1
|
Singh D, Ramaswamy S, Jolly MK, Rizvi MS. Emergence of planar cell polarity from the interplay of local interactions and global gradients. eLife 2024; 13:e84053. [PMID: 39450855 PMCID: PMC11602187 DOI: 10.7554/elife.84053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 10/18/2024] [Indexed: 10/26/2024] Open
Abstract
Planar cell polarity (PCP) - tissue-scale alignment of the direction of asymmetric localization of proteins at the cell-cell interface - is essential for embryonic development and physiological functions. Abnormalities in PCP can result in developmental imperfections, including neural tube closure defects and misaligned hair follicles. Decoding the mechanisms responsible for PCP establishment and maintenance remains a fundamental open question. While the roles of various molecules - broadly classified into 'global' and 'local' modules - have been well-studied, their necessity and sufficiency in explaining PCP and connecting their perturbations to experimentally observed patterns have not been examined. Here, we develop a minimal model that captures the proposed features of PCP establishment - a global tissue-level gradient and local asymmetric distribution of protein complexes. The proposed model suggests that while polarity can emerge without a gradient, the gradient not only acts as a global cue but also increases the robustness of PCP against stochastic perturbations. We also recapitulated and quantified the experimentally observed features of swirling patterns and domineering non-autonomy, using only three free model parameters - rate of protein binding to membrane, the concentration of PCP proteins, and the gradient steepness. We explain how self-stabilizing asymmetric protein localizations in the presence of tissue-level gradient can lead to robust PCP patterns and reveal minimal design principles for a polarized system.
Collapse
Affiliation(s)
- Divyoj Singh
- Department of Bioengineering, Indian Institute of ScienceBangaloreIndia
| | - Sriram Ramaswamy
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of ScienceBengaloreIndia
| | - Mohit Kumar Jolly
- Department of Bioengineering, Indian Institute of ScienceBangaloreIndia
| | - Mohd Suhail Rizvi
- Department of Biomedical Engineering, Indian Institute of TechnologyHyderabadIndia
| |
Collapse
|
2
|
Fulford AD, Enderle L, Rusch J, Hodzic D, Holder MV, Earl A, Oh RH, Tapon N, McNeill H. Expanded directly binds conserved regions of Fat to restrain growth via the Hippo pathway. J Cell Biol 2023; 222:e202204059. [PMID: 37071483 PMCID: PMC10120405 DOI: 10.1083/jcb.202204059] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 11/26/2022] [Accepted: 02/09/2023] [Indexed: 04/19/2023] Open
Abstract
The Hippo pathway is a conserved and critical regulator of tissue growth. The FERM protein Expanded is a key signaling hub that promotes activation of the Hippo pathway, thereby inhibiting the transcriptional co-activator Yorkie. Previous work identified the polarity determinant Crumbs as a primary regulator of Expanded. Here, we show that the giant cadherin Fat also regulates Expanded directly and independently of Crumbs. We show that direct binding between Expanded and a highly conserved region of the Fat cytoplasmic domain recruits Expanded to the apicolateral junctional zone and stabilizes Expanded. In vivo deletion of Expanded binding regions in Fat causes loss of apical Expanded and promotes tissue overgrowth. Unexpectedly, we find Fat can bind its ligand Dachsous via interactions of their cytoplasmic domains, in addition to the known extracellular interactions. Importantly, Expanded is stabilized by Fat independently of Dachsous binding. These data provide new mechanistic insights into how Fat regulates Expanded, and how Hippo signaling is regulated during organ growth.
Collapse
Affiliation(s)
- Alexander D. Fulford
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, USA
| | - Leonie Enderle
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Jannette Rusch
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, USA
| | - Didier Hodzic
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, USA
| | - Maxine V. Holder
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, London, UK
| | - Alex Earl
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, USA
| | - Robin Hyunseo Oh
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Nicolas Tapon
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, London, UK
| | - Helen McNeill
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, USA
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| |
Collapse
|
3
|
Kasiah J, McNeill H. Fat and Dachsous cadherins in mammalian development. Curr Top Dev Biol 2023; 154:223-244. [PMID: 37100519 DOI: 10.1016/bs.ctdb.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Cell growth and patterning are critical for tissue development. Here we discuss the evolutionarily conserved cadherins, Fat and Dachsous, and the roles they play during mammalian tissue development and disease. In Drosophila, Fat and Dachsous regulate tissue growth via the Hippo pathway and planar cell polarity (PCP). The Drosophila wing has been an ideal tissue to observe how mutations in these cadherins affect tissue development. In mammals, there are multiple Fat and Dachsous cadherins, which are expressed in many tissues, but mutations in these cadherins that affect growth and tissue organization are context dependent. Here we examine how mutations in the Fat and Dachsous mammalian genes affect development in mammals and contribute to human disease.
