1
|
Takada S, Bolkan BJ, O’Connor M, Goldberg M, O’Connor MB. Drosophila Trus, the orthologue of mammalian PDCD2L, is required for proper cell proliferation, larval developmental timing, and oogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.24.620039. [PMID: 39484569 PMCID: PMC11527112 DOI: 10.1101/2024.10.24.620039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Toys are us (Trus) is the Drosophila melanogaster ortholog of mammalian Programmed Cell Death 2-Like (PDCD2L), a protein that has been implicated in ribosome biogenesis, cell cycle regulation, and oncogenesis. In this study, we examined the function of Trus during Drosophila development. CRISPR/Cas9 generated null mutations in trus lead to partial embryonic lethality, significant larval developmental delay, and complete pre-pupal lethality. In mutant larvae, we found decreased cell proliferation and growth defects in the brain and imaginal discs. Mapping relevant tissues for Trus function using trus RNAi and trus mutant rescue experiments revealed that imaginal disc defects are primarily responsible for the developmental delay, while the pre-pupal lethality is likely associated with faulty central nervous system (CNS) development. Examination of the molecular mechanism behind the developmental delay phenotype revealed that trus mutations induce the Xrp1-Dilp8 ribosomal stress-response in growth-impaired imaginal discs, and this signaling pathway attenuates production of the hormone ecdysone in the prothoracic gland. Additional Tap-tagging and mass spectrometry of components in Trus complexes isolated from Drosophila Kc cells identified Ribosomal protein subunit 2 (RpS2), which is coded by string of pearls (sop) in Drosophila, and Eukaryotic translation elongation factor 1 alpha 1 (eEF1α1) as interacting factors. We discuss the implication of these findings with respect to the similarity and differences in trus genetic null mutant phenotypes compared to the haplo-insufficiency phenotypes produced by heterozygosity for mutants in Minute genes and other genes involved in ribosome biogenesis.
Collapse
Affiliation(s)
- Saeko Takada
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
| | - Bonnie J. Bolkan
- Department of Biology, Pacific University Oregon, Forest Grove, OR 97116
| | - MaryJane O’Connor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455
| | - Michael Goldberg
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Michael B. O’Connor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
2
|
Islam KN, Ajao A, Venkataramani K, Rivera J, Pathania S, Henke K, Siegfried KR. The RNA-binding protein Adad1 is necessary for germ cell maintenance and meiosis in zebrafish. PLoS Genet 2023; 19:e1010589. [PMID: 37552671 PMCID: PMC10437952 DOI: 10.1371/journal.pgen.1010589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 08/18/2023] [Accepted: 07/06/2023] [Indexed: 08/10/2023] Open
Abstract
The double stranded RNA binding protein Adad1 (adenosine deaminase domain containing 1) is a member of the adenosine deaminase acting on RNAs (Adar) protein family with germ cell-specific expression. In mice, Adad1 is necessary for sperm differentiation, however its function outside of mammals has not been investigated. Here, through an N-ethyl-N-nitrosourea (ENU) based forward genetic screen, we identified an adad1 mutant zebrafish line that develops as sterile males. Further histological examination revealed complete lack of germ cells in adult mutant fish, however germ cells populated the gonad, proliferated, and entered meiosis in larval and juvenile fish. Although meiosis was initiated in adad1 mutant testes, the spermatocytes failed to progress beyond the zygotene stage. Thus, Adad1 is essential for meiosis and germline maintenance in zebrafish. We tested if spermatogonial stem cells were affected using nanos2 RNA FISH and a label retaining cell (LRC) assay, and found that the mutant testes had fewer LRCs and nanos2-expressing cells compared to wild-type siblings, suggesting that failure to maintain the spermatogonial stem cells resulted in germ cell loss by adulthood. To identify potential molecular processes regulated by Adad1, we sequenced bulk mRNA from mutants and wild-type testes and found mis-regulation of genes involved in RNA stability and modification, pointing to a potential broader role in post-transcriptional regulation. Our findings suggest that the RNA regulatory protein Adad1 is required for fertility through regulation of spermatogonial stem cell maintenance in zebrafish.
Collapse
Affiliation(s)
- Kazi Nazrul Islam
- Biology Department, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - Anuoluwapo Ajao
- Biology Department, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - Kavita Venkataramani
- Biology Department, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - Joshua Rivera
- Biology Department, University of Massachusetts Boston, Boston, Massachusetts, United States of America
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - Shailja Pathania
- Biology Department, University of Massachusetts Boston, Boston, Massachusetts, United States of America
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - Katrin Henke
- Department of Orthopaedics, Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Kellee Renee Siegfried
- Biology Department, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| |
Collapse
|
3
|
Landry-Voyer AM, Mir Hassani Z, Avino M, Bachand F. Ribosomal Protein uS5 and Friends: Protein-Protein Interactions Involved in Ribosome Assembly and Beyond. Biomolecules 2023; 13:biom13050853. [PMID: 37238722 DOI: 10.3390/biom13050853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Ribosomal proteins are fundamental components of the ribosomes in all living cells. The ribosomal protein uS5 (Rps2) is a stable component of the small ribosomal subunit within all three domains of life. In addition to its interactions with proximal ribosomal proteins and rRNA inside the ribosome, uS5 has a surprisingly complex network of evolutionarily conserved non-ribosome-associated proteins. In this review, we focus on a set of four conserved uS5-associated proteins: the protein arginine methyltransferase 3 (PRMT3), the programmed cell death 2 (PDCD2) and its PDCD2-like (PDCD2L) paralog, and the zinc finger protein, ZNF277. We discuss recent work that presents PDCD2 and homologs as a dedicated uS5 chaperone and PDCD2L as a potential adaptor protein for the nuclear export of pre-40S subunits. Although the functional significance of the PRMT3-uS5 and ZNF277-uS5 interactions remain elusive, we reflect on the potential roles of uS5 arginine methylation by PRMT3 and on data indicating that ZNF277 and PRMT3 compete for uS5 binding. Together, these discussions highlight the complex and conserved regulatory network responsible for monitoring the availability and the folding of uS5 for the formation of 40S ribosomal subunits and/or the role of uS5 in potential extra-ribosomal functions.
