1
|
Lee GG, Peterson AJ, Kim MJ, O’Connor MB, Park JH. Multiple isoforms of the Activin-like receptor baboon differentially regulate proliferation and conversion behaviors of neuroblasts and neuroepithelial cells in the Drosophila larval brain. PLoS One 2024; 19:e0305696. [PMID: 38913612 PMCID: PMC11195991 DOI: 10.1371/journal.pone.0305696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/04/2024] [Indexed: 06/26/2024] Open
Abstract
In Drosophila coordinated proliferation of two neural stem cells, neuroblasts (NB) and neuroepithelial (NE) cells, is pivotal for proper larval brain growth that ultimately determines the final size and performance of an adult brain. The larval brain growth displays two phases based on behaviors of NB and NEs: the first one in early larval stages, influenced by nutritional status and the second one in the last larval stage, promoted by ecdysone signaling after critical weight checkpoint. Mutations of the baboon (babo) gene that produces three isoforms (BaboA-C), all acting as type-I receptors of Activin-type transforming growth factor β (TGF-β) signaling, cause a small brain phenotype due to severely reduced proliferation of the neural stem cells. In this study we show that loss of babo function severely affects proliferation of NBs and NEs as well as conversion of NEs from both phases. By analyzing babo-null and newly generated isoform-specific mutants by CRISPR mutagenesis as well as isoform-specific RNAi knockdowns in a cell- and stage-specific manner, our data support differential contributions of the isoforms for these cellular events with BaboA playing the major role. Stage-specific expression of EcR-B1 in the brain is also regulated primarily by BaboA along with function of the other isoforms. Blocking EcR function in both neural stem cells results in a small brain phenotype that is more severe than baboA-knockdown alone. In summary, our study proposes that the Babo-mediated signaling promotes proper behaviors of the neural stem cells in both phases and achieves this by acting upstream of EcR-B1 expression in the second phase.
Collapse
Affiliation(s)
- Gyunghee G. Lee
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Aidan J. Peterson
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Myung-Jun Kim
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Michael B. O’Connor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Jae H. Park
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, United States of America
| |
Collapse
|
2
|
Akiyama T, Raftery LA, Wharton KA. Bone morphogenetic protein signaling: the pathway and its regulation. Genetics 2024; 226:iyad200. [PMID: 38124338 PMCID: PMC10847725 DOI: 10.1093/genetics/iyad200] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/27/2023] [Indexed: 12/23/2023] Open
Abstract
In the mid-1960s, bone morphogenetic proteins (BMPs) were first identified in the extracts of bone to have the remarkable ability to induce heterotopic bone. When the Drosophila gene decapentaplegic (dpp) was first identified to share sequence similarity with mammalian BMP2/BMP4 in the late-1980s, it became clear that secreted BMP ligands can mediate processes other than bone formation. Following this discovery, collaborative efforts between Drosophila geneticists and mammalian biochemists made use of the strengths of their respective model systems to identify BMP signaling components and delineate the pathway. The ability to conduct genetic modifier screens in Drosophila with relative ease was critical in identifying the intracellular signal transducers for BMP signaling and the related transforming growth factor-beta/activin signaling pathway. Such screens also revealed a host of genes that encode other core signaling components and regulators of the pathway. In this review, we provide a historical account of this exciting time of gene discovery and discuss how the field has advanced over the past 30 years. We have learned that while the core BMP pathway is quite simple, composed of 3 components (ligand, receptor, and signal transducer), behind the versatility of this pathway lies multiple layers of regulation that ensures precise tissue-specific signaling output. We provide a sampling of these discoveries and highlight many questions that remain to be answered to fully understand the complexity of BMP signaling.
Collapse
Affiliation(s)
- Takuya Akiyama
- Department of Biology, Rich and Robin Porter Cancer Research Center, The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA
| | - Laurel A Raftery
- School of Life Sciences, University of Nevada, 4505 S. Maryland Parkway, Las Vegas, NV 89154, USA
| | - Kristi A Wharton
- Department of Molecular Biology, Cell Biology, and Biochemistry, Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| |
Collapse
|
3
|
Christensen CF, Laurichesse Q, Loudhaief R, Colombani J, Andersen DS. Drosophila activins adapt gut size to food intake and promote regenerative growth. Nat Commun 2024; 15:273. [PMID: 38177201 PMCID: PMC10767106 DOI: 10.1038/s41467-023-44553-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024] Open
Abstract
Rapidly renewable tissues adapt different strategies to cope with environmental insults. While tissue repair is associated with increased intestinal stem cell (ISC) proliferation and accelerated tissue turnover rates, reduced calorie intake triggers a homeostasis-breaking process causing adaptive resizing of the gut. Here we show that activins are key drivers of both adaptive and regenerative growth. Activin-β (Actβ) is produced by stem and progenitor cells in response to intestinal infections and stimulates ISC proliferation and turnover rates to promote tissue repair. Dawdle (Daw), a divergent Drosophila activin, signals through its receptor, Baboon, in progenitor cells to promote their maturation into enterocytes (ECs). Daw is dynamically regulated during starvation-refeeding cycles, where it couples nutrient intake with progenitor maturation and adaptive resizing of the gut. Our results highlight an activin-dependent mechanism coupling nutrient intake with progenitor-to-EC maturation to promote adaptive resizing of the gut and further establish activins as key regulators of adult tissue plasticity.