Collapse
Affiliation(s)
- Jennysue Kasiah
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Helen McNeill
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO, United States.
| |
Collapse
|
4
|
Wang C, Qu K, Wang J, Qin R, Li B, Qiu J, Wang G. Biomechanical regulation of planar cell polarity in endothelial cells. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166495. [PMID: 35850177 DOI: 10.1016/j.bbadis.2022.166495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 01/03/2023]
Abstract
Cell polarity refers to the uneven distribution of certain cytoplasmic components in a cell with a spatial order. The planar cell polarity (PCP), the cell aligns perpendicular to the polar plane, in endothelial cells (ECs) has become a research hot spot. The planar polarity of ECs has a positive significance on the regulation of cardiovascular dysfunction, pathological angiogenesis, and ischemic stroke. The endothelial polarity is stimulated and regulated by biomechanical force. Mechanical stimuli promote endothelial polarization and make ECs produce PCP to maintain the normal physiological and biochemical functions. Here, we overview recent advances in understanding the interplay and mechanism between PCP and ECs function involved in mechanical forces, with a focus on PCP signaling pathways and organelles in regulating the polarity of ECs. And then showed the related diseases caused by ECs polarity dysfunction. This study provides new ideas and therapeutic targets for the treatment of endothelial PCP-related diseases.
Collapse
Affiliation(s)
- Caihong Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Kai Qu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Jing Wang
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Rui Qin
- College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Bingyi Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Juhui Qiu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China.
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China.
| |
Collapse
|
5
|
Strutt H, Strutt D. How do the Fat-Dachsous and core planar polarity pathways act together and independently to coordinate polarized cell behaviours? Open Biol 2021; 11:200356. [PMID: 33561385 PMCID: PMC8061702 DOI: 10.1098/rsob.200356] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Planar polarity describes the coordinated polarization of cells within the plane of a tissue. This is controlled by two main pathways in Drosophila: the Frizzled-dependent core planar polarity pathway and the Fat–Dachsous pathway. Components of both of these pathways become asymmetrically localized within cells in response to long-range upstream cues, and form intercellular complexes that link polarity between neighbouring cells. This review examines if and when the two pathways are coupled, focusing on the Drosophila wing, eye and abdomen. There is strong evidence that the pathways are molecularly coupled in tissues that express a specific isoform of the core protein Prickle, namely Spiny-legs. However, in other contexts, the linkages between the pathways are indirect. We discuss how the two pathways act together and independently to mediate a diverse range of effects on polarization of cell structures and behaviours.
Collapse
Affiliation(s)
- Helen Strutt
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - David Strutt
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
6
|
Mangione F, Martín-Blanco E. The Dachsous/Fat/Four-Jointed Pathway Directs the Uniform Axial Orientation of Epithelial Cells in the Drosophila Abdomen. Cell Rep 2019; 25:2836-2850.e4. [PMID: 30517870 DOI: 10.1016/j.celrep.2018.11.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 10/05/2018] [Accepted: 11/06/2018] [Indexed: 12/19/2022] Open
Abstract
The achievement of the final form of an individual requires not only the control of cell size and differentiation but also integrative directional cues to instruct cell movements, positions, and orientations. In Drosophila, the adult epidermis of the abdomen is created de novo by histoblasts. As these expand and fuse, they uniformly orient along the anteroposterior axis. We found that the Dachsous/Fat/Four-jointed (Ds/Ft/Fj) pathway is key for their alignment. The refinement of the tissue-wide expression of the atypical cadherins Ds and Ft result in their polarization and directional adhesiveness. Mechanistically, the axially oriented changes in histoblasts respond to the redesign of the epithelial field. We suggest that the role of Ds/Ft/Fj in long-range oriented cell alignment is a general function and that the regulation of the expression of its components will be crucial in other morphogenetic models or during tissue repair.