Collapse
Affiliation(s)
- Anne-Marie Landry-Voyer
- Dept of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Zabih Mir Hassani
- Dept of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Mariano Avino
- Dept of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - François Bachand
- Dept of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| |
Collapse
|
4
|
Chattopadhyay T, Biswal P, Lalruatfela A, Mallick B. Emerging roles of PIWI-interacting RNAs (piRNAs) and PIWI proteins in head and neck cancer and their potential clinical implications. Biochim Biophys Acta Rev Cancer 2022; 1877:188772. [PMID: 35931391 DOI: 10.1016/j.bbcan.2022.188772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 02/08/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) are among the well-known neoplasms originating in the oral cavity, pharynx, and larynx. Despite advancements in chemotherapy, radiotherapy, and surgery, the survival rates of the patients are low, which has posed a major therapeutic challenge. A growing number of non-coding RNAs (ncRNAs), for instance, microRNAs, have been identified whose abnormal expression patterns have been implicated in HNSCC. However, more recently, several seminal research has shown that piwi-interacting RNAs (piRNAs), a promising and young class of small ncRNA, are linked to the emergence and progression of cancer. They can regulate transposable elements (TE) and gene expression through multiple mechanisms, making them potentially more powerful regulators than miRNAs. Hence, they can be more promising ncRNAs candidates for cancer therapeutic intervention. Here, we surveyed the roles and clinical implications of piRNAs and their PIWI proteins partners in tumorigenesis and associated molecular processes of cancer, with a particular focus on HNSCC, to offer a new avenue for diagnosis, prognosis, and therapeutic interventions for the malignancy, improving patient's outcomes.
Collapse
Affiliation(s)
- Trisha Chattopadhyay
- RNAi and Functional Genomics Lab., Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Priyajit Biswal
- RNAi and Functional Genomics Lab., Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Anthony Lalruatfela
- RNAi and Functional Genomics Lab., Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Bibekanand Mallick
- RNAi and Functional Genomics Lab., Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India.
| |
Collapse
|
5
|
Deng Z, Zhang Y, Li L, Xie X, Huang J, Zhang M, Ni X, Li X. A dual-luciferase reporter system for characterization of small RNA target genes in both mammalian and insect cells. INSECT SCIENCE 2022; 29:631-644. [PMID: 34232550 DOI: 10.1111/1744-7917.12945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/04/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
MicroRNAs (miRNAs) are regulatory RNA molecules that bind to target messenger RNAs (mRNAs) and affect the stability or translational efficiency of the bound mRNAs. Single or dual-luciferase reporter systems have been successfully used to identify miRNA target genes in mammalian cells. These reporter systems, however, are not sensitive enough to verify miRNA-target gene relationships in insect cell lines because the promoters of the target luciferase (usually Renilla) used in these reporter systems are too weak to drive sufficient expression of the target luciferase in insect cells. In this study, we replaced the SV40 promoter in the psiCHECK-2 reporter vector, which is widely used with mammalian cell lines, with the HSV-TK or AC5.1 promoter to yield two new dual-luciferase reporter vectors, designated psiCHECK-2-TK and psiCHECK-2-AC5.1, respectively. Only psiCHECK-2 and psiCHECK-2-AC5.1 had suitable target (Renilla)/reference (firefly) luciferase activity ratios in mammalian (HeLa and HEK293) and insect (Sf9, S2, Helicoverpa zea fat body and ovary) cell lines, while psiCHECK-2-TK had suitable Renilla/firefly luciferase activity ratios regardless of the cell line. Moreover, psiCHECK-2-TK successfully detected the interaction between Helicoverpa armigera miRNA9a and its target, the 3'-untranslated region of heat shock protein 90, in both mammalian and H. zea cell lines, but psiCHECK-2 failed to do so in H. zea cell lines. Furthermore, psiCHECK-2-TK with the target sequence, HzMasc (H. zea Masculinizer), accurately differentiated between H. zea cell lines with or without the negative regulation factor (miRNA or piRNA) of HzMasc. These data demonstrate that psiCHECK-2-TK can be used to functionally characterize small RNA target genes in both mammalian and insect cells.
