1
|
Kautzmann S, Rey S, Krebs A, Klämbt C. Cholinergic and Glutamatergic Axons Differentially Require Glial Support in the Drosophila PNS. Glia 2025. [PMID: 40097245 DOI: 10.1002/glia.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/28/2025] [Accepted: 03/04/2025] [Indexed: 03/19/2025]
Abstract
In vertebrates, there is a differential interaction between peripheral axons and their associated glial cells. While large-caliber axons are covered by a myelin sheath, small-diameter axons are simply wrapped in Remak fibers. In peripheral nerves of Drosophila larvae, axons are covered by wrapping glial cell processes similar to vertebrate Remak fibers. Whether differences in axonal diameter influence the interaction with glial processes in Drosophila has not yet been analyzed. Likewise, it is not understood whether the modality of the neuron affects the interaction with the wrapping glia. To start to decipher the mechanisms underlying glial wrapping, we employed APEX2 labeling in larval filet preparations. This allowed us to follow individual axons of defined segmental nerves at ultrastructural resolution in the presence or absence of wrapping glia. Using these tools, we first demonstrate that motor axons are larger compared to sensory axons. Sensory axons fasciculate in larger groups than motor axons, suggesting that they do not require direct contact with wrapping glia. However, unlike motor axons, sensory axons show length-dependent degeneration upon ablation of wrapping glia. These data suggest that Drosophila may help to understand peripheral neuropathies caused by defects in Schwann cell function, in which a similar degeneration of sensory axons is observed.
Collapse
Affiliation(s)
- Steffen Kautzmann
- Institut für Neuro- Und Verhaltensbiologie, Universität Münster, Münster, Germany
| | - Simone Rey
- Institut für Neuro- Und Verhaltensbiologie, Universität Münster, Münster, Germany
| | - Amber Krebs
- Institut für Neuro- Und Verhaltensbiologie, Universität Münster, Münster, Germany
| | - Christian Klämbt
- Institut für Neuro- Und Verhaltensbiologie, Universität Münster, Münster, Germany
| |
Collapse
|
2
|
Fernandes VM, Auld V, Klämbt C. Glia as Functional Barriers and Signaling Intermediaries. Cold Spring Harb Perspect Biol 2024; 16:a041423. [PMID: 38167424 PMCID: PMC10759988 DOI: 10.1101/cshperspect.a041423] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Glia play a crucial role in providing metabolic support to neurons across different species. To do so, glial cells isolate distinct neuronal compartments from systemic signals and selectively transport specific metabolites and ions to support neuronal development and facilitate neuronal function. Because of their function as barriers, glial cells occupy privileged positions within the nervous system and have also evolved to serve as signaling intermediaries in various contexts. The fruit fly, Drosophila melanogaster, has significantly contributed to our understanding of glial barrier development and function. In this review, we will explore the formation of the glial sheath, blood-brain barrier, and nerve barrier, as well as the significance of glia-extracellular matrix interactions in barrier formation. Additionally, we will delve into the role of glia as signaling intermediaries in regulating nervous system development, function, and response to injury.
Collapse
Affiliation(s)
- Vilaiwan M Fernandes
- Department of Cell and Developmental Biology, University College London, London UC1E 6DE, United Kingdom
| | - Vanessa Auld
- Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Christian Klämbt
- Institute for Neuro- and Behavioral Biology, University of Münster, Münster 48149, Germany
| |
Collapse
|
3
|
Baldenius M, Kautzmann S, Nanda S, Klämbt C. Signaling Pathways Controlling Axonal Wrapping in Drosophila. Cells 2023; 12:2553. [PMID: 37947631 PMCID: PMC10647682 DOI: 10.3390/cells12212553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023] Open
Abstract
The rapid transmission of action potentials is an important ability that enables efficient communication within the nervous system. Glial cells influence conduction velocity along axons by regulating the radial axonal diameter, providing electrical insulation as well as affecting the distribution of voltage-gated ion channels. Differentiation of these wrapping glial cells requires a complex set of neuron-glia interactions involving three basic mechanistic features. The glia must recognize the axon, grow around it, and eventually arrest its growth to form single or multiple axon wraps. This likely depends on the integration of numerous evolutionary conserved signaling and adhesion systems. Here, we summarize the mechanisms and underlying signaling pathways that control glial wrapping in Drosophila and compare those to the mechanisms that control glial differentiation in mammals. This analysis shows that Drosophila is a beneficial model to study the development of even complex structures like myelin.
Collapse
Affiliation(s)
| | | | | | - Christian Klämbt
- Institute for Neuro- and Behavioral Biology, Faculty of Biology, University of Münster, Röntgenstraße 16, D-48149 Münster, Germany; (M.B.)
| |
Collapse
|
4
|
Das M, Cheng D, Matzat T, Auld VJ. Innexin-Mediated Adhesion between Glia Is Required for Axon Ensheathment in the Peripheral Nervous System. J Neurosci 2023; 43:2260-2276. [PMID: 36801823 PMCID: PMC10072304 DOI: 10.1523/jneurosci.1323-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 01/03/2023] [Accepted: 02/09/2023] [Indexed: 02/19/2023] Open
Abstract
Glia are essential to protecting and enabling nervous system function and a key glial function is the formation of the glial sheath around peripheral axons. Each peripheral nerve in the Drosophila larva is ensheathed by three glial layers, which structurally support and insulate the peripheral axons. How peripheral glia communicate with each other and between layers is not well established and we investigated the role of Innexins in mediating glial function in the Drosophila periphery. Of the eight Drosophila Innexins, we found two (Inx1 and Inx2) are important for peripheral glia development. In particular loss of Inx1 and Inx2 resulted in defects in the wrapping glia leading to disruption of the glia wrap. Of interest loss of Inx2 in the subperineurial glia also resulted in defects in the neighboring wrapping glia. Inx plaques were observed between the subperineurial glia and the wrapping glia suggesting that gap junctions link these two glial cell types. We found Inx2 is key to Ca2+ pulses in the peripheral subperineurial glia but not in the wrapping glia, and we found no evidence of gap junction communication between subperineurial and wrapping glia. Rather we have clear evidence that Inx2 plays an adhesive and channel-independent role between the subperineurial and wrapping glia to ensure the integrity of the glial wrap.SIGNIFICANCE STATEMENT Gap junctions are critical for glia communication and formation of myelin in myelinating glia. However, the role of gap junctions in non-myelinating glia is not well studied, yet non-myelinating glia are critical for peripheral nerve function. We found the Innexin gap junction proteins are present between different classes of peripheral glia in Drosophila. Here Innexins form junctions to facilitate adhesion between the different glia but do so in a channel-independent manner. Loss of adhesion leads to disruption of the glial wrap around axons and leads to fragmentation of the wrapping glia membranes. Our work points to an important role for gap junction proteins in mediating insulation by non-myelinating glia.
Collapse
Affiliation(s)
- Mriga Das
- Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Duo Cheng
- Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Till Matzat
- Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Vanessa J Auld
- Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
5
|
Smith CJ. Evolutionarily conserved concepts in glial cell biology. Curr Opin Neurobiol 2023; 78:102669. [PMID: 36577179 PMCID: PMC9845142 DOI: 10.1016/j.conb.2022.102669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/17/2022] [Accepted: 11/28/2022] [Indexed: 12/28/2022]
Abstract
The evolutionary conservation of glial cells has been appreciated since Ramon y Cajal and Del Rio Hortega first described the morphological features of cells in the nervous system. We now appreciate that glial cells have essential roles throughout life in most nervous systems. The field of glial cell biology has grown exponentially in the last ten years. This new wealth of knowledge has been aided by seminal findings in non-mammalian model systems. Ultimately, such concepts help us to understand glia in mammalian nervous systems. Rather than summarizing the field of glial biology, I will first briefly introduce glia in non-mammalian models systems. Then, highlight seminal findings across the glial field that utilized non-mammalian model systems to advance our understanding of the mammalian nervous system. Finally, I will call attention to some recent findings that introduce new questions about glial cell biology that will be investigated for years to come.
Collapse
Affiliation(s)
- Cody J Smith
- Department of Biological Sciences, IN, USA; The Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, USA.
| |
Collapse
|
6
|
Corty MM, Hulegaard AL, Hill JQ, Sheehan AE, Aicher SA, Freeman MR. Discoidin domain receptor regulates ensheathment, survival and caliber of peripheral axons. Development 2022; 149:281293. [PMID: 36355066 PMCID: PMC10112903 DOI: 10.1242/dev.200636] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 10/27/2022] [Indexed: 11/12/2022]
Abstract
Most invertebrate axons and small-caliber axons in mammalian peripheral nerves are unmyelinated but still ensheathed by glia. Here, we use Drosophila wrapping glia to study the development and function of non-myelinating axon ensheathment, which is poorly understood. Selective ablation of these glia from peripheral nerves severely impaired larval locomotor behavior. In an in vivo RNA interference screen to identify glial genes required for axon ensheathment, we identified the conserved receptor tyrosine kinase Discoidin domain receptor (Ddr). In larval peripheral nerves, loss of Ddr resulted in severely reduced ensheathment of axons and reduced axon caliber, and we found a strong dominant genetic interaction between Ddr and the type XV/XVIII collagen Multiplexin (Mp), suggesting that Ddr functions as a collagen receptor to drive axon wrapping. In adult nerves, loss of Ddr decreased long-term survival of sensory neurons and significantly reduced axon caliber without overtly affecting ensheathment. Our data establish essential roles for non-myelinating glia in nerve development, maintenance and function, and identify Ddr as a key regulator of axon-glia interactions during ensheathment and establishment of axon caliber.