Collapse
Affiliation(s)
- Federica Mangione
- Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Parc Científic de Barcelona, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Enrique Martín-Blanco
- Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Parc Científic de Barcelona, Baldiri Reixac 10-12, 08028 Barcelona, Spain.
| |
Collapse
|
7
|
Early girl is a novel component of the Fat signaling pathway. PLoS Genet 2019; 15:e1007955. [PMID: 30699121 PMCID: PMC6370246 DOI: 10.1371/journal.pgen.1007955] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 02/11/2019] [Accepted: 01/11/2019] [Indexed: 01/05/2023] Open
Abstract
The Drosophila protocadherins Dachsous and Fat regulate growth and tissue polarity by modulating the levels, membrane localization and polarity of the atypical myosin Dachs. Localization to the apical junctional membrane is critical for Dachs function, and the adapter protein Vamana/Dlish and palmitoyl transferase Approximated are required for Dachs membrane localization. However, how Dachs levels are regulated is poorly understood. Here we identify the early girl gene as playing an essential role in Fat signaling by limiting the levels of Dachs protein. early girl mutants display overgrowth of the wings and reduced cross vein spacing, hallmark features of mutations affecting Fat signaling. Genetic experiments reveal that it functions in parallel with Fat to regulate Dachs. early girl encodes an E3 ubiquitin ligase, physically interacts with Dachs, and regulates its protein stability. Concomitant loss of early girl and approximated results in accumulation of Dachs and Vamana in cytoplasmic punctae, suggesting that it also regulates their trafficking to the apical membrane. Our findings establish a crucial role for early girl in Fat signaling, involving regulation of Dachs and Vamana, two key downstream effectors of this pathway. During development, organs grow to achieve a consistent final size. The evolutionarily conserved Hippo signaling network plays a central role in organ size control, and when dysregulated can be associated with cancer and other diseases. Fat signaling is one of several upstream pathways that impinge on Hippo signaling to regulate organ growth. We describe here identification of the Drosophila early girl gene as a new component of the Fat signaling pathway. We show that Early girl controls Fat signaling by regulating the levels of the Dachs protein. However Early girl differs from other Fat signaling regulators in that it doesn’t influence planar cell polarity or control the polarity of Dachs localization. early girl encodes a conserved protein that is predicted to influence protein stability, and it can physically associate with Dachs. We also discovered that Early girl acts together with another protein, called Approximated, to regulate the sub-cellular localization of Dachs and a Dachs-interacting protein called Vamana. Altogether, our observations establish Early girl as an essential component of Fat signaling that acts to regulate the levels and localization of Dachs and Vamana.
Collapse
|
8
|
Helmbacher F. Tissue-specific activities of the Fat1 cadherin cooperate to control neuromuscular morphogenesis. PLoS Biol 2018; 16:e2004734. [PMID: 29768404 PMCID: PMC5973635 DOI: 10.1371/journal.pbio.2004734] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 05/29/2018] [Accepted: 04/13/2018] [Indexed: 12/12/2022] Open
Abstract
Muscle morphogenesis is tightly coupled with that of motor neurons (MNs). Both MNs and muscle progenitors simultaneously explore the surrounding tissues while exchanging reciprocal signals to tune their behaviors. We previously identified the Fat1 cadherin as a regulator of muscle morphogenesis and showed that it is required in the myogenic lineage to control the polarity of progenitor migration. To expand our knowledge on how Fat1 exerts its tissue-morphogenesis regulator activity, we dissected its functions by tissue-specific genetic ablation. An emblematic example of muscle under such morphogenetic control is the cutaneous maximus (CM) muscle, a flat subcutaneous muscle in which progenitor migration is physically separated from the process of myogenic differentiation but tightly associated with elongating axons of its partner MNs. Here, we show that constitutive Fat1 disruption interferes with expansion and differentiation of the CM muscle, with its motor innervation and with specification of its associated MN pool. Fat1 is expressed in muscle progenitors, in associated mesenchymal cells, and in MN subsets, including the CM-innervating pool. We identify mesenchyme-derived connective tissue (CT) as a cell type in which Fat1 activity is required for the non-cell-autonomous control of CM muscle progenitor spreading, myogenic differentiation, motor innervation, and for motor pool specification. In parallel, Fat1 is required in MNs to promote their axonal growth and specification, indirectly influencing muscle progenitor progression. These results illustrate how Fat1 coordinates the coupling of muscular and neuronal morphogenesis by playing distinct but complementary actions in several cell types.