Collapse
Affiliation(s)
- Zhongyuan Deng
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yuting Zhang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Leyao Li
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Xingcheng Xie
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jinyong Huang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Min Zhang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Xinzhi Ni
- USDA-ARS, Crop Genetics and Breeding Research Unit, University of Georgia-Tifton Campus, Tifton, Georgia, USA
| | - Xianchun Li
- Department of Entomology and BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
6
|
Namba Y, Iwasaki YW, Nishida KM, Nishihara H, Sumiyoshi T, Siomi MC. Maelstrom functions in the production of Siwi-piRISC capable of regulating transposons in Bombyx germ cells. iScience 2022; 25:103914. [PMID: 35243263 PMCID: PMC8881725 DOI: 10.1016/j.isci.2022.103914] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 12/27/2021] [Accepted: 02/08/2022] [Indexed: 11/17/2022] Open
Affiliation(s)
- Yurika Namba
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
| | - Yuka W. Iwasaki
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology, Saitama 332-0012, Japan
| | - Kazumichi M. Nishida
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
| | - Hidenori Nishihara
- School of Life Science and Technology, Tokyo Institute of Technology, Kanagawa 226-8501, Japan
| | - Tetsutaro Sumiyoshi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
| | - Mikiko C. Siomi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
- Corresponding author
| |
Collapse
|
7
|
Specchia V, Bozzetti MP. The Role of HSP90 in Preserving the Integrity of Genomes Against Transposons Is Evolutionarily Conserved. Cells 2021; 10:cells10051096. [PMID: 34064379 PMCID: PMC8147803 DOI: 10.3390/cells10051096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/31/2022] Open
Abstract
The HSP90 protein is a molecular chaperone intensively studied for its role in numerous cellular processes both under physiological and stress conditions. This protein acts on a wide range of substrates with a well-established role in cancer and neurological disorders. In this review, we focused on the involvement of HSP90 in the silencing of transposable elements and in the genomic integrity maintenance. The common feature of transposable elements is the potential jumping in new genomic positions, causing chromosome structure rearrangements, gene mutations, and influencing gene expression levels. The role of HSP90 in the control of these elements is evolutionarily conserved and opens new perspectives in the HSP90-related mechanisms underlying human disorders. Here, we discuss the hypothesis that its role in the piRNA pathway regulating transposons may be implicated in the onset of neurological diseases.
Collapse
|
8
|
Abbas MN, Liang H, Kausar S, Dong Z, Cui H. Zinc finger protein RP-8, the Bombyx mori ortholog of programmed cell death 2, regulates cell proliferation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 104:103542. [PMID: 31730828 DOI: 10.1016/j.dci.2019.103542] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/11/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
Programmed cell death 2 (PDCD2) is a highly conserved eukaryotic protein indispensable for various physiological processes such as cell proliferation, development, and apoptosis. In the present study, we identified a Zinc finger protein RP-8 from the silkworm, Bombyx mori (BmZfrp8), the ortholog of PDCD2 protein. The quantitative real-time PCR analysis revealed the ubiquitous distribution of BmZfrp8 in the different tissues; however, the gene's transcription level was highest in those of the silk gland, testis, and ovary. Additionally, the expression levels of BmZfrp8 were unequal on different days of embryonic development, and it reached the highest level on the 5th day of early development. The challenge with pathogens influenced the expression level of BmZfrp8 in both hemocyte and fat body when compared with the control. Administration of 20-hydroxyecdysone significantly enhanced the BmZfrp8 expression in hemocyte. The knock-down of BmZfrp8 by double-stranded RNA suppressed the expression of developmental pathway associated genes as well as cell cycle-associated genes. Furthermore, the RNAi treated cells also showed cell cycle arrest compared to the control group. Taken together, BmZfrp8 may have a critical biological role in of B. mori, since it regulates the expression of the developmental pathway and cell cycle-associated genes.
Collapse
Affiliation(s)
- Muhammad Nadeem Abbas
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, China; Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing, 400715, China.
| | - Hanghua Liang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, China; Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing, 400715, China.
| | - Saima Kausar
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, China; Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing, 400715, China.
| | - Zhen Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, China; Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing, 400715, China.
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, China; Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing, 400715, China.
| |
Collapse
|
9
|
Tsr4 Is a Cytoplasmic Chaperone for the Ribosomal Protein Rps2 in Saccharomyces cerevisiae. Mol Cell Biol 2019; 39:MCB.00094-19. [PMID: 31182640 DOI: 10.1128/mcb.00094-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 06/03/2019] [Indexed: 01/31/2023] Open
Abstract
Eukaryotic ribosome biogenesis requires the action of approximately 200 trans-acting factors and the incorporation of 79 ribosomal proteins (RPs). The delivery of RPs to preribosomes is a major challenge for the cell because RPs are often highly basic and contain intrinsically disordered regions prone to nonspecific interactions and aggregation. To counteract this, eukaryotes developed dedicated chaperones for certain RPs that promote their solubility and expression, often by binding eukaryote-specific extensions of the RPs. Rps2 (uS5) is a universally conserved RP that assembles into nuclear pre-40S subunits. However, a chaperone for Rps2 had not been identified. Our laboratory previously characterized Tsr4 as a 40S biogenesis factor of unknown function. Here, we report that Tsr4 cotranslationally associates with Rps2. Rps2 harbors a eukaryote-specific N-terminal extension that is critical for its interaction with Tsr4. Moreover, Tsr4 perturbation resulted in decreased Rps2 levels and phenocopied Rps2 depletion. Despite Rps2 joining nuclear pre-40S particles, Tsr4 appears to be restricted to the cytoplasm. Thus, we conclude that Tsr4 is a cytoplasmic chaperone dedicated to Rps2.