Collapse
Affiliation(s)
- Megan M Corty
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | | | - Jo Q Hill
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Amy E Sheehan
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Sue A Aicher
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Marc R Freeman
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
7
|
Delta/Notch signaling in glia maintains motor nerve barrier function and synaptic transmission by controlling matrix metalloproteinase expression. Proc Natl Acad Sci U S A 2022; 119:e2110097119. [PMID: 35969789 PMCID: PMC9407389 DOI: 10.1073/pnas.2110097119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have made a surprising discovery linking Delta/Notch signaling in subperineurial glia (SPG) to the regulation of nerve ensheathment and neurotransmitter release at the Drosophila neuromuscular junction (NMJ). SPG, the counterpart of the endothelial layer in the vertebrate blood–brain barrier, form the key cellular layer that is critical for axonal ensheathment and the blood–brain barrier in Drosophila. Our findings demonstrate that Delta/Notch signaling exerts a constitutive negative inhibition on JNK signaling in SPG, thereby limiting the expression of Mmp1, a matrix metalloproteinase. SPG-specific and temporally regulated knockdown of Delta leads to breakdown of barrier function and compromises neurotransmitter release at the NMJ. Our results provide a mechanistic insight into the biology of barrier function and glia–neuron interactions. While the role of barrier function in establishing a protective, nutrient-rich, and ionically balanced environment for neurons has been appreciated for some time, little is known about how signaling cues originating in barrier-forming cells participate in maintaining barrier function and influence synaptic activity. We have identified Delta/Notch signaling in subperineurial glia (SPG), a crucial glial type for Drosophila motor axon ensheathment and the blood–brain barrier, to be essential for controlling the expression of matrix metalloproteinase 1 (Mmp1), a major regulator of the extracellular matrix (ECM). Our genetic analysis indicates that Delta/Notch signaling in SPG exerts an inhibitory control on Mmp1 expression. In the absence of this inhibition, abnormally enhanced Mmp1 activity disrupts septate junctions and glial ensheathment of peripheral motor nerves, compromising neurotransmitter release at the neuromuscular junction (NMJ). Temporally controlled and cell type–specific transgenic analysis shows that Delta/Notch signaling inhibits transcription of Mmp1 by inhibiting c-Jun N-terminal kinase (JNK) signaling in SPG. Our results provide a mechanistic insight into the regulation of neuronal health and function via glial-initiated signaling and open a framework for understanding the complex relationship between ECM regulation and the maintenance of barrier function.
Collapse
|
8
|
Multicolor strategies for investigating clonal expansion and tissue plasticity. Cell Mol Life Sci 2022; 79:141. [PMID: 35187598 PMCID: PMC8858928 DOI: 10.1007/s00018-021-04077-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 09/27/2021] [Accepted: 10/14/2021] [Indexed: 12/20/2022]
Abstract
Understanding the generation of complexity in living organisms requires the use of lineage tracing tools at a multicellular scale. In this review, we describe the different multicolor strategies focusing on mouse models expressing several fluorescent reporter proteins, generated by classical (MADM, Brainbow and its multiple derivatives) or acute (StarTrack, CLoNe, MAGIC Markers, iOn, viral vectors) transgenesis. After detailing the multi-reporter genetic strategies that serve as a basis for the establishment of these multicolor mouse models, we briefly mention other animal and cellular models (zebrafish, chicken, drosophila, iPSC) that also rely on these constructs. Then, we highlight practical applications of multicolor mouse models to better understand organogenesis at single progenitor scale (clonal analyses) in the brain and briefly in several other tissues (intestine, skin, vascular, hematopoietic and immune systems). In addition, we detail the critical contribution of multicolor fate mapping strategies in apprehending the fine cellular choreography underlying tissue morphogenesis in several models with a particular focus on brain cytoarchitecture in health and diseases. Finally, we present the latest technological advances in multichannel and in-depth imaging, and automated analyses that enable to better exploit the large amount of data generated from multicolored tissues.
Collapse
|
9
|
Pogodalla N, Winkler B, Klämbt C. Glial Tiling in the Insect Nervous System. Front Cell Neurosci 2022; 16:825695. [PMID: 35250488 PMCID: PMC8891220 DOI: 10.3389/fncel.2022.825695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/06/2022] [Indexed: 11/30/2022] Open
Abstract
The Drosophila nervous system comprises a small number of well characterized glial cell classes. The outer surface of the central nervous system (CNS) is protected by a glial derived blood-brain barrier generated by perineurial and subperineurial glia. All neural stem cells and all neurons are engulfed by cortex glial cells. The inner neuropil region, that harbors all synapses and dendrites, is covered by ensheathing glia and infiltrated by astrocyte-like glial cells. All these glial cells show a tiled organization with an often remarkable plasticity where glial cells of one cell type invade the territory of the neighboring glial cell type upon its ablation. Here, we summarize the different glial tiling patterns and based on the different modes of cell-cell contacts we hypothesize that different molecular mechanisms underlie tiling of the different glial cell types.
Collapse
|
10
|
Dunton AD, Göpel T, Ho DH, Burggren W. Form and Function of the Vertebrate and Invertebrate Blood-Brain Barriers. Int J Mol Sci 2021; 22:ijms222212111. [PMID: 34829989 PMCID: PMC8618301 DOI: 10.3390/ijms222212111] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/23/2021] [Accepted: 10/28/2021] [Indexed: 12/25/2022] Open
Abstract
The need to protect neural tissue from toxins or other substances is as old as neural tissue itself. Early recognition of this need has led to more than a century of investigation of the blood-brain barrier (BBB). Many aspects of this important neuroprotective barrier have now been well established, including its cellular architecture and barrier and transport functions. Unsurprisingly, most research has had a human orientation, using mammalian and other animal models to develop translational research findings. However, cell layers forming a barrier between vascular spaces and neural tissues are found broadly throughout the invertebrates as well as in all vertebrates. Unfortunately, previous scenarios for the evolution of the BBB typically adopt a classic, now discredited 'scala naturae' approach, which inaccurately describes a putative evolutionary progression of the mammalian BBB from simple invertebrates to mammals. In fact, BBB-like structures have evolved independently numerous times, complicating simplistic views of the evolution of the BBB as a linear process. Here, we review BBBs in their various forms in both invertebrates and vertebrates, with an emphasis on the function, evolution, and conditional relevance of popular animal models such as the fruit fly and the zebrafish to mammalian BBB research.
Collapse
Affiliation(s)
- Alicia D. Dunton
- Developmental Integrative Biology Group, Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA; (T.G.); (W.B.)
- Correspondence:
| | - Torben Göpel
- Developmental Integrative Biology Group, Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA; (T.G.); (W.B.)
| | - Dao H. Ho
- Department of Clinical Investigation, Tripler Army Medical Center, Honolulu, HI 96859, USA;
| | - Warren Burggren
- Developmental Integrative Biology Group, Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA; (T.G.); (W.B.)
| |
Collapse
|
11
|
Garcia-Perez NC, Bucher G, Buescher M. Shaking hands is a homeodomain transcription factor that controls axon outgrowth of central complex neurons in the insect model Tribolium. Development 2021; 148:272435. [PMID: 34415334 PMCID: PMC8543150 DOI: 10.1242/dev.199368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 08/09/2021] [Indexed: 01/22/2023]
Abstract
Gene regulatory mechanisms that specify subtype identity of central complex (CX) neurons are the subject of intense investigation. The CX is a compartment within the brain common to all insect species and functions as a ‘command center’ that directs motor actions. It is made up of several thousand neurons, with more than 60 morphologically distinct identities. Accordingly, transcriptional programs must effect the specification of at least as many neuronal subtypes. We demonstrate a role for the transcription factor Shaking hands (Skh) in the specification of embryonic CX neurons in Tribolium. The developmental dynamics of skh expression are characteristic of terminal selectors of subtype identity. In the embryonic brain, skh expression is restricted to a subset of neurons, many of which survive to adulthood and contribute to the mature CX. skh expression is maintained throughout the lifetime in at least some CX neurons. skh knockdown results in axon outgrowth defects, thus preventing the formation of an embryonic CX primordium. The previously unstudied Drosophila skh shows a similar embryonic expression pattern, suggesting that subtype specification of CX neurons may be conserved. Summary: A detailed examination of the developmental expression of the homeodomain transcription factor Shaking hands in Tribolium reveals a role in the formation of the central complex primordium.