Collapse
|
9
|
Abstract
To create an intricately patterned and reproducibly sized and shaped organ, many cellular processes must be tightly regulated. Cell elongation, migration, metabolism, proliferation rates, cell-cell adhesion, planar polarization and junctional contractions all must be coordinated in time and space. Remarkably, a pair of extremely large cell adhesion molecules called Fat (Ft) and Dachsous (Ds), acting largely as a ligand-receptor system, regulate, and likely coordinate, these many diverse processes. Here we describe recent exciting progress on how the Ds-Ft pathway controls these diverse processes, and highlight a few of the many questions remaining as to how these enormous cell adhesion molecules regulate development.
Collapse
Affiliation(s)
- Seth Blair
- Department of Integrative Biology, University of Wisconsin, Madison, USA
| | - Helen McNeill
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA; Department of Molecular Genetics, University of Toronto, Toronto, Canada; Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada.
| |
Collapse
|
10
|
Difference in Dachsous Levels between Migrating Cells Coordinates the Direction of Collective Cell Migration. Dev Cell 2017; 42:479-497.e10. [DOI: 10.1016/j.devcel.2017.08.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/19/2017] [Accepted: 07/31/2017] [Indexed: 12/21/2022]
|
11
|
Configuring a robust nervous system with Fat cadherins. Semin Cell Dev Biol 2017; 69:91-101. [PMID: 28603077 DOI: 10.1016/j.semcdb.2017.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/26/2017] [Accepted: 06/07/2017] [Indexed: 01/14/2023]
Abstract
Atypical Fat cadherins represent a small but versatile group of signaling molecules that influence proliferation and tissue polarity. With huge extracellular domains and intracellular domains harboring many independent protein interaction sites, Fat cadherins are poised to translate local cell adhesion events into a variety of cell behaviors. The need for such global coordination is particularly prominent in the nervous system, where millions of morphologically diverse neurons are organized into functional networks. As we learn more about their biological functions and molecular properties, increasing evidence suggests that Fat cadherins mediate contact-induced changes that ultimately impose a structure to developing neuronal circuits.
Collapse
|
12
|
Duhart JC, Parsons TT, Raftery LA. The repertoire of epithelial morphogenesis on display: Progressive elaboration of Drosophila egg structure. Mech Dev 2017; 148:18-39. [PMID: 28433748 DOI: 10.1016/j.mod.2017.04.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 04/07/2017] [Accepted: 04/12/2017] [Indexed: 12/26/2022]
Abstract
Epithelial structures are foundational for tissue organization in all metazoans. Sheets of epithelial cells form lateral adhesive junctions and acquire apico-basal polarity perpendicular to the surface of the sheet. Genetic analyses in the insect model, Drosophila melanogaster, have greatly advanced our understanding of how epithelial organization is established, and how it is modulated during tissue morphogenesis. Major insights into collective cell migrations have come from analyses of morphogenetic movements within the adult follicular epithelium that cooperates with female germ cells to build a mature egg. Epithelial follicle cells progress through tightly choreographed phases of proliferation, patterning, reorganization and migrations, before they differentiate to form the elaborate structures of the eggshell. Distinct structural domains are organized by differential adhesion, within which lateral junctions are remodeled to further shape the organized epithelia. During collective cell migrations, adhesive interactions mediate supracellular organization of planar polarized macromolecules, and facilitate crawling over the basement membrane or traction against adjacent cell surfaces. Comparative studies with other insects are revealing the diversification of morphogenetic movements for elaboration of epithelial structures. This review surveys the repertoire of follicle cell morphogenesis, to highlight the coordination of epithelial plasticity with progressive differentiation of a secretory epithelium. Technological advances will keep this tissue at the leading edge for interrogating the precise spatiotemporal regulation of normal epithelial reorganization events, and provide a framework for understanding pathological tissue dysplasia.