Collapse
Affiliation(s)
- Christian F Christensen
- Department of Biology, Faculty of Science, University of Copenhagen, Universitetsparken 15, Build. 3, 3rd floor, 2100 Copenhagen O, Copenhagen, Denmark
| | - Quentin Laurichesse
- Department of Biology, Faculty of Science, University of Copenhagen, Universitetsparken 15, Build. 3, 3rd floor, 2100 Copenhagen O, Copenhagen, Denmark
| | - Rihab Loudhaief
- Department of Biology, Faculty of Science, University of Copenhagen, Universitetsparken 15, Build. 3, 3rd floor, 2100 Copenhagen O, Copenhagen, Denmark
| | - Julien Colombani
- Department of Biology, Faculty of Science, University of Copenhagen, Universitetsparken 15, Build. 3, 3rd floor, 2100 Copenhagen O, Copenhagen, Denmark.
| | - Ditte S Andersen
- Department of Biology, Faculty of Science, University of Copenhagen, Universitetsparken 15, Build. 3, 3rd floor, 2100 Copenhagen O, Copenhagen, Denmark.
| |
Collapse
|
4
|
Chen F, Zhang XQ, Wu JJ, Jin L, Li GQ. Requirement of Myoglianin for metamorphosis in the beetle Henosepilachna vigintioctopunctata. INSECT MOLECULAR BIOLOGY 2022; 31:671-685. [PMID: 35661293 DOI: 10.1111/imb.12795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Henosepilachna vigintioctopunctata is a serious defoliating beetle attacking Solanaceae and Cucurbitaceae plants in many Asian countries. In the present paper, we identified a putative myoglianin (myo) gene. Hvmyo was actively transcribed throughout development, from embryo to adult. RNA interference (RNAi)-aided knockdown of Hvmyo delayed larval development by more than 2 days, reduced larval body size, inhibited the growth of antennae, wings and legs and disturbed gut purge. Knockdown of Hvmyo impaired the larval-pupal transition. All the Hvmyo RNAi larvae arrested at the larval stage or formed misshapen pupae or adults. The deformed pupae and adults were partially wrapped with exuviae, bearing separated wings. Moreover, the expression levels of five ecdysteroidogenesis genes (Hvspo, Hvphm, Hvdib, Hvsad and Hvshd), a prothocicotropic hormone (PTTH)/Torso pathway gene (Hvtorso), two 20E receptor genes (HvEcR and HvUSP), and two 20E signalling genes (HvE93 and HvFTZ-F1) were as a result of HvMyo RNAi significantly lowered. Conversely, the expression of a JH biosynthesis gene (Hvjhamt), a JH receptor gene HvMet and a JH signalling gene HvKr-h1 was greatly enhanced. Although ingestion of 20E and Hal rescued the 20E signal, it could not alleviate larval performance and defective phenotypes. Our results suggest that Myo exerts four distinctive roles in ecdysteroidogenesis, JH production, organ growth and larva-pupa-adult transformation in H. vigintioctopunctata.
Collapse
Affiliation(s)
- Feng Chen
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Xiao-Qing Zhang
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jian-Jian Wu
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Lin Jin
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Guo-Qing Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
5
|
Du JL, Chen F, Wu JJ, Jin L, Li GQ. Smad on X is vital for larval-pupal transition in a herbivorous ladybird beetle. JOURNAL OF INSECT PHYSIOLOGY 2022; 139:104387. [PMID: 35367434 DOI: 10.1016/j.jinsphys.2022.104387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Insect development is regulated by a combination of juvenile hormone (JH) and 20-hydroxyecdysone (20E). Production of both JH and 20E is regulated by transforming growth factor-β (TGFβ) signaling. TGFβ can be classified into two branches, the Activin and Bone Morphogenetic Protein (BMP) pathways. In Drosophila melanogaster, BMP signaling is critical for JH synthesis, whereas Activin signal is required to generate the large pulse of 20E necessary for entering metamorphosis. However, to which extent the roles of these signals are conserved remains unknown. Here we studied the role of an Activin component Smad on X (Smox) in post-embryonic development in a defoliating ladybird Henosepilachna vigintioctopunctata. RNA interference (RNAi)-aided knockdown of Hvsmox inhibited larval growth, and impaired larval development. All Hvmyo RNAi larvae arrested at the fourth-instar larval stage. Moreover, knockdown of Hvsmox delayed gut and Malpighian tubules remodeling. Furthermore, the expression of a JH biosynthesis gene (Hvjhamt), a JH receptor gene HvMet and a JH response gene HvKr-h1 was greatly enhanced. Conversely, the expression levels of an ecdysteroidogenesis gene (Hvspo), a 20E receptor gene (HvEcR) and six 20E response genes (HvBrC, HvE74, HvE75, HvE93, HvHR3 and HvHR4) were significantly lowered. Knockdown of HvMet partially restored the negative phenotypes in the Hvsmox RNAi beetles. Our results suggest that Smox exerts regulative roles in JH production, ecdysteroidogenesis and organ remodeling, thus contributing to modulate the larva-pupa-adult transformation in H. vigintioctopunctata.
Collapse
Affiliation(s)
- Jun-Li Du
- College of Agriculture, Anhui Science and Technology University, Fengyang, Anhui 233100, China; Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/ State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Feng Chen
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/ State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jian-Jian Wu
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/ State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Lin Jin
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/ State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Guo-Qing Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/ State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
6
|
Peterson AJ, Murphy SJ, Mundt MG, Shimell M, Leof EB, O’Connor MB. A juxtamembrane basolateral targeting motif regulates signaling through a TGF-β pathway receptor in Drosophila. PLoS Biol 2022; 20:e3001660. [PMID: 35594316 PMCID: PMC9162340 DOI: 10.1371/journal.pbio.3001660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 06/02/2022] [Accepted: 05/04/2022] [Indexed: 11/23/2022] Open
Abstract
In polarized epithelial cells, receptor-ligand interactions can be restricted by different spatial distributions of the 2 interacting components, giving rise to an underappreciated layer of regulatory complexity. We explored whether such regulation occurs in the Drosophila wing disc, an epithelial tissue featuring the TGF-β family member Decapentaplegic (Dpp) as a morphogen controlling growth and patterning. Dpp protein has been observed in an extracellular gradient within the columnar cell layer of the disc, but also uniformly in the disc lumen, leading to the question of how graded signaling is achieved in the face of 2 distinctly localized ligand pools. We find the Dpp Type II receptor Punt, but not the Type I receptor Tkv, is enriched at the basolateral membrane and depleted at the junctions and apical surface. Wit, a second Type II receptor, shows a markedly different behavior, with the protein detected on all membrane regions but enriched at the apical side. Mutational studies identified a short juxtamembrane sequence required for basolateral restriction of Punt in both wing discs and mammalian Madin-Darby canine kidney (MDCK) cells. This basolateral targeting (BLT) determinant can dominantly confer basolateral localization on an otherwise apical receptor. Rescue of punt mutants with transgenes altered in the targeting motif showed that flies expressing apicalized Punt due to the lack of a functional BLT displayed developmental defects, female sterility, and significant lethality. We also show that apicalized Punt does not produce an ectopic signal, indicating that the apical pool of Dpp is not a significant signaling source even when presented with Punt. Instead, we find that basolateral presentation of Punt is required for optimal signaling. Finally, we present evidence that the BLT acts through polarized sorting machinery that differs between types of epithelia. This suggests a code whereby each epithelial cell type may differentially traffic common receptors to enable distinctive responses to spatially localized pools of extracellular ligands.