Collapse
Affiliation(s)
- Natalia Carolina Garcia-Perez
- Johann Friedrich Blumenbach Institute of Zoology, GZMB, Department of Evolutionary Developmental Genetics, University of Goettingen, Justus-von-Liebig Weg 11, 37077 Goettingen, Germany
| | - Gregor Bucher
- Johann Friedrich Blumenbach Institute of Zoology, GZMB, Department of Evolutionary Developmental Genetics, University of Goettingen, Justus-von-Liebig Weg 11, 37077 Goettingen, Germany
| | - Marita Buescher
- Johann Friedrich Blumenbach Institute of Zoology, GZMB, Department of Evolutionary Developmental Genetics, University of Goettingen, Justus-von-Liebig Weg 11, 37077 Goettingen, Germany
| |
Collapse
|
12
|
Losada-Pérez M, García-Guillén N, Casas-Tintó S. A novel injury paradigm in the central nervous system of adult Drosophila: molecular, cellular and functional aspects. Dis Model Mech 2021; 14:268374. [PMID: 34061177 PMCID: PMC8214735 DOI: 10.1242/dmm.044669] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 03/24/2021] [Indexed: 11/24/2022] Open
Abstract
The mammalian central nervous system (CNS) exhibits limited regenerative capacity and the mechanisms that mediate its regeneration are not fully understood. Here, we present a novel experimental design to damage the CNS by using a contusion injury paradigm. The design of this protocol allows the study of long-term and short-term cellular responses, including those of the CNS and the immune system, and of any implications regarding functional recovery. We demonstrate for the first time that adult Drosophilamelanogaster glial cells undergo spontaneous functional recovery following crush injury. This crush injury leads to an intermediate level of functional recovery after damage, which is ideal to screen for genes that facilitate or prevent the regeneration process. Here, we validate this model and analyse the immune responses of glial cells as a central regulator of functional regeneration. Additionally, we demonstrate that glial cells and macrophages contribute to functional regeneration through mechanisms involving the Jun N-terminal kinase (JNK) pathway and the Drosophila protein Draper (Drpr), characteristic of other neural injury paradigms. We show that macrophages are recruited to the injury site and are required for functional recovery. Further, we show that the proteins Grindelwald and Drpr in Drosophila glial cells mediate activation of JNK, and that expression of drpr is dependent on JNK activation. Finally, we link neuron-glial communication and the requirement of neuronal vesicular transport to regulation of the JNK pathway and functional recovery. This article has an associated First Person interview with the first author of the paper. Summary: Central nervous system crush injury paradigm in adult Drosophilamelanogaster is a suitable model to study the cellular events, and genetic pathways behind injury responses and functional regeneration. We describe the immune responses of glial cells, neurons and macrophages following injury, and the functional relevance of each response.
Collapse
Affiliation(s)
- María Losada-Pérez
- Instituto Cajal-CSIC, Department of Molecular, Cellular and Developmental Neurobiology, 28002 Madrid, Spain
| | - Nuria García-Guillén
- Instituto Cajal-CSIC, Department of Molecular, Cellular and Developmental Neurobiology, 28002 Madrid, Spain
| | - Sergio Casas-Tintó
- Instituto Cajal-CSIC, Department of Molecular, Cellular and Developmental Neurobiology, 28002 Madrid, Spain
| |
Collapse
|
13
|
Morpho-Functional Consequences of Swiss Cheese Knockdown in Glia of Drosophila melanogaster. Cells 2021; 10:cells10030529. [PMID: 33801404 PMCID: PMC7998100 DOI: 10.3390/cells10030529] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/18/2021] [Accepted: 02/24/2021] [Indexed: 01/15/2023] Open
Abstract
Glia are crucial for the normal development and functioning of the nervous system in many animals. Insects are widely used for studies of glia genetics and physiology. Drosophila melanogaster surface glia (perineurial and subperineurial) form a blood–brain barrier in the central nervous system and blood–nerve barrier in the peripheral nervous system. Under the subperineurial glia layer, in the cortical region of the central nervous system, cortex glia encapsulate neuronal cell bodies, whilst in the peripheral nervous system, wrapping glia ensheath axons of peripheral nerves. Here, we show that the expression of the evolutionarily conserved swiss cheese gene is important in several types of glia. swiss cheese knockdown in subperineurial glia leads to morphological abnormalities of these cells. We found that the number of subperineurial glia nuclei is reduced under swiss cheese knockdown, possibly due to apoptosis. In addition, the downregulation of swiss cheese in wrapping glia causes a loss of its integrity. We reveal transcriptome changes under swiss cheese knockdown in subperineurial glia and in cortex + wrapping glia and show that the downregulation of swiss cheese in these types of glia provokes reactive oxygen species acceleration. These results are accompanied by a decline in animal mobility measured by the negative geotaxis performance assay.
Collapse
|
14
|
Tindell SJ, Rouchka EC, Arkov AL. Glial granules contain germline proteins in the Drosophila brain, which regulate brain transcriptome. Commun Biol 2020; 3:699. [PMID: 33219296 PMCID: PMC7679405 DOI: 10.1038/s42003-020-01432-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/23/2020] [Indexed: 01/23/2023] Open
Abstract
Membraneless RNA-protein granules play important roles in many different cell types and organisms. In particular, granules found in germ cells have been used as a paradigm to study large and dynamic granules. These germ granules contain RNA and proteins required for germline development. Here, we unexpectedly identify large granules in specific subtypes of glial cells ("glial granules") of the adult Drosophila brain which contain polypeptides with previously characterized roles in germ cells including scaffold Tudor, Vasa, Polar granule component and Piwi family proteins. Interestingly, our super-resolution microscopy analysis shows that in the glial granules, these proteins form distinct partially overlapping clusters. Furthermore, we show that glial granule scaffold protein Tudor functions in silencing of transposable elements and in small regulatory piRNA biogenesis. Remarkably, our data indicate that the adult brain contains a small population of cells, which express both neuroblast and germ cell proteins. These distinct cells are evolutionarily conserved and expand during aging suggesting the existence of age-dependent signaling. Our work uncovers previously unknown glial granules and indicates the involvement of their components in the regulation of brain transcriptome.
Collapse
Affiliation(s)
- Samuel J Tindell
- Department of Biological Sciences, Murray State University, Murray, KY, 42071, USA
| | - Eric C Rouchka
- Computer Science and Engineering Department, University of Louisville, Louisville, KY, 40292, USA
| | - Alexey L Arkov
- Department of Biological Sciences, Murray State University, Murray, KY, 42071, USA.
| |
Collapse
|
15
|
Tsao CK, Huang YF, Sun YH. Early lineage segregation of the retinal basal glia in the Drosophila eye disc. Sci Rep 2020; 10:18522. [PMID: 33116242 PMCID: PMC7595039 DOI: 10.1038/s41598-020-75581-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 10/16/2020] [Indexed: 11/09/2022] Open
Abstract
The retinal basal glia (RBG) is a group of glia that migrates from the optic stalk into the third instar larval eye disc while the photoreceptor cells (PR) are differentiating. The RBGs are grouped into three major classes based on molecular and morphological characteristics: surface glia (SG), wrapping glia (WG) and carpet glia (CG). The SGs migrate and divide. The WGs are postmitotic and wraps PR axons. The CGs have giant nucleus and extensive membrane extension that each covers half of the eye disc. In this study, we used lineage tracing methods to determine the lineage relationships among these glia subtypes and the temporal profile of the lineage decisions for RBG development. We found that the CG lineage segregated from the other RBG very early in the embryonic stage. It has been proposed that the SGs migrate under the CG membrane, which prevented SGs from contacting with the PR axons lying above the CG membrane. Upon passing the front of the CG membrane, which is slightly behind the morphogenetic furrow that marks the front of PR differentiation, the migrating SG contact the nascent PR axon, which in turn release FGF to induce SGs' differentiation into WG. Interestingly, we found that SGs are equally distributed apical and basal to the CG membrane, so that the apical SGs are not prevented from contacting PR axons by CG membrane. Clonal analysis reveals that the apical and basal RBG are derived from distinct lineages determined before they enter the eye disc. Moreover, the basal SG lack the competence to respond to FGFR signaling, preventing its differentiation into WG. Our findings suggest that this novel glia-to-glia differentiation is both dependent on early lineage decision and on a yet unidentified regulatory mechanism, which can provide spatiotemporal coordination of WG differentiation with the progressive differentiation of photoreceptor neurons.
Collapse
Affiliation(s)
- Chia-Kang Tsao
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan, ROC.,Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, ROC
| | - Yu Fen Huang
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan, ROC.,Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, ROC.,, 64 Marvin Lane, Piscataway, NJ, 08854, USA
| | - Y Henry Sun
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan, ROC. .,Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, ROC.
| |
Collapse
|
16
|
Wrapping glia regulates neuronal signaling speed and precision in the peripheral nervous system of Drosophila. Nat Commun 2020; 11:4491. [PMID: 32901033 PMCID: PMC7479103 DOI: 10.1038/s41467-020-18291-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 08/11/2020] [Indexed: 02/06/2023] Open
Abstract
The functionality of the nervous system requires transmission of information along axons with high speed and precision. Conductance velocity depends on axonal diameter whereas signaling precision requires a block of electrical crosstalk between axons, known as ephaptic coupling. Here, we use the peripheral nervous system of Drosophila larvae to determine how glia regulates axonal properties. We show that wrapping glial differentiation depends on gap junctions and FGF-signaling. Abnormal glial differentiation affects axonal diameter and conductance velocity and causes mild behavioral phenotypes that can be rescued by a sphingosine-rich diet. Ablation of wrapping glia does not further impair axonal diameter and conductance velocity but causes a prominent locomotion phenotype that cannot be rescued by sphingosine. Moreover, optogenetically evoked locomotor patterns do not depend on conductance speed but require the presence of wrapping glial processes. In conclusion, our data indicate that wrapping glia modulates both speed and precision of neuronal signaling.
Collapse
|
17
|
Silva-Rodrigues JF, Patrício-Rodrigues CF, de Sousa-Xavier V, Augusto PM, Fernandes AC, Farinho AR, Martins JP, Teodoro RO. Peripheral axonal ensheathment is regulated by RalA GTPase and the exocyst complex. Development 2020; 147:dev.174540. [PMID: 31969325 DOI: 10.1242/dev.174540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/14/2020] [Indexed: 12/21/2022]
Abstract
Axon ensheathment is fundamental for fast impulse conduction and the normal physiological functioning of the nervous system. Defects in axonal insulation lead to debilitating conditions, but, despite its importance, the molecular players responsible are poorly defined. Here, we identify RalA GTPase as a key player in axon ensheathment in Drosophila larval peripheral nerves. We demonstrate through genetic analysis that RalA action through the exocyst complex is required in wrapping glial cells to regulate their growth and development. We suggest that the RalA-exocyst pathway controls the targeting of secretory vesicles for membrane growth or for the secretion of a wrapping glia-derived factor that itself regulates growth. In summary, our findings provide a new molecular understanding of the process by which axons are ensheathed in vivo, a process that is crucial for normal neuronal function.