Collapse
|
10
|
Yu J, Yan Y, Luan X, Qiao C, Liu Y, Zhao D, Xie B, Zheng Q, Wang M, Chen W, Shen C, He Z, Hu X, Huang X, Li H, Shao Q, Chen X, Zheng B, Fang J. Srlp is crucial for the self-renewal and differentiation of germline stem cells via RpL6 signals in Drosophila testes. Cell Death Dis 2019; 10:294. [PMID: 30931935 PMCID: PMC6443671 DOI: 10.1038/s41419-019-1527-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 03/11/2019] [Accepted: 03/14/2019] [Indexed: 12/22/2022]
Abstract
Self-renewal and differentiation in germline stem cells (GSCs) are tightly regulated by the stem cell niche and via multiple approaches. In our previous study, we screened the novel GSC regulatory gene Srlp in Drosophila testes. However, the underlying mechanistic links between Srlp and the stem cell niche remain largely undetermined. Here, using genetic manipulation of the Drosophila model, we systematically analyze the function and mechanism of Srlp in vivo and in vitro. In Drosophila, Srlp is an essential gene that regulates the self-renewal and differentiation of GSCs in the testis. In the in vitro assay, Srlp is found to control the proliferation ability and cell death in S2 cells, which is consistent with the phenotype observed in Drosophila testis. Furthermore, results of the liquid chromatography-tandem mass spectrometry (LC-MS/MS) reveal that RpL6 binds to Srlp. Srlp also regulates the expression of spliceosome and ribosome subunits and controls spliceosome and ribosome function via RpL6 signals. Collectively, our findings uncover the genetic causes and molecular mechanisms underlying the stem cell niche. This study provides new insights for elucidating the pathogenic mechanism of male sterility and the formation of testicular germ cell tumor.
Collapse
Affiliation(s)
- Jun Yu
- Department of Gynecology, The Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang Jiangsu, 212001, China.,Reproductive Sciences Institute of Jiangsu University, Zhenjiang Jiangsu, 212001, China
| | - Yidan Yan
- Department of Gynecology, The Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang Jiangsu, 212001, China.,Reproductive Sciences Institute of Jiangsu University, Zhenjiang Jiangsu, 212001, China
| | - Xiaojin Luan
- Department of Gynecology, The Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang Jiangsu, 212001, China.,Reproductive Sciences Institute of Jiangsu University, Zhenjiang Jiangsu, 212001, China
| | - Chen Qiao
- Department of Clinical Pharmacy, the Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang Jiangsu, 212001, China
| | - Yuanyuan Liu
- Center for Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Jiangsu, 215002, China
| | - Dan Zhao
- Reproductive Sciences Institute of Jiangsu University, Zhenjiang Jiangsu, 212001, China.,Center for Reproduction, The Fourth People's Hospital of Zhenjiang, Zhenjiang Jiangsu, 212013, China
| | - Bing Xie
- Department of Gynecology, The Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang Jiangsu, 212001, China
| | - Qianwen Zheng
- Department of Gynecology, The Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang Jiangsu, 212001, China.,Reproductive Sciences Institute of Jiangsu University, Zhenjiang Jiangsu, 212001, China
| | - Min Wang
- Department of Gynecology, The Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang Jiangsu, 212001, China
| | - Wanyin Chen
- Department of Gynecology, The Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang Jiangsu, 212001, China
| | - Cong Shen
- Center for Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Jiangsu, 215002, China
| | - Zeyu He
- Department of Clinical Medicine, China Medical University, Shenyang Liaoning, 110001, China
| | - Xing Hu
- Department of Gynecology, The Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang Jiangsu, 212001, China
| | - Xiaoyan Huang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing Jiangsu, 211166, China
| | - Hong Li
- Center for Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Jiangsu, 215002, China
| | - Qixiang Shao
- Reproductive Sciences Institute of Jiangsu University, Zhenjiang Jiangsu, 212001, China.,Department of Immunology and Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang Jiangsu, 212013, China
| | - Xia Chen
- Department of Gynecology, The Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang Jiangsu, 212001, China. .,Reproductive Sciences Institute of Jiangsu University, Zhenjiang Jiangsu, 212001, China.
| | - Bo Zheng
- Center for Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Jiangsu, 215002, China.
| | - Jie Fang
- Department of Gynecology, The Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang Jiangsu, 212001, China.
| |
Collapse
|
11
|
Specchia V, Puricella A, D'Attis S, Massari S, Giangrande A, Bozzetti MP. Drosophila melanogaster as a Model to Study the Multiple Phenotypes, Related to Genome Stability of the Fragile-X Syndrome. Front Genet 2019; 10:10. [PMID: 30815010 PMCID: PMC6381874 DOI: 10.3389/fgene.2019.00010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/11/2019] [Indexed: 12/14/2022] Open
Abstract
Fragile-X syndrome is one of the most common forms of inherited mental retardation and autistic behaviors. The reduction/absence of the functional FMRP protein, coded by the X-linked Fmr1 gene in humans, is responsible for the syndrome. Patients exhibit a variety of symptoms predominantly linked to the function of FMRP protein in the nervous system like autistic behavior and mild-to-severe intellectual disability. Fragile-X (FraX) individuals also display cellular and morphological traits including branched dendritic spines, large ears, and macroorchidism. The dFmr1 gene is the Drosophila ortholog of the human Fmr1 gene. dFmr1 mutant flies exhibit synaptic abnormalities, behavioral defects as well as an altered germline development, resembling the phenotypes observed in FraX patients. Therefore, Drosophila melanogaster is considered a good model to study the physiopathological mechanisms underlying the Fragile-X syndrome. In this review, we explore how the multifaceted roles of the FMRP protein have been addressed in the Drosophila model and how the gained knowledge may open novel perspectives for understanding the molecular defects causing the disease and for identifying novel therapeutical targets.