Collapse
Affiliation(s)
- Aidan J. Peterson
- Department of Genetics, Cell Biology & Development and the Developmental Biology Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Stephen J. Murphy
- Center for Individualized Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Melinda G. Mundt
- Department of Genetics, Cell Biology & Development and the Developmental Biology Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - MaryJane Shimell
- Department of Genetics, Cell Biology & Development and the Developmental Biology Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Edward B. Leof
- Thoracic Diseases Research Unit, Department of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Michael B. O’Connor
- Department of Genetics, Cell Biology & Development and the Developmental Biology Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
7
|
Zhou J, Dabiri Y, Gama-Brambila RA, Ghafoory S, Altinbay M, Mehrabi A, Golriz M, Blagojevic B, Reuter S, Han K, Seidel A, Đikić I, Wölfl S, Cheng X. pVHL-mediated SMAD3 degradation suppresses TGF-β signaling. J Cell Biol 2022; 221:212891. [PMID: 34860252 PMCID: PMC8650352 DOI: 10.1083/jcb.202012097] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 06/07/2021] [Accepted: 10/13/2021] [Indexed: 12/20/2022] Open
Abstract
Transforming growth factor β (TGF-β) signaling plays a fundamental role in metazoan development and tissue homeostasis. However, the molecular mechanisms concerning the ubiquitin-related dynamic regulation of TGF-β signaling are not thoroughly understood. Using a combination of proteomics and an siRNA screen, we identify pVHL as an E3 ligase for SMAD3 ubiquitination. We show that pVHL directly interacts with conserved lysine and proline residues in the MH2 domain of SMAD3, triggering degradation. As a result, the level of pVHL expression negatively correlates with the expression and activity of SMAD3 in cells, Drosophila wing, and patient tissues. In Drosophila, loss of pVHL leads to the up-regulation of TGF-β targets visible in a downward wing blade phenotype, which is rescued by inhibition of SMAD activity. Drosophila pVHL expression exhibited ectopic veinlets and reduced wing growth in a similar manner as upon loss of TGF-β/SMAD signaling. Thus, our study demonstrates a conserved role of pVHL in the regulation of TGF-β/SMAD3 signaling in human cells and Drosophila wing development.
Collapse
Affiliation(s)
- Jun Zhou
- School of Biomedical Sciences, Hunan University, Changsha, China.,Division of Signaling and Functional Genomics, Department of Cell and Molecular Biology, Medical Faculty Mannheim, German Cancer Research Center and Heidelberg University, Heidelberg, Germany
| | - Yasamin Dabiri
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Rodrigo A Gama-Brambila
- Buchmann Institute for Molecular Life Sciences, Pharmaceutical Chemistry, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Shahrouz Ghafoory
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Mukaddes Altinbay
- Buchmann Institute for Molecular Life Sciences, Pharmaceutical Chemistry, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Arianeb Mehrabi
- Department of General, Visceral and Transplantation Surgery, Heidelberg University, Heidelberg, Germany
| | - Mohammad Golriz
- Department of General, Visceral and Transplantation Surgery, Heidelberg University, Heidelberg, Germany
| | - Biljana Blagojevic
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Stefanie Reuter
- Universitätsklinikum Jena, Klinik für Innere Medizin III, Jena, Germany
| | - Kang Han
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Anna Seidel
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Ivan Đikić
- Buchmann Institute for Molecular Life Sciences, Pharmaceutical Chemistry, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Stefan Wölfl
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Xinlai Cheng
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany.,Buchmann Institute for Molecular Life Sciences, Pharmaceutical Chemistry, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| |
Collapse
|
8
|
Herrera SC, Sainz de la Maza D, Grmai L, Margolis S, Plessel R, Burel M, O'Connor M, Amoyel M, Bach EA. Proliferative stem cells maintain quiescence of their niche by secreting the Activin inhibitor Follistatin. Dev Cell 2021; 56:2284-2294.e6. [PMID: 34363758 PMCID: PMC8387025 DOI: 10.1016/j.devcel.2021.07.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/14/2021] [Accepted: 07/15/2021] [Indexed: 12/20/2022]
Abstract
Aging causes stem cell dysfunction as a result of extrinsic and intrinsic changes. Decreased function of the stem cell niche is an important contributor to this dysfunction. We use the Drosophila testis to investigate what factors maintain niche cells. The testis niche comprises quiescent “hub” cells and supports two mitotic stem cell pools: germline stem cells and somatic cyst stem cells (CySCs). We identify the cell-cycle-responsive Dp/E2f1 transcription factor as a crucial non-autonomous regulator required in CySCs to maintain hub cell quiescence. Dp/E2f1 inhibits local Activin ligands through production of the Activin antagonist Follistatin (Fs). Inactivation of Dp/E2f1 or Fs in CySCs or promoting Activin receptor signaling in hub cells causes transdifferentiation of hub cells into fully functional CySCs. This Activin-dependent communication between CySCs and hub regulates the physiological decay of the niche with age and demonstrates that hub cell quiescence results from signals from surrounding stem cells. Dp/E2f1 is required in stem cells to non-autonomously maintain niche quiescence Dp/E2f1 promotes niche quiescence through Fs, an Activin antagonist Activin signaling in niche cells causes transdifferentiation into functional stem cells Fs in stem cells regulates the physiological decay of the niche with age
Collapse
Affiliation(s)
- Salvador C Herrera
- Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Centro Andaluz de Biología del Desarrollo, CSIC/Universidad Pablo de Olavide/JA, Carretera de Utrera km 1, 41013 Sevilla, Spain
| | - Diego Sainz de la Maza
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Lydia Grmai
- Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Shally Margolis
- Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Rebecca Plessel
- Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Michael Burel
- Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Michael O'Connor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Marc Amoyel
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| | - Erika A Bach
- Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
9
|
Upadhyay A, Peterson AJ, Kim MJ, O'Connor MB. Muscle-derived Myoglianin regulates Drosophila imaginal disc growth. eLife 2020; 9:e51710. [PMID: 32633716 PMCID: PMC7371420 DOI: 10.7554/elife.51710] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 07/04/2020] [Indexed: 01/05/2023] Open
Abstract
Organ growth and size are finely tuned by intrinsic and extrinsic signaling molecules. In Drosophila, the BMP family member Dpp is produced in a limited set of imaginal disc cells and functions as a classic morphogen to regulate pattern and growth by diffusing throughout imaginal discs. However, the role of TGFβ/Activin-like ligands in disc growth control remains ill-defined. Here, we demonstrate that Myoglianin (Myo), an Activin family member, and a close homolog of mammalian Myostatin (Mstn), is a muscle-derived extrinsic factor that uses canonical dSmad2-mediated signaling to regulate wing size. We propose that Myo is a myokine that helps mediate an allometric relationship between muscles and their associated appendages.