Collapse
Affiliation(s)
- Joana F Silva-Rodrigues
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School - Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1150-082 Lisboa, Portugal
| | - Cátia F Patrício-Rodrigues
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School - Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1150-082 Lisboa, Portugal
| | - Vicente de Sousa-Xavier
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School - Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1150-082 Lisboa, Portugal
| | - Pedro M Augusto
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School - Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1150-082 Lisboa, Portugal
| | - Ana C Fernandes
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School - Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1150-082 Lisboa, Portugal
| | - Ana R Farinho
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School - Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1150-082 Lisboa, Portugal
| | - João P Martins
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School - Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1150-082 Lisboa, Portugal.,Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Rita O Teodoro
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School - Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1150-082 Lisboa, Portugal
| |
Collapse
|
18
|
Kudow N, Kamikouchi A, Tanimura T. Softness sensing and learning in Drosophila larvae. ACTA ACUST UNITED AC 2019; 222:jeb.196329. [PMID: 30833462 DOI: 10.1242/jeb.196329] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/23/2019] [Indexed: 11/20/2022]
Abstract
Mechanosensation provides animals with important sensory information in addition to olfaction and gustation during feeding behavior. Here, we used Drosophila melanogaster larvae to investigate the role of softness sensing in behavior and learning. In the natural environment, larvae need to dig into soft foods for feeding. Finding foods that are soft enough to dig into is likely to be essential for their survival. We report that larvae can discriminate between different agar concentrations and prefer softer agar. Interestingly, we show that larvae on a harder surface search for a softer surface using memory associated with an odor, and that they evaluate foods by balancing softness and sweetness. These findings suggest that larvae integrate mechanosensory information with chemosensory input while foraging. Moreover, we found that the larval preference for softness is affected by genetic background.
Collapse
Affiliation(s)
- Nana Kudow
- Department of Biology, Faculty of Science, Kyushu University, Motooka 744, Fukuoka 819-0395, Japan.,Division of Biological Science, Graduate School of Science, Nagoya University, Furo, Chikusa, Aichi 464-8602, Japan
| | - Azusa Kamikouchi
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo, Chikusa, Aichi 464-8602, Japan
| | - Teiichi Tanimura
- Department of Biology, Faculty of Science, Kyushu University, Motooka 744, Fukuoka 819-0395, Japan .,Division of Biological Science, Graduate School of Science, Nagoya University, Furo, Chikusa, Aichi 464-8602, Japan.,Department of Genetics, Leibniz Institute for Neurobiology (LIN), Brenneckestr. 6, 39118 Magdeburg, Germany
| |
Collapse
|
19
|
Ho TY, Wu WH, Hung SJ, Liu T, Lee YM, Liu YH. Expressional Profiling of Carpet Glia in the Developing Drosophila Eye Reveals Its Molecular Signature of Morphology Regulators. Front Neurosci 2019; 13:244. [PMID: 30983950 PMCID: PMC6449730 DOI: 10.3389/fnins.2019.00244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 03/01/2019] [Indexed: 12/11/2022] Open
Abstract
Homeostasis in the nervous system requires intricate regulation and is largely accomplished by the blood-brain barrier (BBB). The major gate keeper of the vertebrate BBB is vascular endothelial cells, which form tight junctions (TJs). To gain insight into the development of the BBB, we studied the carpet glia, a subperineurial glial cell type with vertebrate TJ-equivalent septate junctions, in the developing Drosophila eye. The large and flat, sheet-like carpet glia, which extends along the developing eye following neuronal differentiation, serves as an easily accessible experimental system to understand the cell types that exhibit barrier function. We profiled transcribed genes in the carpet glia using targeted DNA adenine methyl-transferase identification, followed by next-generation sequencing (targeted DamID-seq) and found that the majority of genes expressed in the carpet glia function in cellular activities were related to its dynamic morphological changes in the developing eye. To unravel the morphology regulators, we silenced genes selected from the carpet glia transcriptome using RNA interference. The Rho1 gene encoding a GTPase was previously reported as a key regulator of the actin cytoskeleton. The expression of the pathetic (path) gene, encoding a solute carrier transporter in the developing eye, is specific to the carpet glia. The reduced expression of Rho1 severely disrupted the formation of intact carpet glia, and the silencing path impaired the connection between the two carpet glial cells, indicating the pan-cellular and local effects of Rho1 and Path on carpet glial cell morphology, respectively. Our study molecularly characterized a particular subperineurial cell type providing a resource for a further understanding of the cell types comprising the BBB.
Collapse
Affiliation(s)
- Tsung-Ying Ho
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Hang Wu
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Sheng-Jou Hung
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Tsunglin Liu
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Yuan-Ming Lee
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Ya-Hsin Liu
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
20
|
Glial ensheathment of the somatodendritic compartment regulates sensory neuron structure and activity. Proc Natl Acad Sci U S A 2019; 116:5126-5134. [PMID: 30804200 DOI: 10.1073/pnas.1814456116] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Sensory neurons perceive environmental cues and are important of organismal survival. Peripheral sensory neurons interact intimately with glial cells. While the function of axonal ensheathment by glia is well studied, less is known about the functional significance of glial interaction with the somatodendritic compartment of neurons. Herein, we show that three distinct glia cell types differentially wrap around the axonal and somatodendritic surface of the polymodal dendritic arborization (da) neuron of the Drosophila peripheral nervous system for detection of thermal, mechanical, and light stimuli. We find that glial cell-specific loss of the chromatin modifier gene dATRX in the subperineurial glial layer leads to selective elimination of somatodendritic glial ensheathment, thus allowing us to investigate the function of such ensheathment. We find that somatodendritic glial ensheathment regulates the morphology of the dendritic arbor, as well as the activity of the sensory neuron, in response to sensory stimuli. Additionally, glial ensheathment of the neuronal soma influences dendritic regeneration after injury.
Collapse
|
21
|
Xu M, Wang J, Guo X, Li T, Kuang X, Wu QF. Illumination of neural development by in vivo clonal analysis. CELL REGENERATION (LONDON, ENGLAND) 2018; 7:33-39. [PMID: 30671228 PMCID: PMC6326247 DOI: 10.1016/j.cr.2018.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 08/22/2018] [Accepted: 09/18/2018] [Indexed: 01/22/2023]
Abstract
Single embryonic and adult neural stem cells (NSCs) are characterized by their self-renewal and differentiation potential. Lineage tracing via clonal analysis allows for specific labeling of a single NSC and tracking of its progeny throughout development. Over the past five decades, a plethora of clonal analysis methods have been developed in tandem with integration of chemical, genetic, imaging and sequencing techniques. Applications of these approaches have gained diverse insights into the heterogeneous behavior of NSCs, lineage relationships between cells, molecular regulation of fate specification and ontogeny of complex neural tissues. In this review, we summarize the history and methods of clonal analysis as well as highlight key findings revealed by single-cell lineage tracking of stem cells in developing and adult brains across different animal models.
Collapse
Affiliation(s)
- Mingrui Xu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Jingjing Wang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xize Guo
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Tingting Li
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Xia Kuang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qing-Feng Wu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
22
|
Yildirim K, Petri J, Kottmeier R, Klämbt C. Drosophila glia: Few cell types and many conserved functions. Glia 2018; 67:5-26. [DOI: 10.1002/glia.23459] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/25/2018] [Accepted: 05/04/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Kerem Yildirim
- Institute for Neuro and Behavioral Biology; University of Münster; Badestraße 9, 48149 Münster Germany
| | - Johanna Petri
- Institute for Neuro and Behavioral Biology; University of Münster; Badestraße 9, 48149 Münster Germany
| | - Rita Kottmeier
- Institute for Neuro and Behavioral Biology; University of Münster; Badestraße 9, 48149 Münster Germany
| | - Christian Klämbt
- Institute for Neuro and Behavioral Biology; University of Münster; Badestraße 9, 48149 Münster Germany
| |
Collapse
|
23
|
Zülbahar S, Sieglitz F, Kottmeier R, Altenhein B, Rumpf S, Klämbt C. Differential expression of Öbek controls ploidy in the Drosophila blood-brain barrier. Development 2018; 145:dev.164111. [PMID: 30002129 DOI: 10.1242/dev.164111] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 07/03/2018] [Indexed: 12/13/2022]
Abstract
During development, tissue growth is mediated by either cell proliferation or cell growth, coupled with polyploidy. Both strategies are employed by the cell types that make up the Drosophila blood-brain barrier. During larval growth, the perineurial glia proliferate, whereas the subperineurial glia expand enormously and become polyploid. Here, we show that the level of ploidy in the subperineurial glia is controlled by the N-terminal asparagine amidohydrolase homolog Öbek, and high Öbek levels are required to limit replication. In contrast, perineurial glia express moderate levels of Öbek, and increased Öbek expression blocks their proliferation. Interestingly, other dividing cells are not affected by alteration of Öbek expression. In glia, Öbek counteracts fibroblast growth factor and Hippo signaling to differentially affect cell growth and number. We propose a mechanism by which growth signals are integrated differentially in a glia-specific manner through different levels of Öbek protein to adjust cell proliferation versus endoreplication in the blood-brain barrier.