Collapse
Affiliation(s)
- Juan Carlos Duhart
- School of Life Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, NV 89154-4004, United States
| | - Travis T Parsons
- School of Life Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, NV 89154-4004, United States
| | - Laurel A Raftery
- School of Life Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, NV 89154-4004, United States.
| |
Collapse
|
13
|
Tissue growth and tumorigenesis in Drosophila: cell polarity and the Hippo pathway. Curr Opin Cell Biol 2017; 48:1-9. [PMID: 28364663 DOI: 10.1016/j.ceb.2017.03.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 03/07/2017] [Accepted: 03/10/2017] [Indexed: 12/17/2022]
Abstract
Cell polarity regulation is critical for defining membrane domains required for the establishment and maintenance of the apical-basal axis in epithelial cells (apico-basal polarity), asymmetric cell divisions, planar organization of tissues (planar cell polarity), and the formation of the front-rear axis in cell migration (front-rear polarity). In the vinegar fly, Drosophila melanogaster, cell polarity regulators also interact with the Hippo tissue growth control signaling pathway. In this review we survey the recent Drosophila literature linking cell polarity regulators with the Hippo pathway in epithelial tissue growth, neural stem cell asymmetric divisions and in cell migration in physiological and tumorigenic settings.
Collapse
|
14
|
Yeung K, Boija A, Karlsson E, Holmqvist PH, Tsatskis Y, Nisoli I, Yap D, Lorzadeh A, Moksa M, Hirst M, Aparicio S, Fanto M, Stenberg P, Mannervik M, McNeill H. Atrophin controls developmental signaling pathways via interactions with Trithorax-like. eLife 2017; 6:e23084. [PMID: 28327288 PMCID: PMC5409829 DOI: 10.7554/elife.23084] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 03/15/2017] [Indexed: 12/30/2022] Open
Abstract
Mutations in human Atrophin1, a transcriptional corepressor, cause dentatorubral-pallidoluysian atrophy, a neurodegenerative disease. Drosophila Atrophin (Atro) mutants display many phenotypes, including neurodegeneration, segmentation, patterning and planar polarity defects. Despite Atro's critical role in development and disease, relatively little is known about Atro's binding partners and downstream targets. We present the first genomic analysis of Atro using ChIP-seq against endogenous Atro. ChIP-seq identified 1300 potential direct targets of Atro including engrailed, and components of the Dpp and Notch signaling pathways. We show that Atro regulates Dpp and Notch signaling in larval imaginal discs, at least partially via regulation of thickveins and fringe. In addition, bioinformatics analyses, sequential ChIP and coimmunoprecipitation experiments reveal that Atro interacts with the Drosophila GAGA Factor, Trithorax-like (Trl), and they bind to the same loci simultaneously. Phenotypic analyses of Trl and Atro clones suggest that Atro is required to modulate the transcription activation by Trl in larval imaginal discs. Taken together, these data indicate that Atro is a major Trl cofactor that functions to moderate developmental gene transcription.
Collapse
Affiliation(s)
- Kelvin Yeung
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Ann Boija
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Edvin Karlsson
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Division of CBRN Security and Defence, FOI-Swedish Defence Research Agency, Umeå, Sweden
| | - Per-Henrik Holmqvist
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Yonit Tsatskis
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Ilaria Nisoli
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, United Kingdom
| | - Damian Yap
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Alireza Lorzadeh
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
- Michael Smith Laboratories, Vancouver, Canada
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, Canada
| | - Michelle Moksa
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
- Michael Smith Laboratories, Vancouver, Canada
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, Canada
| | - Martin Hirst
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
- Michael Smith Laboratories, Vancouver, Canada
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, Canada
| | - Samuel Aparicio
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Manolis Fanto
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, United Kingdom
| | - Per Stenberg
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Division of CBRN Security and Defence, FOI-Swedish Defence Research Agency, Umeå, Sweden
| | - Mattias Mannervik
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Helen McNeill
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| |
Collapse
|
15
|
Keira Y, Wada M, Ishikawa HO. Regulation of Drosophila Development by the Golgi Kinase Four-Jointed. Curr Top Dev Biol 2017; 123:143-179. [DOI: 10.1016/bs.ctdb.2016.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
16
|
Ambegaonkar AA, Irvine KD. Coordination of planar cell polarity pathways through Spiny-legs. eLife 2015; 4. [PMID: 26505959 PMCID: PMC4764577 DOI: 10.7554/elife.09946] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/23/2015] [Indexed: 12/11/2022] Open
Abstract