Collapse
Affiliation(s)
- Ambuj Upadhyay
- Department of Genetics, Cell Biology and Development University of MinnesotaMinneapolisUnited States
| | - Aidan J Peterson
- Department of Genetics, Cell Biology and Development University of MinnesotaMinneapolisUnited States
| | - Myung-Jun Kim
- Department of Genetics, Cell Biology and Development University of MinnesotaMinneapolisUnited States
| | - Michael B O'Connor
- Department of Genetics, Cell Biology and Development University of MinnesotaMinneapolisUnited States
| |
Collapse
|
10
|
Wisotzkey RG, Newfeld SJ. TGF-β Prodomain Alignments Reveal Unexpected Cysteine Conservation Consistent with Phylogenetic Predictions of Cross-Subfamily Heterodimerization. Genetics 2020; 214:447-465. [PMID: 31843757 PMCID: PMC7017013 DOI: 10.1534/genetics.119.302255] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 12/05/2019] [Indexed: 02/07/2023] Open
Abstract
Evolutionary relationships between prodomains in the TGF-β family have gone unanalyzed due to a perceived lack of conservation. We developed a novel approach, identified these relationships, and suggest hypotheses for new regulatory mechanisms in TGF-β signaling. First, a quantitative analysis placed each family member from flies, mice, and nematodes into the Activin, BMP, or TGF-β subfamily. Second, we defined the prodomain and ligand via the consensus cleavage site. Third, we generated alignments and trees from the prodomain, ligand, and full-length sequences independently for each subfamily. Prodomain alignments revealed that six structural features of 17 are well conserved: three in the straitjacket and three in the arm. Alignments also revealed unexpected cysteine conservation in the "LTBP-Association region" upstream of the straitjacket and in β8 of the bowtie in 14 proteins from all three subfamilies. In prodomain trees, eight clusters across all three subfamilies were present that were not seen in the ligand or full-length trees, suggesting prodomain-mediated cross-subfamily heterodimerization. Consistency between cysteine conservation and prodomain clustering provides support for heterodimerization predictions. Overall, our analysis suggests that cross-subfamily interactions are more common than currently appreciated and our predictions generate numerous testable hypotheses about TGF-β function and evolution.
Collapse
Affiliation(s)
| | - Stuart J Newfeld
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287-4501
| |
Collapse
|
11
|
Gou J, Stotsky JA, Othmer HG. Growth control in the Drosophila wing disk. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2020; 12:e1478. [PMID: 31917525 DOI: 10.1002/wsbm.1478] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/02/2019] [Accepted: 12/17/2019] [Indexed: 12/16/2022]
Abstract
The regulation of size and shape is a fundamental requirement of biological development and has been a subject of scientific study for centuries, but we still lack an understanding of how organisms know when to stop growing. Imaginal wing disks of the fruit fly Drosophila melanogaster, which are precursors of the adult wings, are an archetypal tissue for studying growth control. The growth of the disks is dependent on many inter- and intra-organ factors such as morphogens, mechanical forces, nutrient levels, and hormones that influence gene expression and cell growth. Extracellular signals are transduced into gene-control signals via complex signal transduction networks, and since cells typically receive many different signals, a mechanism for integrating the signals is needed. Our understanding of the effect of morphogens on tissue-level growth regulation via individual pathways has increased significantly in the last half century, but our understanding of how multiple biochemical and mechanical signals are integrated to determine whether or not a cell decides to divide is still rudimentary. Numerous fundamental questions are involved in understanding the decision-making process, and here we review the major biochemical and mechanical pathways involved in disk development with a view toward providing a basis for beginning to understand how multiple signals can be integrated at the cell level, and how this translates into growth control at the level of the imaginal disk. This article is categorized under: Analytical and Computational Methods > Computational Methods Biological Mechanisms > Cell Signaling Models of Systems Properties and Processes > Cellular Models.