Collapse
Affiliation(s)
- Selen Zülbahar
- Institute of Neurobiology, University of Münster, Badestrasse 9, 48149 Münster, Germany
| | - Florian Sieglitz
- Institute of Neurobiology, University of Münster, Badestrasse 9, 48149 Münster, Germany
| | - Rita Kottmeier
- Institute of Neurobiology, University of Münster, Badestrasse 9, 48149 Münster, Germany
| | - Benjamin Altenhein
- Institute of Zoology, University of Cologne, Zülpicher Straße 47b, 50674 Cologne, Germany
| | - Sebastian Rumpf
- Institute of Neurobiology, University of Münster, Badestrasse 9, 48149 Münster, Germany
| | - Christian Klämbt
- Institute of Neurobiology, University of Münster, Badestrasse 9, 48149 Münster, Germany
| |
Collapse
|
24
|
Identification of raw as a regulator of glial development. PLoS One 2018; 13:e0198161. [PMID: 29813126 PMCID: PMC5973607 DOI: 10.1371/journal.pone.0198161] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 05/15/2018] [Indexed: 12/18/2022] Open
Abstract
Glial cells perform numerous functions to support neuron development and function, including axon wrapping, formation of the blood brain barrier, and enhancement of synaptic transmission. We have identified a novel gene, raw, which functions in glia of the central and peripheral nervous systems in Drosophila. Reducing Raw levels in glia results in morphological defects in the brain and ventral nerve cord, as well as defects in neuron function, as revealed by decreased locomotion in crawling assays. Examination of the number of glia along peripheral nerves reveals a reduction in glial number upon raw knockdown. The reduced number of glia along peripheral nerves occurs as a result of decreased glial proliferation. As Raw has been shown to negatively regulate Jun N-terminal kinase (JNK) signaling in other developmental contexts, we examined the expression of a JNK reporter and the downstream JNK target, matrix metalloproteinase 1 (mmp1), and found that raw knockdown results in increased reporter activity and Mmp1 levels. These results are consistent with previous studies showing increased Mmp levels lead to nerve cord defects similar to those observed upon raw knockdown. In addition, knockdown of puckered, a negative feedback regulator of JNK signaling, also causes a decrease in glial number. Thus, our studies have resulted in the identification of a new regulator of gliogenesis, and demonstrate that increased JNK signaling negatively impacts glial development.
Collapse
|
25
|
Torres-Oliva M, Schneider J, Wiegleb G, Kaufholz F, Posnien N. Dynamic genome wide expression profiling of Drosophila head development reveals a novel role of Hunchback in retinal glia cell development and blood-brain barrier integrity. PLoS Genet 2018; 14:e1007180. [PMID: 29360820 PMCID: PMC5796731 DOI: 10.1371/journal.pgen.1007180] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 02/02/2018] [Accepted: 01/01/2018] [Indexed: 01/01/2023] Open
Abstract
Drosophila melanogaster head development represents a valuable process to study the developmental control of various organs, such as the antennae, the dorsal ocelli and the compound eyes from a common precursor, the eye-antennal imaginal disc. While the gene regulatory network underlying compound eye development has been extensively studied, the key transcription factors regulating the formation of other head structures from the same imaginal disc are largely unknown. We obtained the developmental transcriptome of the eye-antennal discs covering late patterning processes at the late 2nd larval instar stage to the onset and progression of differentiation at the end of larval development. We revealed the expression profiles of all genes expressed during eye-antennal disc development and we determined temporally co-expressed genes by hierarchical clustering. Since co-expressed genes may be regulated by common transcriptional regulators, we combined our transcriptome dataset with publicly available ChIP-seq data to identify central transcription factors that co-regulate genes during head development. Besides the identification of already known and well-described transcription factors, we show that the transcription factor Hunchback (Hb) regulates a significant number of genes that are expressed during late differentiation stages. We confirm that hb is expressed in two polyploid subperineurial glia cells (carpet cells) and a thorough functional analysis shows that loss of Hb function results in a loss of carpet cells in the eye-antennal disc. Additionally, we provide for the first time functional data indicating that carpet cells are an integral part of the blood-brain barrier. Eventually, we combined our expression data with a de novo Hb motif search to reveal stage specific putative target genes of which we find a significant number indeed expressed in carpet cells. The development of different cell types must be tightly coordinated, and the eye-antennal imaginal discs of Drosophila melanogaster represent an excellent model to study the molecular mechanisms underlying this coordination. These imaginal discs contain the anlagen of nearly all adult head structures, such as the antennae, the head cuticle, the ocelli and the compound eyes. While large scale screens have been performed to unravel the gene regulatory network underlying compound eye development, a comprehensive understanding of genome wide expression dynamics throughout head development is still missing to date. We studied the genome wide gene expression dynamics during eye-antennal disc development in D. melanogaster to identify new central regulators of the underlying gene regulatory network. Expression based gene clustering and transcription factor motif enrichment analyses revealed a central regulatory role of the transcription factor Hunchback (Hb). We confirmed that hb is expressed in two polyploid retinal subperineurial glia cells (carpet cells). Our functional analysis shows that Hb is necessary for carpet cell development and we show for the first time that the carpet cells are an integral part of the blood-brain barrier.
Collapse
Affiliation(s)
- Montserrat Torres-Oliva
- Universität Göttingen, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Abteilung für Entwicklungsbiologie, GZMB Ernst-Caspari-Haus, Göttingen, Germany
| | - Julia Schneider
- Universität Göttingen, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Abteilung für Entwicklungsbiologie, GZMB Ernst-Caspari-Haus, Göttingen, Germany
| | - Gordon Wiegleb
- Universität Göttingen, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Abteilung für Entwicklungsbiologie, GZMB Ernst-Caspari-Haus, Göttingen, Germany
| | - Felix Kaufholz
- Universität Göttingen, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Abteilung für Entwicklungsbiologie, GZMB Ernst-Caspari-Haus, Göttingen, Germany
| | - Nico Posnien
- Universität Göttingen, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Abteilung für Entwicklungsbiologie, GZMB Ernst-Caspari-Haus, Göttingen, Germany
- * E-mail:
| |
Collapse
|
26
|
Ryglewski S, Duch C, Altenhein B. Tyramine Actions on Drosophila Flight Behavior Are Affected by a Glial Dehydrogenase/Reductase. Front Syst Neurosci 2017; 11:68. [PMID: 29021745 PMCID: PMC5624129 DOI: 10.3389/fnsys.2017.00068] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/07/2017] [Indexed: 11/13/2022] Open
Abstract
The biogenic amines octopamine (OA) and tyramine (TA) modulate insect motor behavior in an antagonistic manner. OA generally enhances locomotor behaviors such as Drosophila larval crawling and flight, whereas TA decreases locomotor activity. However, the mechanisms and cellular targets of TA modulation of locomotor activity are incompletely understood. This study combines immunocytochemistry, genetics and flight behavioral assays in the Drosophila model system to test the role of a candidate enzyme for TA catabolism, named Nazgul (Naz), in flight motor behavioral control. We hypothesize that the dehydrogenase/reductase Naz represents a critical step in TA catabolism. Immunocytochemistry reveals that Naz is localized to a subset of Repo positive glial cells with cell bodies along the motor neuropil borders and numerous positive Naz arborizations extending into the synaptic flight motor neuropil. RNAi knock down of Naz in Repo positive glial cells reduces Naz protein level below detection level by Western blotting. The resulting consequence is a reduction in flight durations, thus mimicking known motor behavioral phenotypes as resulting from increased TA levels. In accord with the interpretation that reduced TA degradation by Naz results in increased TA levels in the flight motor neuropil, the motor behavioral phenotype can be rescued by blocking TA receptors. Our findings indicate that TA modulates flight motor behavior by acting on central circuitry and that TA is normally taken up from the central motor neuropil by Repo-positive glial cells, desaminated and further degraded by Naz.
Collapse
Affiliation(s)
- Stefanie Ryglewski
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - Carsten Duch
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | | |
Collapse
|
27
|
Subramanian A, Siefert M, Banerjee S, Vishal K, Bergmann KA, Curts CCM, Dorr M, Molina C, Fernandes J. Remodeling of peripheral nerve ensheathment during the larval-to-adult transition in Drosophila. Dev Neurobiol 2017; 77:1144-1160. [PMID: 28388016 DOI: 10.1002/dneu.22502] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 03/27/2017] [Accepted: 03/29/2017] [Indexed: 12/30/2022]
Abstract
Over the course of a 4-day period of metamorphosis, the Drosophila larval nervous system is remodeled to prepare for adult-specific behaviors. One example is the reorganization of peripheral nerves in the abdomen, where five pairs of abdominal nerves (A4-A8) fuse to form the terminal nerve trunk. This reorganization is associated with selective remodeling of four layers that ensheath each peripheral nerve. The neural lamella (NL), is the first to dismantle; its breakdown is initiated by 6 hours after puparium formation, and is completely removed by the end of the first day. This layer begins to re-appear on the third day of metamorphosis. Perineurial glial (PG) cells situated just underneath the NL, undergo significant proliferation on the first day of metamorphosis, and at that stage contribute to 95% of the glial cell population. Cells of the two inner layers, Sub-Perineurial Glia (SPG) and Wrapping Glia (WG) increase in number on the second half of metamorphosis. Induction of cell death in perineurial glia via the cell death gene reaper and the Diptheria toxin (DT-1) gene, results in abnormal bundling of the peripheral nerves, suggesting that perineurial glial cells play a role in the process. A significant number of animals fail to eclose in both reaper and DT-1 targeted animals, suggesting that disruption of PG also impacts eclosion behavior. The studies will help to establish the groundwork for further work on cellular and molecular processes that underlie the co-ordinated remodeling of glia and the peripheral nerves they ensheath. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1144-1160, 2017.