Collapse
Affiliation(s)
- Valeria Specchia
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, DiSTeBA, Università del Salento, Lecce, Italy
| | - Antonietta Puricella
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, DiSTeBA, Università del Salento, Lecce, Italy
| | - Simona D'Attis
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, DiSTeBA, Università del Salento, Lecce, Italy
| | - Serafina Massari
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, DiSTeBA, Università del Salento, Lecce, Italy
| | - Angela Giangrande
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Maria Pia Bozzetti
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, DiSTeBA, Università del Salento, Lecce, Italy
| |
Collapse
|
12
|
Ghartey-Kwansah G, Li Z, Feng R, Wang L, Zhou X, Chen FZ, Xu MM, Jones O, Mu Y, Chen S, Bryant J, Isaacs WB, Ma J, Xu X. Comparative analysis of FKBP family protein: evaluation, structure, and function in mammals and Drosophila melanogaster. BMC DEVELOPMENTAL BIOLOGY 2018; 18:7. [PMID: 29587629 PMCID: PMC5870485 DOI: 10.1186/s12861-018-0167-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 03/12/2018] [Indexed: 12/19/2022]
Abstract
Background FK506-binding proteins (FKBPs) have become the subject of considerable interest in several fields, leading to the identification of several cellular and molecular pathways in which FKBPs impact prenatal development and pathogenesis of many human diseases. Main body This analysis revealed differences between how mammalian and Drosophila FKBPs mechanisms function in relation to the immunosuppressant drugs, FK506 and rapamycin. Differences that could be used to design insect-specific pesticides. (1) Molecular phylogenetic analysis of FKBP family proteins revealed that the eight known Drosophila FKBPs share homology with the human FKBP12. This indicates a close evolutionary relationship, and possible origination from a common ancestor. (2) The known FKBPs contain FK domains, that is, a prolyl cis/trans isomerase (PPIase) domain that mediates immune suppression through inhibition of calcineurin. The dFKBP59, CG4735/Shutdown, CG1847, and CG5482 have a Tetratricopeptide receptor domain at the C-terminus, which regulates transcription and protein transportation. (3) FKBP51 and FKBP52 (dFKBP59), along with Cyclophilin 40 and protein phosphatase 5, function as Hsp90 immunophilin co-chaperones within steroid receptor-Hsp90 heterocomplexes. These immunophilins are potential drug targets in pathways associated with normal physiology and may be used to treat a variety of steroid-based diseases by targeting exocytic/endocytic cycling and vesicular trafficking. (4) By associating with presinilin, a critical component of the Notch signaling pathway, FKBP14 is a downstream effector of Notch activation at the membrane. Meanwhile, Shutdown associates with transposons in the PIWI-interacting RNA pathway, playing a crucial role in both germ cells and ovarian somas. Mutations in or silencing of dFKBPs lead to early embryonic lethality in Drosophila. Therefore, further understanding the mechanisms of FK506 and rapamycin binding to immunophilin FKBPs in endocrine, cardiovascular, and neurological function in both mammals and Drosophila would provide prospects in generating unique, insect specific therapeutics targeting the above cellular signaling pathways. Conclusion This review will evaluate the functional roles of FKBP family proteins, and systematically summarize the similarities and differences between FKBP proteins in Drosophila and Mammals. Specific therapeutics targeting cellular signaling pathways will also be discussed.
Collapse
Affiliation(s)
- George Ghartey-Kwansah
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Xi'an, 710062, China.,Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi'an, 710062, China
| | - Zhongguang Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Xi'an, 710062, China.,Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi'an, 710062, China
| | - Rui Feng
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Xi'an, 710062, China.,Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi'an, 710062, China
| | - Liyang Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Xi'an, 710062, China.,Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi'an, 710062, China
| | - Xin Zhou
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Xi'an, 710062, China.,Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi'an, 710062, China.,Ohio State University College of Medicine, Columbus, OH, USA
| | | | - Meng Meng Xu
- Department of Pharmacology, Duke University Medical Center, Durham, NC, USA
| | - Odell Jones
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - Yulian Mu
- State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | - Joseph Bryant
- University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Jianjie Ma
- Ohio State University College of Medicine, Columbus, OH, USA
| | - Xuehong Xu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Xi'an, 710062, China. .,Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi'an, 710062, China.
| |
Collapse
|
13
|
Specchia V, D'Attis S, Puricella A, Bozzetti MP. dFmr1 Plays Roles in Small RNA Pathways of Drosophila melanogaster. Int J Mol Sci 2017; 18:ijms18051066. [PMID: 28509881 PMCID: PMC5454977 DOI: 10.3390/ijms18051066] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 11/16/2022] Open
Abstract
Fragile-X syndrome is the most common form of inherited mental retardation accompanied by other phenotypes, including macroorchidism. The disorder originates with mutations in the Fmr1 gene coding for the FMRP protein, which, with its paralogs FXR1 and FXR2, constitute a well-conserved family of RNA-binding proteins. Drosophila melanogaster is a good model for the syndrome because it has a unique fragile X-related gene: dFmr1. Recently, in addition to its confirmed role in the miRNA pathway, a function for dFmr1 in the piRNA pathway, operating in Drosophila gonads, has been established. In this review we report a summary of the piRNA pathways occurring in gonads with a special emphasis on the relationship between the piRNA genes and the crystal-Stellate system; we also analyze the roles of dFmr1 in the Drosophila gonads, exploring their genetic and biochemical interactions to reveal some unexpected connections.