Morphogenesis and physiology of tissues and organs requires planar cell polarity (PCP) systems that orient and coordinate cells and their behaviors, but the relationship between PCP systems has been controversial. We have characterized how the Frizzled and Dachsous-Fat PCP systems are connected through the Spiny-legs isoform of the Prickle-Spiny-legs locus. Two different components of the Dachsous-Fat system, Dachsous and Dachs, can each independently interact with Spiny-legs and direct its localization in vivo. Through characterization of the contributions of Prickle, Spiny-legs, Dachsous, Fat, and Dachs to PCP in the Drosophila wing, eye, and abdomen, we define where Dachs-Spiny-legs and Dachsous-Spiny-legs interactions contribute to PCP, and provide a new understanding of the orientation of polarity and the basis of PCP phenotypes. Our results support the direct linkage of PCP systems through Sple in specific locales, while emphasizing that cells can be subject to and must ultimately resolve distinct, competing PCP signals. DOI:http://dx.doi.org/10.7554/eLife.09946.001 Animals have many asymmetric organs. Wings, for example, are aerodynamically shaped and have a clear front, back, top and bottom, and even additions to these organs, such as feathers on the wing, often need to be oriented in a specific manner. This kind of orientation arises when cells divide and grow asymmetrically in a flat plane. The asymmetry is established at the level of single cells when proteins are not equally spread throughout a cell, but rather asymmetrically distributed. Such cells are said to be ‘planar polarized’; and many experiments addressing this so-called planar cell polarity have been conducted in fruit flies, because they can be genetically altered easily. Previous studies have shown that two signaling pathways—called Frizzled and Dachsous-Fat—regulate how individual cells orient themselves within a flat sheet of cells that forms fruit fly’s wing. The two pathways are not independent, but it is unclear how they are linked. In particular, there has been conflicting evidence as to whether the Dachsous-Fat pathway controls the Frizzled pathway or whether the two act in parallel. Now, Ambegaonkar and Irvine have discovered new roles for a protein that is involved in both pathways, called 'Spiny-legs'. This protein was known to be important in the Frizzled pathway, but, when it was tracked with a fluorescent tag in developing wing cells it also accumulated in areas where two proteins that make up part of the Dachsous-Fat pathway were located. Biochemical experiments showed that both of these proteins (which are called Dachs or Dachsous) could physically interact with Spiny-legs. Ambegaonkar and Irvine therefore deleted the genes for Dachs or Dachsous in fruit flies and observed that Spiny-legs no longer organized itself in the proper way, implying that Dachs and Dachsous control where Spiny-legs goes within cells. When this analysis was extended to other fruit fly organs, such as the eyes, Ambegaonkar and Irvine found that Dachsous was more important than Dachs for the correct localization of Spiny-legs. Additionally, the Frizzled and Dachsous-Fat pathways seemed to compete for interactions with Spiny-legs. This connection between the two pathways helps to explain how cells behave when several different signals reach them. It also shows how different organs can reuse conserved components of the pathways to make different end products. Future studies should aim to work out the number of systems that polarize cells and how they are connected in different tissues. DOI:http://dx.doi.org/10.7554/eLife.09946.002
Collapse
Affiliation(s)
- Abhijit A Ambegaonkar
- Howard Hughes Medical Institute, Rutgers University, Piscataway, United States.,Waksman Institute of Microbiology, Rutgers University, Piscataway, United States.,Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, United States
| | - Kenneth D Irvine
- Howard Hughes Medical Institute, Rutgers University, Piscataway, United States.,Waksman Institute of Microbiology, Rutgers University, Piscataway, United States.,Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, United States
| |
Collapse
|
17
|
González-Morales N, Géminard C, Lebreton G, Cerezo D, Coutelis JB, Noselli S. The Atypical Cadherin Dachsous Controls Left-Right Asymmetry in Drosophila. Dev Cell 2015; 33:675-89. [PMID: 26073018 DOI: 10.1016/j.devcel.2015.04.026] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 02/04/2015] [Accepted: 04/28/2015] [Indexed: 12/18/2022]
Abstract
Left-right (LR) asymmetry is essential for organ development and function in metazoans, but how initial LR cue is relayed to tissues still remains unclear. Here, we propose a mechanism by which the Drosophila LR determinant Myosin ID (MyoID) transfers LR information to neighboring cells through the planar cell polarity (PCP) atypical cadherin Dachsous (Ds). Molecular interaction between MyoID and Ds in a specific LR organizer controls dextral cell polarity of adjoining hindgut progenitors and is required for organ looping in adults. Loss of Ds blocks hindgut tissue polarization and looping, indicating that Ds is a crucial factor for both LR cue transmission and asymmetric morphogenesis. We further show that the Ds/Fat and Frizzled PCP pathways are required for the spreading of LR asymmetry throughout the hindgut progenitor tissue. These results identify a direct functional coupling between the LR determinant MyoID and PCP, essential for non-autonomous propagation of early LR asymmetry.