Collapse
Affiliation(s)
- Jia Gou
- School of Mathematics, University of Minnesota, Minneapolis, Minnesota
| | - Jay A Stotsky
- School of Mathematics, University of Minnesota, Minneapolis, Minnesota
| | - Hans G Othmer
- School of Mathematics, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
12
|
Robles-Murguia M, Rao D, Finkelstein D, Xu B, Fan Y, Demontis F. Muscle-derived Dpp regulates feeding initiation via endocrine modulation of brain dopamine biosynthesis. Genes Dev 2020; 34:37-52. [PMID: 31831628 PMCID: PMC6938663 DOI: 10.1101/gad.329110.119] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 11/08/2019] [Indexed: 12/26/2022]
Abstract
In animals, the brain regulates feeding behavior in response to local energy demands of peripheral tissues, which secrete orexigenic and anorexigenic hormones. Although skeletal muscle is a key peripheral tissue, it remains unknown whether muscle-secreted hormones regulate feeding. In Drosophila, we found that decapentaplegic (dpp), the homolog of human bone morphogenetic proteins BMP2 and BMP4, is a muscle-secreted factor (a myokine) that is induced by nutrient sensing and that circulates and signals to the brain. Muscle-restricted dpp RNAi promotes foraging and feeding initiation, whereas dpp overexpression reduces it. This regulation of feeding by muscle-derived Dpp stems from modulation of brain tyrosine hydroxylase (TH) expression and dopamine biosynthesis. Consistently, Dpp receptor signaling in dopaminergic neurons regulates TH expression and feeding initiation via the downstream transcriptional repressor Schnurri. Moreover, pharmacologic modulation of TH activity rescues the changes in feeding initiation due to modulation of dpp expression in muscle. These findings indicate that muscle-to-brain endocrine signaling mediated by the myokine Dpp regulates feeding behavior.
Collapse
Affiliation(s)
- Maricela Robles-Murguia
- Division of Developmental Biology, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Deepti Rao
- Division of Developmental Biology, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - David Finkelstein
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Beisi Xu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Yiping Fan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Fabio Demontis
- Division of Developmental Biology, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| |
Collapse
|
13
|
Kamsoi O, Belles X. Myoglianin triggers the premetamorphosis stage in hemimetabolan insects. FASEB J 2018; 33:3659-3669. [DOI: 10.1096/fj.201801511r] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Orathai Kamsoi
- Institute of Evolutionary BiologySpanish National Research Council (CSIC)Universitat Pompeu Fabra Barcelona Spain
| | - Xavier Belles
- Institute of Evolutionary BiologySpanish National Research Council (CSIC)Universitat Pompeu Fabra Barcelona Spain
| |
Collapse
|
14
|
Setiawan L, Pan X, Woods AL, O'Connor MB, Hariharan IK. The BMP2/4 ortholog Dpp can function as an inter-organ signal that regulates developmental timing. Life Sci Alliance 2018; 1:e201800216. [PMID: 30515478 PMCID: PMC6243201 DOI: 10.26508/lsa.201800216] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/06/2018] [Accepted: 11/07/2018] [Indexed: 12/19/2022] Open
Abstract
Increased local trapping of morphogens within tissues as they grow would reduce circulating levels and can therefore provide a systemic readout of the status of their growth and maturation. Developmental transitions are often triggered by a neuroendocrine axis and can be contingent upon multiple organs achieving sufficient growth and maturation. How the neurodendocrine axis senses the size and maturity of peripheral organs is not known. In Drosophila larvae, metamorphosis is triggered by a sharp increase in the level of the steroid hormone ecdysone, secreted by the prothoracic gland (PG). Here, we show that the BMP2/4 ortholog Dpp can function as a systemic signal to regulate developmental timing. Dpp from peripheral tissues, mostly imaginal discs, can reach the PG and inhibit ecdysone biosynthesis. As the discs grow, reduced Dpp signaling in the PG is observed, consistent with the possibility that Dpp functions in a checkpoint mechanism that prevents metamorphosis when growth is insufficient. Indeed, upon starvation early in the third larval instar, reducing Dpp signaling in the PG abrogates the critical-weight checkpoint which normally prevents pupariation under these conditions. We suggest that increased local trapping of morphogen within tissues as they grow would reduce circulating levels and hence provide a systemic readout of their growth status.
Collapse
Affiliation(s)
- Linda Setiawan
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Xueyang Pan
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - Alexis L Woods
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Michael B O'Connor
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - Iswar K Hariharan
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| |
Collapse
|
15
|
Abstract
The extracellular matrix (ECM) has central roles in tissue integrity and remodeling throughout the life span of animals. While collagens are the most abundant structural components of ECM in most tissues, tissue-specific molecular complexity is contributed by ECM glycoproteins. The matricellular glycoproteins are categorized primarily according to functional criteria and represented predominantly by the thrombospondin, tenascin, SPARC/osteonectin, and CCN families. These proteins do not self-assemble into ECM fibrils; nevertheless, they shape ECM properties through interactions with structural ECM proteins, growth factors, and cells. Matricellular proteins also promote cell migration or morphological changes through adhesion-modulating or counter-adhesive actions on cell-ECM adhesions, intracellular signaling, and the actin cytoskeleton. Typically, matricellular proteins are most highly expressed during embryonic development. In adult tissues, expression is more limited unless activated by cues for dynamic tissue remodeling and cell motility, such as occur during inflammatory response and wound repair. Many insights in the complex roles of matricellular proteins have been obtained from studies of gene knockout mice. However, with the exception of chordate-specific tenascins, these are highly conserved proteins that are encoded in many animal phyla. This review will consider the increasing body of research on matricellular proteins in nonmammalian animal models. These models provide better access to the very earliest stages of embryonic development and opportunities to study biological processes such as limb and organ regeneration. In aggregate, this research is expanding concepts of the functions and mechanisms of action of matricellular proteins.
Collapse
Affiliation(s)
- Josephine C Adams
- School of Biochemistry, University of Bristol, Bristol, United Kingdom.
| |
Collapse
|
16
|
Kanai MI, Kim MJ, Akiyama T, Takemura M, Wharton K, O'Connor MB, Nakato H. Regulation of neuroblast proliferation by surface glia in the Drosophila larval brain. Sci Rep 2018; 8:3730. [PMID: 29487331 PMCID: PMC5829083 DOI: 10.1038/s41598-018-22028-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 02/15/2018] [Indexed: 01/19/2023] Open
Abstract
Despite the importance of precisely regulating stem cell division, the molecular basis for this control is still elusive. Here, we show that surface glia in the developing Drosophila brain play essential roles in regulating the proliferation of neural stem cells, neuroblasts (NBs). We found that two classes of extracellular factors, Dally-like (Dlp), a heparan sulfate proteoglycan, and Glass bottom boat (Gbb), a BMP homologue, are required for proper NB proliferation. Interestingly, Dlp expressed in perineural glia (PG), the most outer layer of the surface glia, is responsible for NB proliferation. Consistent with this finding, functional ablation of PG using a dominant-negative form of dynamin showed that PG has an instructive role in regulating NB proliferation. Gbb acts not only as an autocrine proliferation factor in NBs but also as a paracrine survival signal in the PG. We propose that bidirectional communication between NBs and glia through TGF-β signaling influences mutual development of these two cell types. We also discuss the possibility that PG and NBs communicate via direct membrane contact or transcytotic transport of membrane components. Thus, our study shows that the surface glia acts not only as a simple structural insulator but also a dynamic regulator of brain development.