Collapse
Affiliation(s)
- Valeria Specchia
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA)-University of Salento, 73100 Lecce, Italy.
| | - Simona D'Attis
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA)-University of Salento, 73100 Lecce, Italy.
| | - Antonietta Puricella
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA)-University of Salento, 73100 Lecce, Italy.
| | - Maria Pia Bozzetti
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA)-University of Salento, 73100 Lecce, Italy.
| |
Collapse
|
14
|
Bunkar N, Pathak N, Lohiya NK, Mishra PK. Epigenetics: A key paradigm in reproductive health. Clin Exp Reprod Med 2016; 43:59-81. [PMID: 27358824 PMCID: PMC4925870 DOI: 10.5653/cerm.2016.43.2.59] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 02/06/2016] [Accepted: 03/16/2016] [Indexed: 12/17/2022] Open
Abstract
It is well established that there is a heritable element of susceptibility to chronic human ailments, yet there is compelling evidence that some components of such heritability are transmitted through non-genetic factors. Due to the complexity of reproductive processes, identifying the inheritance patterns of these factors is not easy. But little doubt exists that besides the genomic backbone, a range of epigenetic cues affect our genetic programme. The inter-generational transmission of epigenetic marks is believed to operate via four principal means that dramatically differ in their information content: DNA methylation, histone modifications, microRNAs and nucleosome positioning. These epigenetic signatures influence the cellular machinery through positive and negative feedback mechanisms either alone or interactively. Understanding how these mechanisms work to activate or deactivate parts of our genetic programme not only on a day-to-day basis but also over generations is an important area of reproductive health research.
Collapse
Affiliation(s)
- Neha Bunkar
- Translational Research Laboratory, School of Biological Sciences, Dr. Hari Singh Central University, Sagar, India
| | - Neelam Pathak
- Translational Research Laboratory, School of Biological Sciences, Dr. Hari Singh Central University, Sagar, India
- Reproductive Physiology Laboratory, Centre for Advanced Studies, University of Rajasthan, Jaipur, India
| | - Nirmal Kumar Lohiya
- Reproductive Physiology Laboratory, Centre for Advanced Studies, University of Rajasthan, Jaipur, India
| | - Pradyumna Kumar Mishra
- Translational Research Laboratory, School of Biological Sciences, Dr. Hari Singh Central University, Sagar, India
- Department of Molecular Biology, National Institute for Research in Environmental Health (ICMR), Bhopal, India
| |
Collapse
|
15
|
Minakhina S, Naryshkina T, Changela N, Tan W, Steward R. Zfrp8/PDCD2 Interacts with RpS2 Connecting Ribosome Maturation and Gene-Specific Translation. PLoS One 2016; 11:e0147631. [PMID: 26807849 PMCID: PMC4726551 DOI: 10.1371/journal.pone.0147631] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 11/25/2015] [Indexed: 11/28/2022] Open
Abstract
Zfrp8/PDCD2 is a highly conserved protein essential for stem cell maintenance in both flies and mammals. It is also required in fast proliferating cells such as cancer cells. Our previous studies suggested that Zfrp8 functions in the formation of mRNP (mRNA ribonucleoprotein) complexes and also controls RNA of select Transposable Elements (TEs). Here we show that in Zfrp8/PDCD2 knock down (KD) ovaries, specific mRNAs and TE transcripts show increased nuclear accumulation. We also show that Zfrp8/PDCD2 interacts with the (40S) small ribosomal subunit through direct interaction with RpS2 (uS5). By studying the distribution of endogenous and transgenic fluorescently tagged ribosomal proteins we demonstrate that Zfrp8/PDCD2 regulates the cytoplasmic levels of components of the small (40S) ribosomal subunit, but does not control nuclear/nucleolar localization of ribosomal proteins. Our results suggest that Zfrp8/PDCD2 functions at late stages of ribosome assembly and may regulate the binding of specific mRNA-RNPs to the small ribosomal subunit ultimately controlling their cytoplasmic localization and translation.
Collapse
Affiliation(s)
- Svetlana Minakhina
- Waksman Institute, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
- * E-mail: (SM); (RS)
| | - Tatyana Naryshkina
- Waksman Institute, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Neha Changela
- Waksman Institute, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - William Tan
- Waksman Institute, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Ruth Steward
- Waksman Institute, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
- * E-mail: (SM); (RS)
| |
Collapse
|
16
|
Zfrp8 forms a complex with fragile-X mental retardation protein and regulates its localization and function. Dev Biol 2016; 410:202-212. [PMID: 26772998 DOI: 10.1016/j.ydbio.2015.12.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 11/13/2015] [Accepted: 12/09/2015] [Indexed: 11/21/2022]
Abstract
Fragile-X syndrome is the most commonly inherited cause of autism and mental disabilities. The Fmr1 (Fragile-X Mental Retardation 1) gene is essential in humans and Drosophila for the maintenance of neural stem cells, and Fmr1 loss results in neurological and reproductive developmental defects in humans and flies. FMRP (Fragile-X Mental Retardation Protein) is a nucleo-cytoplasmic shuttling protein, involved in mRNA silencing and translational repression. Both Zfrp8 and Fmr1 have essential functions in the Drosophila ovary. In this study, we identified FMRP, Nufip (Nuclear Fragile-X Mental Retardation Protein-interacting Protein) and Tral (Trailer Hitch) as components of a Zfrp8 protein complex. We show that Zfrp8 is required in the nucleus, and controls localization of FMRP in the cytoplasm. In addition, we demonstrate that Zfrp8 genetically interacts with Fmr1 and tral in an antagonistic manner. Zfrp8 and FMRP both control heterochromatin packaging, also in opposite ways. We propose that Zfrp8 functions as a chaperone, controlling protein complexes involved in RNA processing in the nucleus.