Collapse
Affiliation(s)
- Aswati Subramanian
- Department of Biology and Center for Neuroscience, Miami University, Oxford, Ohio
| | - Matthew Siefert
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Soumya Banerjee
- École Polytechnique Fédérale De Lausanne, Lausanne, CH-1015, Switzerland
| | | | - Kayla A Bergmann
- Department of Biology and Center for Neuroscience, Miami University, Oxford, Ohio
| | - Clay C M Curts
- Department of Biology and Center for Neuroscience, Miami University, Oxford, Ohio
| | - Meredith Dorr
- Barrington Health and Dental Center, 3401 East Raymond St., Indianapolis, IN, 46203
| | - Camillo Molina
- The Johns Hopkins School of Medicine, Baltimore, Maryland, 21287
| | - Joyce Fernandes
- Department of Biology and Center for Neuroscience, Miami University, Oxford, Ohio
| |
Collapse
|
28
|
Gerdøe-Kristensen S, Lund VK, Wandall HH, Kjaerulff O. Mactosylceramide prevents glial cell overgrowth by inhibiting insulin and fibroblast growth factor receptor signaling. J Cell Physiol 2017; 232:3112-3127. [PMID: 28019653 DOI: 10.1002/jcp.25762] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 12/22/2016] [Accepted: 12/22/2016] [Indexed: 12/13/2022]
Abstract
Receptor tyrosine kinase (RTK) signaling controls key aspects of cellular differentiation, proliferation, survival, metabolism, and migration. Deregulated RTK signaling also underlies many cancers. Glycosphingolipids (GSL) are essential elements of the plasma membrane. By affecting clustering and activity of membrane receptors, GSL modulate signal transduction, including that mediated by the RTK. GSL are abundant in the nervous system, and glial development in Drosophila is emerging as a useful model for studying how GSL modulate RTK signaling. Drosophila has a simple GSL biosynthetic pathway, in which the mannosyltransferase Egghead controls conversion of glucosylceramide (GlcCer) to mactosylceramide (MacCer). Lack of elongated GSL in egghead (egh) mutants causes overgrowth of subperineurial glia (SPG), largely due to aberrant activation of phosphatidylinositol 3-kinase (PI3K). However, to what extent this effect involves changes in upstream signaling events is unresolved. We show here that glial overgrowth in egh is strongly linked to increased activation of Insulin and fibroblast growth factor receptors (FGFR). Glial hypertrophy is phenocopied when overexpressing gain-of-function mutants of the Drosophila insulin receptor (InR) and the FGFR homolog Heartless (Htl) in wild type SPG, and is suppressed by inhibiting Htl and InR activity in egh. Knockdown of GlcCer synthase in the SPG fails to suppress glial overgrowth in egh nerves, and slightly promotes overgrowth in wild type, suggesting that RTK hyperactivation is caused by absence of MacCer and not by GlcCer accumulation. We conclude that an early product in GSL biosynthesis, MacCer, prevents inappropriate activation of insulin and fibroblast growth factor receptors in Drosophila glia.
Collapse
Affiliation(s)
- Stine Gerdøe-Kristensen
- Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark.,Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Viktor K Lund
- Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Hans H Wandall
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Ole Kjaerulff
- Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| |
Collapse
|
29
|
Omoto JJ, Lovick JK, Hartenstein V. Origins of glial cell populations in the insect nervous system. CURRENT OPINION IN INSECT SCIENCE 2016; 18:96-104. [PMID: 27939718 PMCID: PMC5825180 DOI: 10.1016/j.cois.2016.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/06/2016] [Accepted: 09/15/2016] [Indexed: 06/06/2023]
Abstract
Glia of vertebrates and invertebrates alike represents a diverse population of cells in the nervous system, divided into numerous classes with different structural and functional characteristics. In insects, glia fall within three basic classes: surface, cell body, and neuropil glia. Due to the glial subclass-specific markers and genetic tools available in Drosophila, it is possible to establish the progenitor origin of these different populations and reconstruct their migration and differentiation during development. We review, and posit when appropriate, recently elucidated aspects of glial developmental dynamics. In particular, we focus on the relationships between mature glial subclasses of the larval nervous system (primary glia), born in the embryo, and glia of the adult (secondary glia), generated in the larva.
Collapse
Affiliation(s)
- Jaison J Omoto
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jennifer K Lovick
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Volker Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
30
|
Interactions among Drosophila larvae before and during collision. Sci Rep 2016; 6:31564. [PMID: 27511760 PMCID: PMC4980675 DOI: 10.1038/srep31564] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/19/2016] [Indexed: 01/04/2023] Open
Abstract
In populations of Drosophila larvae, both, an aggregation and a dispersal behavior can be observed. However, the mechanisms coordinating larval locomotion in respect to other animals, especially in close proximity and during/after physical contacts are currently only little understood. Here we test whether relevant information is perceived before or during larva-larva contacts, analyze its influence on behavior and ask whether larvae avoid or pursue collisions. Employing frustrated total internal reflection-based imaging (FIM) we first found that larvae visually detect other moving larvae in a narrow perceptive field and respond with characteristic escape reactions. To decipher larval locomotion not only before but also during the collision we utilized a two color FIM approach (FIM2c), which allowed to faithfully extract the posture and motion of colliding animals. We show that during collision, larval locomotion freezes and sensory information is sampled during a KISS phase (german: Kollisions Induziertes Stopp Syndrom or english: collision induced stop syndrome). Interestingly, larvae react differently to living, dead or artificial larvae, discriminate other Drosophila species and have an increased bending probability for a short period after the collision terminates. Thus, Drosophila larvae evolved means to specify behaviors in response to other larvae.
Collapse
|
31
|
Accumulation of Laminin Monomers in Drosophila Glia Leads to Glial Endoplasmic Reticulum Stress and Disrupted Larval Locomotion. J Neurosci 2016; 36:1151-64. [PMID: 26818504 DOI: 10.1523/jneurosci.1797-15.2016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED The nervous system is surrounded by an extracellular matrix composed of large glycoproteins, including perlecan, collagens, and laminins. Glial cells in many organisms secrete laminin, a large heterotrimeric protein consisting of an α, β, and γ subunit. Prior studies have found that loss of laminin subunits from vertebrate Schwann cells causes loss of myelination and neuropathies, results attributed to loss of laminin-receptor signaling. We demonstrate that loss of the laminin γ subunit (LanB2) in the peripheral glia of Drosophila melanogaster results in the disruption of glial morphology due to disruption of laminin secretion. Specifically, knockdown of LanB2 in peripheral glia results in accumulation of the β subunit (LanB1), leading to distended endoplasmic reticulum (ER), ER stress, and glial swelling. The physiological consequences of disruption of laminin secretion in glia included decreased larval locomotion and ultimately lethality. Loss of the γ subunit from wrapping glia resulted in a disruption in the glial ensheathment of axons but surprisingly did not affect animal locomotion. We found that Tango1, a protein thought to exclusively mediate collagen secretion, is also important for laminin secretion in glia via a collagen-independent mechanism. However loss of secretion of the laminin trimer does not disrupt animal locomotion. Rather, it is the loss of one subunit that leads to deleterious consequences through the accumulation of the remaining subunits. SIGNIFICANCE STATEMENT This research presents a new perspective on how mutations in the extracellular matrix protein laminin cause severe consequences in glial wrapping and function. Glial-specific loss of the β or γ laminin subunit disrupted glia morphology and led to ER expansion and stress due to retention of other subunits. The retention of the unpaired laminin subunit was key to the glial disruption as loss of Tango1 blocked secretion of the complete laminin trimer but did not lead to glial or locomotion defects. The effects were observed in the perineurial glia that envelope the peripheral and central nervous systems, providing evidence for the importance of this class of glia in supporting nervous system function.
Collapse
|
32
|
Becker H, Renner S, Technau GM, Berger C. Cell-Autonomous and Non-cell-autonomous Function of Hox Genes Specify Segmental Neuroblast Identity in the Gnathal Region of the Embryonic CNS in Drosophila. PLoS Genet 2016; 12:e1005961. [PMID: 27015425 PMCID: PMC4807829 DOI: 10.1371/journal.pgen.1005961] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 03/04/2016] [Indexed: 12/12/2022] Open
Abstract
During central nervous system (CNS) development neural stem cells (Neuroblasts, NBs) have to acquire an identity appropriate to their location. In thoracic and abdominal segments of Drosophila, the expression pattern of Bithorax-Complex Hox genes is known to specify the segmental identity of NBs prior to their delamination from the neuroectoderm. Compared to the thoracic, ground state segmental units in the head region are derived to different degrees, and the precise mechanism of segmental specification of NBs in this region is still unclear. We identified and characterized a set of serially homologous NB-lineages in the gnathal segments and used one of them (NB6-4 lineage) as a model to investigate the mechanism conferring segment-specific identities to gnathal NBs. We show that NB6-4 is primarily determined by the cell-autonomous function of the Hox gene Deformed (Dfd). Interestingly, however, it also requires a non-cell-autonomous function of labial and Antennapedia that are expressed in adjacent anterior or posterior compartments. We identify the secreted molecule Amalgam (Ama) as a downstream target of the Antennapedia-Complex Hox genes labial, Dfd, Sex combs reduced and Antennapedia. In conjunction with its receptor Neurotactin (Nrt) and the effector kinase Abelson tyrosine kinase (Abl), Ama is necessary in parallel to the cell-autonomous Dfd pathway for the correct specification of the maxillary identity of NB6-4. Both pathways repress CyclinE (CycE) and loss of function of either of these pathways leads to a partial transformation (40%), whereas simultaneous mutation of both pathways leads to a complete transformation (100%) of NB6-4 segmental identity. Finally, we provide genetic evidences, that the Ama-Nrt-Abl-pathway regulates CycE expression by altering the function of the Hippo effector Yorkie in embryonic NBs. The disclosure of a non-cell-autonomous influence of Hox genes on neural stem cells provides new insight into the process of segmental patterning in the developing CNS. The central nervous system (CNS) needs to be subdivided into functionally specified regions. In the developing CNS of Drosophila, each neural stem cell, called neuroblasts (NB), acquires a unique identity according to its anterior-posterior and dorso-ventral position to generate a specific cell lineage. Along the anterior-posterior body axis, Hox genes of the Bithorax-Complex convey segmental identities to NBs in the trunk segments. In the derived gnathal and brain segments, the mechanisms specifying segmental NB identities are largely unknown. We investigated the role of Hox genes of the Antennapedia-Complex in the gnathal CNS. In addition to cell-autonomous Hox gene function, we unexpectedly uncovered a parallel non-cell-autonomous pathway in mediating segmental specification of embryonic NBs in gnathal segments. Both pathways restrict the expression of the cell cycle gene CyclinE, ensuring the proper specification of a glial cell lineage. Whereas the Hox gene Deformed mediates this cell-autonomously, labial and Antennapedia influence the identity via transcriptional regulation of the secreted molecule Amalgam (and its downstream pathway) in a non-cell-autonomous manner. These findings shed new light on the role of the highly conserved Hox genes during segmental patterning of neural stem cells in the CNS.