Collapse
Affiliation(s)
- Makoto I Kanai
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Myung-Jun Kim
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Takuya Akiyama
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Masahiko Takemura
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Kristi Wharton
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Michael B O'Connor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Hiroshi Nakato
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
17
|
Abstract
Transforming growth factor βs (TGF-βs) are closely related ligands that have pleiotropic activity on most cell types of the body. They act through common heterotetrameric TGF-β type II and type I transmembrane dual specificity kinase receptor complexes, and the outcome of signaling is context-dependent. In normal tissue, they serve a role in maintaining homeostasis. In many diseased states, particularly fibrosis and cancer, TGF-β ligands are overexpressed and the outcome of signaling is diverted toward disease progression. There has therefore been a concerted effort to develop drugs that block TGF-β signaling for therapeutic benefit. This review will cover the basics of TGF-β signaling and its biological activities relevant to oncology, present a summary of pharmacological TGF-β blockade strategies, and give an update on preclinical and clinical trials for TGF-β blockade in a variety of solid tumor types.
Collapse
Affiliation(s)
- Rosemary J Akhurst
- Department of Anatomy and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California 94158-9001
| |
Collapse
|
18
|
Abstract
Transforming growth factor βs (TGF-βs) are closely related ligands that have pleiotropic activity on most cell types of the body. They act through common heterotetrameric TGF-β type II and type I transmembrane dual specificity kinase receptor complexes, and the outcome of signaling is context-dependent. In normal tissue, they serve a role in maintaining homeostasis. In many diseased states, particularly fibrosis and cancer, TGF-β ligands are overexpressed and the outcome of signaling is diverted toward disease progression. There has therefore been a concerted effort to develop drugs that block TGF-β signaling for therapeutic benefit. This review will cover the basics of TGF-β signaling and its biological activities relevant to oncology, present a summary of pharmacological TGF-β blockade strategies, and give an update on preclinical and clinical trials for TGF-β blockade in a variety of solid tumor types.
Collapse
Affiliation(s)
- Rosemary J Akhurst
- Department of Anatomy and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California 94158-9001
| |
Collapse
|
19
|
Upadhyay A, Moss-Taylor L, Kim MJ, Ghosh AC, O'Connor MB. TGF-β Family Signaling in Drosophila. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a022152. [PMID: 28130362 DOI: 10.1101/cshperspect.a022152] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The transforming growth factor β (TGF-β) family signaling pathway is conserved and ubiquitous in animals. In Drosophila, fewer representatives of each signaling component are present compared with vertebrates, simplifying mechanistic study of the pathway. Although there are fewer family members, the TGF-β family pathway still regulates multiple and diverse functions in Drosophila. In this review, we focus our attention on several of the classic and best-studied functions for TGF-β family signaling in regulating Drosophila developmental processes such as embryonic and imaginal disc patterning, but we also describe several recently discovered roles in regulating hormonal, physiological, neuronal, innate immunity, and tissue homeostatic processes.
Collapse
Affiliation(s)
- Ambuj Upadhyay
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Lindsay Moss-Taylor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Myung-Jun Kim
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Arpan C Ghosh
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Michael B O'Connor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
20
|
Regulation of Drosophila hematopoietic sites by Activin-β from active sensory neurons. Nat Commun 2017; 8:15990. [PMID: 28748922 PMCID: PMC5537569 DOI: 10.1038/ncomms15990] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 05/23/2017] [Indexed: 12/21/2022] Open
Abstract
An outstanding question in animal development, tissue homeostasis and disease is how cell populations adapt to sensory inputs. During Drosophila larval development, hematopoietic sites are in direct contact with sensory neuron clusters of the peripheral nervous system (PNS), and blood cells (hemocytes) require the PNS for their survival and recruitment to these microenvironments, known as Hematopoietic Pockets. Here we report that Activin-β, a TGF-β family ligand, is expressed by sensory neurons of the PNS and regulates the proliferation and adhesion of hemocytes. These hemocyte responses depend on PNS activity, as shown by agonist treatment and transient silencing of sensory neurons. Activin-β has a key role in this regulation, which is apparent from reporter expression and mutant analyses. This mechanism of local sensory neurons controlling blood cell adaptation invites evolutionary parallels with vertebrate hematopoietic progenitors and the independent myeloid system of tissue macrophages, whose regulation by local microenvironments remain undefined.
Collapse
|
21
|
Santos CG, Fernandez-Nicolas A, Belles X. Smads and insect hemimetabolan metamorphosis. Dev Biol 2016; 417:104-13. [PMID: 27452629 DOI: 10.1016/j.ydbio.2016.07.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/07/2016] [Accepted: 07/12/2016] [Indexed: 10/21/2022]
Abstract
In contrast with Drosophila melanogaster, practically nothing is known about the involvement of the TGF-β signaling pathway in the metamorphosis of hemimetabolan insects. To partially fill this gap, we have studied the role of Smad factors in the metamorphosis of the German cockroach, Blattella germanica. In D. melanogaster, Mad is the canonical R-Smad of the BMP branch of the TGF-β signaling pathway, Smox is the canonical R-Smad of the TGF-β/Activin branch and Medea participates in both branches. In insects, metamorphosis is regulated by the MEKRE93 pathway, which starts with juvenile hormone (JH), whose signal is transduced by Methoprene-tolerant (Met), which stimulates the expression of Krüppel homolog 1 (Kr-h1) that acts to repress E93, the metamorphosis trigger. In B. germanica, metamorphosis is determined at the beginning of the sixth (final) nymphal instar (N6), when JH production ceases, the expression of Kr-h1 declines, and the transcription of E93 begins to increase. The RNAi of Mad, Smox and Medea in N6 of B. germanica reveals that the BMP branch of the TGF-β signaling pathway regulates adult ecdysis and wing extension, mainly through regulating the expression of bursicon, whereas the TGF-β/Activin branch contributes to increasing E93 and decreasing Kr-h1 at the beginning of N6, crucial for triggering adult morphogenesis, as well as to regulating the imaginal molt timing.