Collapse
|
17
|
Wang W, Song XW, Bu XM, Zhang N, Zhao CH. PDCD2 and NCoR1 as putative tumor suppressors in gastric gastrointestinal stromal tumors. Cell Oncol (Dordr) 2015; 39:129-37. [PMID: 26589942 DOI: 10.1007/s13402-015-0258-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2015] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors in the gastrointestinal tract. Previously, PDCD2 (programmed cell death protein 2) has been identified as a putative tumor suppressor in gastric cancer. As yet, however, no reports on PDCD2 expression and its physical interactor NCoR1 (nuclear receptor co-repressor), and their effects in GIST have been reported. METHODS The expression of PDCD2 and NCoR1 was assessed in 43 primary gastric GIST and normal gastric tissue samples using Western blotting and quantitative real-time PCR. Next, associations between PDCD2 and NCoR1 expression and various clinicopathological features, including survival, were determined. To assess the effects of PDCD2 and NCoR1 expression in vitro, two GIST-derived cell lines (GIST-T1 and GIST882) were (co-)transfected with the expression vectors pEGFP-N1-PDCD2 and pcDNA3.1-NCoR1, after which the cells were subjected to CCK-8, PI staining and Annexin V-FITC/PI double staining assays, respectively. Finally, the mechanisms of action of PDCD2 and NCoR1 in GIST-derived cells were determined using immunoprecipitation and Western blotting assays. RESULTS We found that the PDCD2 and NCoR1 protein levels were lower in gastric GIST tissues than in normal gastric tissues. The PDCD2 and NCoR1 expression levels were found to be significantly associated with the survival of the patients. Through exogenous expression analyses, we found that PDCD2 and NCoR1 can decrease proliferation, and increase apoptosis and G1 cell cycle arrest, in GIST-derived cells. Furthermore, we found that PDCD2 and NCoR1 can activate Smad2 and Smad3. CONCLUSIONS Our data indicate that both PDCD2 and NCoR1 may act as tumor suppressors in GIST cells through the Smad signaling pathway.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, 110122, People's Republic of China
| | - Xiao-Wen Song
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, 110122, People's Republic of China
| | - Xian-Min Bu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Ning Zhang
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, 110122, People's Republic of China
| | - Cheng-Hai Zhao
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, 110122, People's Republic of China.
| |
Collapse
|
18
|
Discs large 5, an Essential Gene in Drosophila, Regulates Egg Chamber Organization. G3-GENES GENOMES GENETICS 2015; 5:943-52. [PMID: 25795662 PMCID: PMC4426378 DOI: 10.1534/g3.115.017558] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Discs large 5 (Dlg5) is a member of the MAGUK family of proteins that typically serve as molecular scaffolds and mediate signaling complex formation and localization. In vertebrates, Dlg5 has been shown to be responsible for polarization of neural progenitors and to associate with Rab11-positive vesicles in epithelial cells. In Drosophila, however, the function of Dlg5 is not well-documented. We have identified dlg5 as an essential gene that shows embryonic lethality. dlg5 embryos display partial loss of primordial germ cells (PGCs) during gonad coalescence between stages 12 and 15 of embryogenesis. Loss of Dlg5 in germline and somatic stem cells in the ovary results in the depletion of both cell lineages. Reduced expression of Dlg5 in the follicle cells of the ovary leads to a number of distinct phenotypes, including defects in egg chamber budding, stalk cell overgrowth, and ectopic polar cell induction. Interestingly, loss of Dlg5 in follicle cells results in abnormal distribution of a critical component of cell adhesion, E-cadherin, shown to be essential for proper organization of egg chambers.
Collapse
|
19
|
Burroughs AM, Aravind L. Analysis of two domains with novel RNA-processing activities throws light on the complex evolution of ribosomal RNA biogenesis. Front Genet 2014; 5:424. [PMID: 25566315 PMCID: PMC4275035 DOI: 10.3389/fgene.2014.00424] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 11/19/2014] [Indexed: 11/13/2022] Open
Abstract
Ribosomal biogenesis has been extensively investigated, especially to identify the elusive nucleases and cofactors involved in the complex rRNA processing events in eukaryotes. Large-scale screens in yeast identified two biochemically uncharacterized proteins, TSR3 and TSR4, as being key players required for rRNA maturation. Using multiple computational approaches we identify the conserved domains comprising these proteins and establish sequence and structural features providing novel insights regarding their roles. TSR3 is unified with the DTW domain into a novel superfamily of predicted enzymatic domains, with the balance of the available evidence pointing toward an RNase role with the archaeo-eukaryotic TSR3 proteins processing rRNA and the bacterial versions potentially processing tRNA. TSR4, its other eukaryotic homologs PDCD2/rp-8, PDCD2L, Zfrp8, and trus, the predominantly bacterial DUF1963 proteins, and other uncharacterized proteins are unified into a new domain superfamily, which arose from an ancient duplication event of a strand-swapped, dimer-forming all-beta unit. We identify conserved features mediating protein-protein interactions (PPIs) and propose a potential chaperone-like function. While contextual evidence supports a conserved role in ribosome biogenesis for the eukaryotic TSR4-related proteins, there is no evidence for such a role for the bacterial versions. Whereas TSR3-related proteins can be traced to the last universal common ancestor (LUCA) with a well-supported archaeo-eukaryotic branch, TSR4-related proteins of eukaryotes are derived from within the bacterial radiation of this superfamily, with archaea entirely lacking them. This provides evidence for “systems admixture,” which followed the early endosymbiotic event, playing a key role in the emergence of the uniquely eukaryotic ribosome biogenesis process.