Collapse
Affiliation(s)
- Henrike Becker
- Institute of Genetics, University of Mainz, Mainz, Germany
| | - Simone Renner
- Institute of Genetics, University of Mainz, Mainz, Germany
| | - Gerhard M. Technau
- Institute of Genetics, University of Mainz, Mainz, Germany
- * E-mail: (CB); (GMT)
| | - Christian Berger
- Institute of Genetics, University of Mainz, Mainz, Germany
- * E-mail: (CB); (GMT)
| |
Collapse
|
33
|
Schirmeier S, Matzat T, Klämbt C. Axon ensheathment and metabolic supply by glial cells in Drosophila. Brain Res 2015; 1641:122-129. [PMID: 26367447 DOI: 10.1016/j.brainres.2015.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/02/2015] [Accepted: 09/03/2015] [Indexed: 02/06/2023]
Abstract
Neuronal function requires constant working conditions and a well-balanced supply of ions and metabolites. The metabolic homeostasis in the nervous system crucially depends on the presence of glial cells, which nurture and isolate neuronal cells. Here we review recent findings on how these tasks are performed by glial cells in the genetically amenable model organism Drosophila melanogaster. Despite the small size of its nervous system, which would allow diffusion of metabolites, a surprising division of labor between glial cells and neurons is evident. Glial cells are glycolytically active and transfer lactate and alanine to neurons. Neurons in turn do not require glycolysis but can use the glially provided compounds for their energy homeostasis. Besides feeding neurons, glial cells also insulate neuronal axons in a way similar to Remak fibers in the mammalian nervous system. The molecular mechanisms orchestrating this insulation require neuregulin signaling and resemble the mechanisms controlling glial differentiation in mammals surprisingly well. We hypothesize that metabolic cross talk and insulation of neurons by glial cells emerged early during evolution as two closely interlinked features in the nervous system. This article is part of a Special Issue entitled SI: Myelin Evolution.
Collapse
Affiliation(s)
- Stefanie Schirmeier
- Institut für Neuro- und Verhaltensbiologie, Badestr. 9, 48149 Münster, Germany
| | - Till Matzat
- Institut für Neuro- und Verhaltensbiologie, Badestr. 9, 48149 Münster, Germany
| | - Christian Klämbt
- Institut für Neuro- und Verhaltensbiologie, Badestr. 9, 48149 Münster, Germany.
| |
Collapse
|
34
|
Altenhein B, Cattenoz PB, Giangrande A. The early life of a fly glial cell. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015. [DOI: 10.1002/wdev.200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | | | - Angela Giangrande
- Department of Functional Genomics and Cancer; IGBMC; Illkirch France
| |
Collapse
|
35
|
Bauke AC, Sasse S, Matzat T, Klämbt C. A transcriptional network controlling glial development in the Drosophila visual system. Development 2015; 142:2184-93. [DOI: 10.1242/dev.119750] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 04/28/2015] [Indexed: 01/07/2023]
Abstract
In the nervous system, glial cells need to be specified from a set of progenitor cells. In the developing Drosophila eye, perineurial glia proliferate and differentiate as wrapping glia in response to a neuronal signal conveyed by the FGF receptor pathway. To unravel the underlying transcriptional network we silenced all genes encoding predicted DNA-binding proteins in glial cells using RNAi. Dref and other factors of the TATA box-binding protein-related factor 2 (TRF2) complex were previously predicted to be involved in cellular metabolism and cell growth. Silencing of these genes impaired early glia proliferation and subsequent differentiation. Dref controls proliferation via activation of the Pdm3 transcription factor, whereas glial differentiation is regulated via Dref and the homeodomain protein Cut. Cut expression is controlled independently of Dref by FGF receptor activity. Loss- and gain-of-function studies show that Cut is required for glial differentiation and is sufficient to instruct the formation of membrane protrusions, a hallmark of wrapping glial morphology. Our work discloses a network of transcriptional regulators controlling the progression of a naïve perineurial glia towards the fully differentiated wrapping glia.
Collapse
Affiliation(s)
- Ann-Christin Bauke
- Institute of Neurobiology, University of Münster, Münster 48149, Germany
| | - Sofia Sasse
- Institute of Neurobiology, University of Münster, Münster 48149, Germany
| | - Till Matzat
- Institute of Neurobiology, University of Münster, Münster 48149, Germany
| | - Christian Klämbt
- Institute of Neurobiology, University of Münster, Münster 48149, Germany
| |
Collapse
|
36
|
Altenhein B. Glial cell progenitors in the Drosophila embryo. Glia 2015; 63:1291-302. [PMID: 25779863 DOI: 10.1002/glia.22820] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 03/02/2015] [Indexed: 12/31/2022]
Abstract
Development and general organization of the nervous system is comparable between insects and vertebrates. Our current knowledge on the formation of neurogenic anlagen and the generation of neural stem cells is deeply influenced by work done in invertebrate model organisms such as Drosophila and Caenorhabditis elegans. It is the aim of this review to summarize the most important steps in neurogenesis in the Drosophila embryo with a special emphasis on glial cell progenitors and the specification of glial cells. Induction of neurogenic regions during early embryogenesis and determination of neural stem cells are briefly described. Special attention is given to the formation of neural precursors called neuroblasts (NB) and their lineages. NBs divide in a stem cell mode to generate a cell clone of either neurons and/or glial cells. The latter require the activation of the transcription factor glial cells missing (gcm), thus providing a binary switch between neuronal and glial cell fates. Further aspects of glial cell specification and the resulting heterogeneity of the glial population in Drosophila are discussed.
Collapse
Affiliation(s)
- Benjamin Altenhein
- Department of Neurobiology, Neurodevelopment, Zoological Institute, University of Cologne, Cologne, Germany
| |
Collapse
|
37
|
Matzat T, Sieglitz F, Kottmeier R, Babatz F, Engelen D, Klämbt C. Axonal wrapping in the Drosophila PNS is controlled by glia-derived neuregulin homolog Vein. Development 2015; 142:1336-45. [PMID: 25758464 DOI: 10.1242/dev.116616] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Efficient neuronal conductance requires that axons are insulated by glial cells. For this, glial membranes need to wrap around axons. Invertebrates show a relatively simple extension of glial membranes around the axons, resembling Remak fibers formed by Schwann cells in the mammalian peripheral nervous system. To unravel the molecular pathways underlying differentiation of glial cells that provide axonal wrapping, we are using the genetically amenable Drosophila model. At the end of larval life, the wrapping glia differentiates into very large cells, spanning more than 1 mm of axonal length. The extension around axonal membranes is not influenced by the caliber of the axon or its modality. Using cell type-specific gene knockdown we show that the extension of glial membranes around the axons is regulated by an autocrine activation of the EGF receptor through the neuregulin homolog Vein. This resembles the molecular mechanism employed during cell-autonomous reactivation of glial differentiation after injury in mammals. We further demonstrate that Vein, produced by the wrapping glia, also regulates the formation of septate junctions in the abutting subperineurial glia. Moreover, the wrapping glia indirectly controls the proliferation of the perineurial glia. Thus, the wrapping glia appears center stage to orchestrate the development of the different glial cell layers in a peripheral nerve.