Collapse
Affiliation(s)
- Carolina G Santos
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim 37, 08003 Barcelona, Spain
| | - Ana Fernandez-Nicolas
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim 37, 08003 Barcelona, Spain
| | - Xavier Belles
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim 37, 08003 Barcelona, Spain.
| |
Collapse
|
22
|
Van Bortle K, Peterson AJ, Takenaka N, O'Connor MB, Corces VG. CTCF-dependent co-localization of canonical Smad signaling factors at architectural protein binding sites in D. melanogaster. Cell Cycle 2016; 14:2677-87. [PMID: 26125535 DOI: 10.1080/15384101.2015.1053670] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The transforming growth factor β (TGF-β) and bone morphogenetic protein (BMP) pathways transduce extracellular signals into tissue-specific transcriptional responses. During this process, signaling effector Smad proteins translocate into the nucleus to direct changes in transcription, but how and where they localize to DNA remain important questions. We have mapped Drosophila TGF-β signaling factors Mad, dSmad2, Medea, and Schnurri genome-wide in Kc cells and find that numerous sites for these factors overlap with the architectural protein CTCF. Depletion of CTCF by RNAi results in the disappearance of a subset of Smad sites, suggesting Smad proteins localize to CTCF binding sites in a CTCF-dependent manner. Sensitive Smad binding sites are enriched at low occupancy CTCF peaks within topological domains, rather than at the physical domain boundaries where CTCF may function as an insulator. In response to Decapentaplegic, CTCF binding is not significantly altered, whereas Mad, Medea, and Schnurri are redirected from CTCF to non-CTCF binding sites. These results suggest that CTCF participates in the recruitment of Smad proteins to a subset of genomic sites and in the redistribution of these proteins in response to BMP signaling.
Collapse
|
23
|
TGF-β signaling in insects regulates metamorphosis via juvenile hormone biosynthesis. Proc Natl Acad Sci U S A 2016; 113:5634-9. [PMID: 27140602 DOI: 10.1073/pnas.1600612113] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although butterflies undergo a dramatic morphological transformation from larva to adult via a pupal stage (holometamorphosis), crickets undergo a metamorphosis from nymph to adult without formation of a pupa (hemimetamorphosis). Despite these differences, both processes are regulated by common mechanisms that involve 20-hydroxyecdysone (20E) and juvenile hormone (JH). JH regulates many aspects of insect physiology, such as development, reproduction, diapause, and metamorphosis. Consequently, strict regulation of JH levels is crucial throughout an insect's life cycle. However, it remains unclear how JH synthesis is regulated. Here, we report that in the corpora allata of the cricket, Gryllus bimaculatus, Myoglianin (Gb'Myo), a homolog of Drosophila Myoglianin/vertebrate GDF8/11, is involved in the down-regulation of JH production by suppressing the expression of a gene encoding JH acid O-methyltransferase, Gb'jhamt In contrast, JH production is up-regulated by Decapentaplegic (Gb'Dpp) and Glass-bottom boat/60A (Gb'Gbb) signaling that occurs as part of the transcriptional activation of Gb'jhamt Gb'Myo defines the nature of each developmental transition by regulating JH titer and the interactions between JH and 20E. When Gb'myo expression is suppressed, the activation of Gb'jhamt expression and secretion of 20E induce molting, thereby leading to the next instar before the last nymphal instar. Conversely, high Gb'myo expression induces metamorphosis during the last nymphal instar through the cessation of JH synthesis. Gb'myo also regulates final insect size. Because Myo/GDF8/11 and Dpp/bone morphogenetic protein (BMP)2/4-Gbb/BMP5-8 are conserved in both invertebrates and vertebrates, the present findings provide common regulatory mechanisms for endocrine control of animal development.
Collapse
|
24
|
Bayne RAL, Kinnell HL, Coutts SM, He J, Childs AJ, Anderson RA. GDF9 is transiently expressed in oocytes before follicle formation in the human fetal ovary and is regulated by a novel NOBOX transcript. PLoS One 2015; 10:e0119819. [PMID: 25790371 PMCID: PMC4366263 DOI: 10.1371/journal.pone.0119819] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 01/16/2015] [Indexed: 12/05/2022] Open
Abstract
During human fetal ovary development, the process of primordial follicle formation is immediately preceded by a highly dynamic period of germ cell and somatic cell reorganisation. This is regulated by germ-cell specific transcription regulators, by the conserved RNA binding proteins DAZL and BOLL and by secreted growth factors of the TGFβ family, including activin βA: these all show changing patterns of expression preceding follicle formation. In mice, the transcription factor Nobox is essential for follicle formation and oocyte survival, and NOBOX regulates the expression of GDF9 in humans. We have therefore characterised the expression of GDF9 in relation to these known key factors during follicle formation in the human fetal ovary. mRNA levels of GDF9, BMP15 and NOBOX were quantified by qRT-PCR and showed dramatic increases across gestation. GDF9 protein expression was localised by immunohistochemistry to the same population of germ cells as those expressing activin βA prior to follicle formation but did not co-localise with either BOLL or DAZL. A novel NOBOX isoform was identified in fetal ovary that was shown to be capable of up-regulating the GDF9 promoter in reporter assays. Thus, during oogenesis in humans, oocytes go through a dynamic and very sharply demarcated sequence of changes in expression of these various proteins, even within individual germ cell nests, likely to be of major functional significance in determining selective germ cell survival at this key stage in ovarian development. Transcriptional variation may contribute to the range of age of onset of POI in women with NOBOX mutations.
