symbiotic events in unicellular organisms and to the emergence of multicellularity. It is not my intention to be exhaustive in these domains, which are far from my own field of study. Rather this article is meant to provoke and stimulate thinking about molecular evolution involving O(2) sensing and signaling during eras of geologic and atmospheric change that might inform modern studies on development and disease.
Collapse
Affiliation(s)
- Kathryn L Crossin
- Department of Neurobiology, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
18
|
Siu CH, Sriskanthadevan S, Wang J, Hou L, Chen G, Xu X, Thomson A, Yang C. Regulation of spatiotemporal expression of cell-cell adhesion molecules during development of Dictyostelium discoideum. Dev Growth Differ 2011; 53:518-27. [DOI: 10.1111/j.1440-169x.2011.01267.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|