Collapse
Affiliation(s)
- A Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health Bethesda, MD, USA
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health Bethesda, MD, USA
| |
Collapse
|
20
|
Di R, He J, Song S, Tian D, Liu Q, Liang X, Ma Q, Sun M, Wang J, Zhao W, Cao G, Wang J, Yang Z, Ge Y, Chu M. Characterization and comparative profiling of ovarian microRNAs during ovine anestrus and the breeding season. BMC Genomics 2014; 15:899. [PMID: 25318541 PMCID: PMC4287553 DOI: 10.1186/1471-2164-15-899] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 10/08/2014] [Indexed: 12/20/2022] Open
Abstract
Background Seasonal estrus is a critical limiting factor of animal fecundity, and it involves changes in both ovarian biology and hormone secretion in different seasons. Previous studies indicate that two classes of small RNAs (miRNAs and piRNAs) play important regulatory roles in ovarian biology. To understand the roles of small RNA-mediated post-transcriptional regulation in ovine seasonal estrus, the variation in expression patterns of ovarian small RNAs during anestrus and the breeding season were analyzed using Solexa sequencing technology. In addition, reproductive hormone levels were determined during ovine anestrus and the breeding season. Results A total of 483 miRNAs (including 97 known, 369 conserved and 17 predicated novel miRNAs), which belong to 183 different miRNA families, were identified in ovaries of Tan sheep and Small Tail Han (STH) sheep. Compared with the three stages of the breeding season, 25 shared significantly differentially expressed (including 19 up- and six down-regulated) miRNAs were identified in ovine anestrus. KEGG Pathway analysis revealed that the target genes for some of the differentially expressed miRNAs were involved in reproductive hormone related pathways (e.g. steroid biosynthesis, androgen and estrogen metabolism and GnRH signaling pathway) as well as follicular/luteal development related pathways. Moreover, the expression of the differentially expressed miRNAs and most of their target genes were negatively correlated in the above pathways. Furthermore, the levels of estrogen, progesterone and LH in ovine anestrus were significantly lower than those in the breeding season. Combining the results of pathway enrichment analysis, expression of target genes and hormone measurement, we suggest that these differentially expressed miRNAs in anestrus might participate in attenuation of ovarian activity by regulating the above pathways. Besides miRNAs, a large and unexpectedly diverse set of piRNAs were also identified. Conclusions The miRNA profiles of ovine ovaries in anestrus were presented for the first time. The identification and characterization of miRNAs that are differentially expressed between ovine anestrus and the breeding season will help understanding of the role of miRNAs in the regulation of seasonal estrus, and provides candidates for determining miRNAs which could be potentially used to regulate ovine seasonal estrus. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-899) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Mingxing Chu
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No, 2, Yuanmingyuan West Rd, Beijing, China.
| |
Collapse
|
21
|
Granier CJ, Wang W, Tsang T, Steward R, Sabaawy HE, Bhaumik M, Rabson AB. Conditional inactivation of PDCD2 induces p53 activation and cell cycle arrest. Biol Open 2014; 3:821-31. [PMID: 25150276 PMCID: PMC4163659 DOI: 10.1242/bio.20148326] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
PDCD2 (programmed cell death domain 2) is a highly conserved, zinc finger MYND domain-containing protein essential for normal development in the fly, zebrafish and mouse. The molecular functions and cellular activities of PDCD2 remain unclear. In order to better understand the functions of PDCD2 in mammalian development, we have examined PDCD2 activity in mouse blastocyst embryos, as well as in mouse embryonic stem cells (ESCs) and embryonic fibroblasts (MEFs). We have studied mice bearing a targeted PDCD2 locus functioning as a null allele through a splicing gene trap, or as a conditional knockout, by deletion of exon2 containing the MYND domain. Tamoxifen-induced knockout of PDCD2 in MEFs, as well as in ESCs, leads to defects in progression from the G1 to the S phase of cell cycle, associated with increased levels of p53 protein and p53 target genes. G1 prolongation in ESCs was not associated with induction of differentiation. Loss of entry into S phase of the cell cycle and marked induction of nuclear p53 were also observed in PDCD2 knockout blastocysts. These results demonstrate a unique role for PDCD2 in regulating the cell cycle and p53 activation during early embryonic development of the mouse.
Collapse
Affiliation(s)
- Celine J Granier
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
| | - Wei Wang
- Sequencing and Microarray Core Facility, Lewis-Sigler Institute for Integrative Genetics, Princeton University, Princeton, NJ 08854, USA
| | - Tiffany Tsang
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
| | - Ruth Steward
- Waksman Institute and Department of Molecular Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Hatem E Sabaawy
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08903, USA
| | - Mantu Bhaumik
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08903, USA
| | - Arnold B Rabson
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08903, USA
| |
Collapse
|