Collapse
Affiliation(s)
- Rosemary A. L. Bayne
- MRC Centre for Reproductive Health, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh, United Kingdom
- * E-mail:
| | - Hazel L. Kinnell
- MRC Centre for Reproductive Health, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh, United Kingdom
| | - Shiona M. Coutts
- MRC Centre for Reproductive Health, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh, United Kingdom
| | - Jing He
- MRC Centre for Reproductive Health, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh, United Kingdom
| | - Andrew J. Childs
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, London, United Kingdom
| | - Richard A. Anderson
- MRC Centre for Reproductive Health, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh, United Kingdom
| |
Collapse
|
25
|
Lengil T, Gancz D, Gilboa L. Activin signaling balances proliferation and differentiation of ovarian niche precursors and enables adjustment of niche numbers. Development 2015; 142:883-92. [PMID: 25633355 DOI: 10.1242/dev.113902] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
How the numbers of niches and resident stem cells within a particular organ are determined during development and how they may be modulated or corrected is a question with significant medical implications. In the larval ovary of Drosophila melanogaster, somatic precursors for niches, and germ cells that will become germline stem cells, co-develop. Somatic precursors proliferate during the first 3 days of larval development. By mid-third instar, adult terminal filament (TF) (part of the germline stem cell niche) cells first appear, and differentiation terminates 24 h later when 16-20 TFs fully form. The developmental sequence responsible for TF cell determination and final TF numbers is only partially understood. We show that TF formation proceeds through several, hitherto uncharacterized stages, which include an early exit from the cell cycle to form TF precursors and two steps of cell shape change to form the mature TF cells. The Activin receptor Baboon (Babo) is required for somatic precursor cell proliferation and therefore determines the pool of TF precursors available for TF differentiation. During the final differentiation stage, Babo facilitates TF and germ cell differentiation, and promotes the accumulation of Broad-Z1, which is also a target of the steroid hormone ecdysone. Epistasis analysis shows that Activin controls cell proliferation in an ecdysone-independent manner and TF differentiation by affecting ecdysone targets. We propose that this mode of function allows Activin to balance proliferation and differentiation, and to equilibrate niche numbers. These results suggest a novel model for how niche numbers are corrected during development.
Collapse
Affiliation(s)
- Tamar Lengil
- Department of Biological regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Dana Gancz
- Department of Biological regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Lilach Gilboa
- Department of Biological regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
26
|
Kim MJ, O’Connor MB. Anterograde Activin signaling regulates postsynaptic membrane potential and GluRIIA/B abundance at the Drosophila neuromuscular junction. PLoS One 2014; 9:e107443. [PMID: 25255438 PMCID: PMC4177838 DOI: 10.1371/journal.pone.0107443] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 08/10/2014] [Indexed: 12/16/2022] Open
Abstract
Members of the TGF-β superfamily play numerous roles in nervous system development and function. In Drosophila, retrograde BMP signaling at the neuromuscular junction (NMJ) is required presynaptically for proper synapse growth and neurotransmitter release. In this study, we analyzed whether the Activin branch of the TGF-β superfamily also contributes to NMJ development and function. We find that elimination of the Activin/TGF-β type I receptor babo, or its downstream signal transducer smox, does not affect presynaptic NMJ growth or evoked excitatory junctional potentials (EJPs), but instead results in a number of postsynaptic defects including depolarized membrane potential, small size and frequency of miniature excitatory junction potentials (mEJPs), and decreased synaptic densities of the glutamate receptors GluRIIA and B. The majority of the defective smox synaptic phenotypes were rescued by muscle-specific expression of a smox transgene. Furthermore, a mutation in actβ, an Activin-like ligand that is strongly expressed in motor neurons, phenocopies babo and smox loss-of-function alleles. Our results demonstrate that anterograde Activin/TGF-β signaling at the Drosophila NMJ is crucial for achieving normal abundance and localization of several important postsynaptic signaling molecules and for regulating postsynaptic membrane physiology. Together with the well-established presynaptic role of the retrograde BMP signaling, our findings indicate that the two branches of the TGF-β superfamily are differentially deployed on each side of the Drosophila NMJ synapse to regulate distinct aspects of its development and function.
Collapse
Affiliation(s)
- Myung-Jun Kim
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Michael B. O’Connor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
27
|
Peterson AJ, O'Connor MB. Strategies for exploring TGF-β signaling in Drosophila. Methods 2014; 68:183-93. [PMID: 24680699 PMCID: PMC4057889 DOI: 10.1016/j.ymeth.2014.03.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/14/2014] [Accepted: 03/17/2014] [Indexed: 02/06/2023] Open
Abstract
The TGF-β pathway is an evolutionarily conserved signal transduction module that mediates diverse biological processes in animals. In Drosophila, both the BMP and Activin branches are required for viability. Studies rooted in classical and molecular genetic approaches continue to uncover new developmental roles for TGF-β signaling. We present an overview of the secreted ligands, transmembrane receptors and cellular Smad transducer proteins that compose the core pathway in Drosophila. An assortment of tools have been developed to conduct tissue-specific loss- and gain-of-function experiments for these pathway components. We discuss the deployment of these reagents, with an emphasis on appropriate usage and limitations of the available tools. Throughout, we note reagents that are in need of further improvement or development, and signaling features requiring further study. A general theme is that comparison of phenotypes for ligands, receptors, and Smads can be used to map tissue interactions, and to separate canonical and non-canonical signaling activities. Core TGF-β signaling components are subject to multiple layers of regulation, and are coupled to context-specific inputs and outputs. In addition to fleshing out how TGF-β signaling serves the fruit fly, we anticipate that future studies will uncover new regulatory nodes and modes and will continue to advance paradigms for how TGF-β signaling regulates general developmental processes.
Collapse
Affiliation(s)
- Aidan J Peterson
- Department of Genetics, Cell Biology & Development, 6-160 Jackson Hall, 321 Church St SE, University of Minnesota, Minneapolis, MN 55455, United States
| | - Michael B O'Connor
- Department of Genetics, Cell Biology & Development, 6-160 Jackson Hall, 321 Church St SE, University of Minnesota, Minneapolis, MN 55455, United States.
| |
Collapse
|