Collapse
Affiliation(s)
- Till Matzat
- Institut für Neurobiologie, Universität Münster, Badestr. 9, Münster D-48149, Germany
| | - Florian Sieglitz
- Institut für Neurobiologie, Universität Münster, Badestr. 9, Münster D-48149, Germany
| | - Rita Kottmeier
- Institut für Neurobiologie, Universität Münster, Badestr. 9, Münster D-48149, Germany
| | - Felix Babatz
- Institut für Neurobiologie, Universität Münster, Badestr. 9, Münster D-48149, Germany
| | - Daniel Engelen
- Institut für Neurobiologie, Universität Münster, Badestr. 9, Münster D-48149, Germany
| | - Christian Klämbt
- Institut für Neurobiologie, Universität Münster, Badestr. 9, Münster D-48149, Germany
| |
Collapse
|
38
|
Richier B, Salecker I. Versatile genetic paintbrushes: Brainbow technologies. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2015; 4:161-80. [PMID: 25491327 PMCID: PMC4384809 DOI: 10.1002/wdev.166] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 10/15/2014] [Indexed: 11/07/2022]
Abstract
UNLABELLED Advances in labeling technologies are instrumental to study the developmental mechanisms that control organ formation and function at the cellular level. Until recently, genetic tools relied on the expression of single markers to visualize individual cells or lineages in developing and adult animals. Exploiting the expanding color palette of fluorescent proteins and the power of site-specific recombinases in rearranging DNA fragments, the development of Brainbow strategies in mice made it possible to stochastically label many cells in different colors within the same sample. Over the past years, these pioneering approaches have been adapted for other experimental model organisms, including Drosophila melanogaster, zebrafish, and chicken. Balancing the distinct requirements of single cell and clonal analyses, adjustments were made that both enhance and expand the functionality of these tools. Multicolor cell labeling techniques have been successfully applied in studies analyzing the cellular components of neural circuits and other tissues, and the compositions and interactions of lineages. While being continuously refined, Brainbow technologies have thus found a firm place in the genetic toolboxes of developmental and neurobiologists. For further resources related to this article, please visit the WIREs website. CONFLICT OF INTEREST The authors have declared no conflicts of interest for this article.
Collapse
Affiliation(s)
- Benjamin Richier
- MRC National Institute for Medical Research, Division of Molecular NeurobiologyLondon, UK
| | - Iris Salecker
- MRC National Institute for Medical Research, Division of Molecular NeurobiologyLondon, UK
| |
Collapse
|
39
|
Kumar A, Gupta T, Berzsenyi S, Giangrande A. N-cadherin negatively regulates collective Drosophila glial migration via actin cytoskeleton remodeling. J Cell Sci 2015; 128:900-12. [DOI: 10.1242/jcs.157974] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Cell migration is an essential and highly regulated process. During development, glia and neurons migrate over long distances, in most cases collectively, to reach their final destination and build the sophisticated architecture of the nervous system, the most complex tissue of the body. Collective migration is highly stereotyped and efficient, defects in the process leading to severe human diseases that include mental retardation. This dynamic process entails extensive cell communication and coordination, hence the real challenge is to analyze it in the whole organism and at cellular resolution. We here investigate the impact of the N-cadherin adhesion molecule on collective glial migration using the Drosophila developing wing and cell-type specific manipulation of gene expression. We show that N-cadherin timely accumulates in glial cells and that its levels affect migration efficiency. N-cadherin works as a molecular brake in a dosage dependent manner by negatively controlling actin nucleation and cytoskeleton remodeling through α/β catenins. This is the first in vivo evidence for N-cadherin negatively and cell autonomously controlling collective migration.
Collapse
|
40
|
Limmer S, Weiler A, Volkenhoff A, Babatz F, Klämbt C. The Drosophila blood-brain barrier: development and function of a glial endothelium. Front Neurosci 2014; 8:365. [PMID: 25452710 PMCID: PMC4231875 DOI: 10.3389/fnins.2014.00365] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 10/23/2014] [Indexed: 01/01/2023] Open
Abstract
The efficacy of neuronal function requires a well-balanced extracellular ion homeostasis and a steady supply with nutrients and metabolites. Therefore, all organisms equipped with a complex nervous system developed a so-called blood-brain barrier, protecting it from an uncontrolled entry of solutes, metabolites or pathogens. In higher vertebrates, this diffusion barrier is established by polarized endothelial cells that form extensive tight junctions, whereas in lower vertebrates and invertebrates the blood-brain barrier is exclusively formed by glial cells. Here, we review the development and function of the glial blood-brain barrier of Drosophila melanogaster. In the Drosophila nervous system, at least seven morphologically distinct glial cell classes can be distinguished. Two of these glial classes form the blood-brain barrier. Perineurial glial cells participate in nutrient uptake and establish a first diffusion barrier. The subperineurial glial (SPG) cells form septate junctions, which block paracellular diffusion and thus seal the nervous system from the hemolymph. We summarize the molecular basis of septate junction formation and address the different transport systems expressed by the blood-brain barrier forming glial cells.
Collapse
Affiliation(s)
- Stefanie Limmer
- Institut für Neuro- und Verhaltensbiologie, Universität Münster Münster, Germany
| | - Astrid Weiler
- Institut für Neuro- und Verhaltensbiologie, Universität Münster Münster, Germany
| | - Anne Volkenhoff
- Institut für Neuro- und Verhaltensbiologie, Universität Münster Münster, Germany
| | - Felix Babatz
- Institut für Neuro- und Verhaltensbiologie, Universität Münster Münster, Germany
| | - Christian Klämbt
- Institut für Neuro- und Verhaltensbiologie, Universität Münster Münster, Germany
| |
Collapse
|
41
|
Sen A, Grimm S, Hofmeyer K, Pflugfelder GO. Optomotor-blindin the Development of theDrosophilaHS and VS Lobula Plate Tangential Cells. J Neurogenet 2014; 28:250-63. [DOI: 10.3109/01677063.2014.917645] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
42
|
Meyer S, Schmidt I, Klämbt C. Glia ECM interactions are required to shape the Drosophila nervous system. Mech Dev 2014; 133:105-16. [PMID: 24859129 DOI: 10.1016/j.mod.2014.05.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 05/10/2014] [Accepted: 05/14/2014] [Indexed: 10/25/2022]
Abstract
Organs are characterized by a specific shape that is often remodeled during development. The dynamics of organ shape is in particular evident during the formation of the Drosophila nervous system. During embryonic stages the central nervous system compacts, whereas selective growth occurs during larval stages. The nervous system is covered by a layer of surface glial cells that form the blood brain barrier and a thick extracellular matrix called neural lamella. The size of the neural lamella is dynamically adjusted to the growing nervous system and we show here that perineurial glial cells secrete proteases to remodel this matrix. Moreover, an imbalance in proteolytic activity results in an abnormal shape of the nervous system. To identify further components controlling nervous system shape we performed an RNAi based screen and identified the gene nolo, which encodes an ADAMTS-like protein. We generated loss of function alleles and demonstrate a requirement in glial cells. Mutant nolo larvae, however, do not show an abnormal nervous system shape. The only predicted off-target of the nolo(dsRNA) is Oatp30B, which encodes an organic anion transporting protein characterized by an extracellular protease inhibitor domain. Loss of function mutants were generated and double mutant analyses demonstrate a genetic interaction between nolo and Oatp30B which prevented the generation of maternal zygotic mutant larvae.
Collapse
Affiliation(s)
- Silke Meyer
- Institute of Neurobiology, University of Münster, 48149 Münster, Germany
| | - Imke Schmidt
- Institute of Neurobiology, University of Münster, 48149 Münster, Germany
| | - Christian Klämbt
- Institute of Neurobiology, University of Münster, 48149 Münster, Germany.
| |
Collapse
|
43
|
Rebollo E, Karkali K, Mangione F, Martín-Blanco E. Live imaging in Drosophila: The optical and genetic toolkits. Methods 2014; 68:48-59. [PMID: 24814031 DOI: 10.1016/j.ymeth.2014.04.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 04/27/2014] [Accepted: 04/28/2014] [Indexed: 11/19/2022] Open
Abstract
Biological imaging based on light microscopy comes at the core of the methods that let us understanding morphology and its dynamics in synergy to the spatiotemporal distribution of cellular and molecular activities as the organism develops and becomes functional. Non-linear optical tools and superesolution methodologies are under constant development and their applications to live imaging of whole organisms keep improving as we speak. Genetically coded biosensors, multicolor clonal methods and optogenetics in different organisms and, in particular, in Drosophila follow equivalent paths. We anticipate a brilliant future for live imaging providing the roots for the holistic understanding, rather than for individual parts, of development and function at the whole-organism level.
Collapse
Affiliation(s)
- Elena Rebollo
- Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Parc Cientific de Barcelona, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Katerina Karkali
- Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Parc Cientific de Barcelona, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Federica Mangione
- Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Parc Cientific de Barcelona, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Enrique Martín-Blanco
- Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Parc Cientific de Barcelona, Baldiri Reixac 10, 08028 Barcelona, Spain.
| |
Collapse
|
44
|
|
45
|
Birkholz O, Vef O, Rogulja-Ortmann A, Berger C, Technau GM. Abdominal-B and caudal inhibit the formation of specific neuroblasts in the Drosophila tail region. Development 2013; 140:3552-64. [PMID: 23903193 PMCID: PMC3915569 DOI: 10.1242/dev.096099] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The central nervous system of Drosophila melanogaster consists of fused segmental units (neuromeres), each generated by a characteristic number of neural stem cells (neuroblasts). In the embryo, thoracic and anterior abdominal neuromeres are almost equally sized and formed by repetitive sets of neuroblasts, whereas the terminal abdominal neuromeres are generated by significantly smaller populations of progenitor cells. Here we investigated the role of the Hox gene Abdominal-B in shaping the terminal neuromeres. We show that the regulatory isoform of Abdominal-B (Abd-B.r) not only confers abdominal fate to specific neuroblasts (e.g. NB6-4) and regulates programmed cell death of several progeny cells within certain neuroblast lineages (e.g. NB3-3) in parasegment 14, but also inhibits the formation of a specific set of neuroblasts in parasegment 15 (including NB7-3). We further show that Abd-B.r requires cooperation of the ParaHox gene caudal to unfold its full competence concerning neuroblast inhibition and specification. Thus, our findings demonstrate that combined action of Abdominal-B and caudal contributes to the size and composition of the terminal neuromeres by regulating both the number and lineages of specific neuroblasts.
Collapse
|