Collapse
Affiliation(s)
- Nicanor González-Morales
- Institut de Biologie Valrose, University of Nice Sophia Antipolis, 06108 Nice, France; Institut de Biologie Valrose, CNRS, UMR 7277, 06108 Nice, France; Institut de Biologie Valrose, INSERM, U1091, 06108 Nice, France
| | - Charles Géminard
- Institut de Biologie Valrose, University of Nice Sophia Antipolis, 06108 Nice, France; Institut de Biologie Valrose, CNRS, UMR 7277, 06108 Nice, France; Institut de Biologie Valrose, INSERM, U1091, 06108 Nice, France
| | - Gaëlle Lebreton
- Institut de Biologie Valrose, University of Nice Sophia Antipolis, 06108 Nice, France; Institut de Biologie Valrose, CNRS, UMR 7277, 06108 Nice, France; Institut de Biologie Valrose, INSERM, U1091, 06108 Nice, France
| | - Delphine Cerezo
- Institut de Biologie Valrose, University of Nice Sophia Antipolis, 06108 Nice, France; Institut de Biologie Valrose, CNRS, UMR 7277, 06108 Nice, France; Institut de Biologie Valrose, INSERM, U1091, 06108 Nice, France
| | - Jean-Baptiste Coutelis
- Institut de Biologie Valrose, University of Nice Sophia Antipolis, 06108 Nice, France; Institut de Biologie Valrose, CNRS, UMR 7277, 06108 Nice, France; Institut de Biologie Valrose, INSERM, U1091, 06108 Nice, France
| | - Stéphane Noselli
- Institut de Biologie Valrose, University of Nice Sophia Antipolis, 06108 Nice, France; Institut de Biologie Valrose, CNRS, UMR 7277, 06108 Nice, France; Institut de Biologie Valrose, INSERM, U1091, 06108 Nice, France.
| |
Collapse
|
18
|
Spratford CM, Kumar JP. Extramacrochaetae functions in dorsal-ventral patterning of Drosophila imaginal discs. Development 2015; 142:1006-15. [PMID: 25715400 DOI: 10.1242/dev.120618] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
One of the seminal events in the history of a tissue is the establishment of the anterior-posterior, dorsal-ventral (D/V) and proximal-distal axes. Axis formation is important for the regional specification of a tissue and allows cells along the different axes to obtain directional and positional information. Within the Drosophila retina, D/V axis formation is essential to ensure that each unit eye first adopts the proper chiral form and then rotates precisely 90° in the correct direction. These two steps are important because the photoreceptor array must be correctly aligned with the neurons of the optic lobe. Defects in chirality and/or ommatidial rotation will lead to disorganization of the photoreceptor array, misalignment of retinal and optic lobe neurons, and loss of visual acuity. Loss of the helix-loop-helix protein Extramacrochaetae (Emc) leads to defects in both ommatidial chirality and rotation. Here, we describe a new role for emc in eye development in patterning the D/V axis. We show that the juxtaposition of dorsal and ventral fated tissue in the eye leads to an enrichment of emc expression at the D/V midline. emc expression at the midline can be eliminated when D/V patterning is disrupted and can be induced in situations in which ectopic boundaries are artificially generated. We also show that emc functions downstream of Notch signaling to maintain the expression of four-jointed along the midline.
Collapse
Affiliation(s)
- Carrie M Spratford
- Department of Biology, Indiana University, Bloomington, IN 47405, USA Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Justin P Kumar
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
19
|
Galic M, Matis M. Polarized trafficking provides spatial cues for planar cell polarization within a tissue. Bioessays 2015; 37:678-86. [PMID: 25845311 DOI: 10.1002/bies.201400196] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Planar cell polarity, the polarization of cells within the plane of the epithelium, orthogonal to the apical-basal axis, is essential for a growing list of developmental events, and - over the last 15 years - has evolved from a little-studied curiosity in Drosophila to the subject of a substantial research enterprise. In that time, it has been recognized that two molecular systems are responsible for polarization of most tissues: Both the "core" Frizzled system and the "global" Fat/Dachsous/Four-jointed system produce molecular asymmetry within cells, and contribute to morphological polarization. In this review, we discuss recent findings on the molecular mechanism that links "global" directional signals with local coordinated polarity.
Collapse
Affiliation(s)
- Milos Galic
- Cells-In-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Germany.,Institute of Medical Physics and Biophysics, University of Münster, Germany
| | - Maja Matis
- Cells-In-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Germany.,Institute of Cell Biology, ZMBE, University of Münster, Germany
| |
Collapse
|
20
|
Le Pabic P, Ng C, Schilling TF. Fat-Dachsous signaling coordinates cartilage differentiation and polarity during craniofacial development. PLoS Genet 2014; 10:e1004726. [PMID: 25340762 PMCID: PMC4207671 DOI: 10.1371/journal.pgen.1004726] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 09/02/2014] [Indexed: 11/19/2022] Open
Abstract
Organogenesis requires coordinated regulation of cellular differentiation and morphogenesis. Cartilage cells in the vertebrate skeleton form polarized stacks, which drive the elongation and shaping of skeletal primordia. Here we show that an atypical cadherin, Fat3, and its partner Dachsous-2 (Dchs2), control polarized cell-cell intercalation of cartilage precursors during craniofacial development. In zebrafish embryos deficient in Fat3 or Dchs2, chondrocytes fail to stack and misregulate expression of sox9a. Similar morphogenetic defects occur in rerea/atr2a−/− mutants, and Fat3 binds REREa, consistent with a model in which Fat3, Dchs2 and REREa interact to control polarized cell-cell intercalation and simultaneously control differentiation through Sox9. Chimaeric analyses support such a model, and reveal long-range influences of all three factors, consistent with the activation of a secondary signal that regulates polarized cell-cell intercalation. This coordinates the spatial and temporal morphogenesis of chondrocytes to shape skeletal primordia and defects in these processes underlie human skeletal malformations. Similar links between cell polarity and differentiation mechanisms are also likely to control organ formation in other contexts. Little is known about the mechanisms of cell-cell communication necessary to assemble skeletal elements of appropriate size and shape. In this study, we investigate the roles of genetic factors belonging to a developmental pathway that affects skeletal progenitor behavior: the atypical cadherins Fat3 and Dachsous2 (Dchs2), and REREa/Atr2a. We show that cartilage precursors fail to rearrange into linear stacks and at the same time misregulate expression of sox9a, a key regulator of cartilage differentiation, in zebrafish embryos deficient in Fat3 or its partner Dchs2. Similar cartilage defects are observed in rerea−/− mutants, and Fat3 interacts physically and genetically with REREa. Our results suggest that Fat3, Dchs2 and REREa interact to control polarized cell-cell intercalation and simultaneously control skeletal differentiation through Sox9. By transplanting cartilage precursors between wild-type and Fat3, Dchs2 or REREa deficient embryos we demonstrate that all three factors exert long-range influences on neighboring cells, most likely mediated by another polarizing signal. We propose a model in which this coordinates the polarity and differentiation of chondrocytes to shape skeletal primordia, and that defects in these processes underlie human skeletal malformations.
Collapse
Affiliation(s)
- Pierre Le Pabic
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California, United States of America
| | - Carrie Ng
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California, United States of America
| | - Thomas F. Schilling
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
21
|
Abstract
Planar cell polarity (PCP) in epithelia, orthogonal to the apical-basal axis, is essential for numerous developmental events and physiological functions. Drosophila model systems have been at the forefront of studies revealing insights into mechanisms regulating PCP and have revealed distinct signaling modules. One of these, involving the atypical cadherins Fat and Dachsous and the ectokinase Four-jointed, appears to link the direction of cell polarization to the tissue axes. We discuss models for the function of this signaling module as well as several unanswered questions that may guide future investigations.
Collapse
Affiliation(s)
- Maja Matis
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | |
Collapse
|
22
|
Abstract
The Hippo pathway is a kinase cascade, formed by Hippo, Salvador, Warts, and Mats, that regulates the subcellular distribution and transcriptional activity of Yorkie. Yorkie is a transcriptional coactivator that promotes the expression of genes that inhibit apoptosis and drive cell proliferation. We review recent studies indicating that activity of the Hippo pathway is controlled by cell-cell junctions, cell adhesion molecules, scaffolding proteins, and cytoskeletal proteins, as well as by regulators of apical-basal polarity and extracellular tension.
Collapse
Affiliation(s)
- Leonie Enderle
- 1Biozentrum, University of Basel, 4056 Basel, Switzerland
| | | |
Collapse
|