1
|
Monier M, Courtier-Orgogozo V. Drosophila Glue: A Promising Model for Bioadhesion. INSECTS 2022; 13:734. [PMID: 36005360 PMCID: PMC9409817 DOI: 10.3390/insects13080734] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
The glue produced by Drosophila larvae to attach themselves to a substrate for several days and resist predation until the end of metamorphosis represents an attractive model to develop new adhesives for dry environments. The adhesive properties of this interesting material have been investigated recently, and it was found that it binds as well as strongly adhesive commercial tapes to various types of substrates. This glue hardens rapidly after excretion and is made of several proteins. In D. melanogaster, eight glue proteins have been identified: four are long glycosylated mucoproteins containing repeats rich in prolines, serines and threonines, and four others are shorter proteins rich in cysteines. This protein mix is produced by the salivary glands through a complex packaging process that is starting to be elucidated. Drosophila species have adapted to stick to various substrates in diverse environmental conditions and glue genes appear to evolve rapidly in terms of gene number, number of repeats and sequence of the repeat motifs. Interestingly, besides its adhesive properties, the glue may also have antimicrobial activities. We discuss future perspectives and avenues of research for the development of new bioadhesives mimicking Drosophila fly glue.
Collapse
|
2
|
Li D, Huson MG, Graham LD. Proteinaceous adhesive secretions from insects, and in particular the egg attachment glue of Opodiphthera sp. moths. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2008; 69:85-105. [PMID: 18780346 DOI: 10.1002/arch.20267] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Biochemical and electrophoretic screening of 29 adhesive secretions from Australian insects identified six types that appeared to consist largely of protein. Most were involved in terrestrial egg attachment. Hydrogel glues were subjected to gravimetric analyses and assessed for overall amino acid composition. When 32 proteins in glues from eight insect species were analyzed individually, many proved to be rich in Gly, Ser, and/or Pro, and some contained substantial levels of 4-hydroxyproline. A few proteins were heavily glycosylated. Abundant protein-based secretions were tested as adhesives, mainly by measuring dry shear strength on wood. The strongest (1-2 MPa) was an egg attachment glue produced by saturniid gum moths of the genus Opodiphthera. It was harvested from female colleterial gland reservoirs as a treacle-like liquid that underwent irreversible gelation, and recovered from the capsules of laid eggs as a highly elastic orange-brown hydrogel that could also display high tack. Its protein-based nature was confirmed and explored by spectroscopy, enzymatic degradation, and 2D gel electrophoresis. Its proteins are mostly 80-95 kDa, and sequences (almost all novel) were established for 23 tryptic peptides. Scanning probe microscopy of Opodiphthera hydrogel in water returned median values of 0.83 nN for adhesion, 63 kPa for modulus, and 87% for resilience. Recombinant mimics of this material might be useful as biodegradable commodity adhesives or as specialty biomedical products.
Collapse
Affiliation(s)
- Dongmei Li
- CSIRO Molecular and Health Technologies, Sydney Laboratory, NSW, Australia
| | | | | |
Collapse
|
3
|
Kress H, Jarrin A, Thüroff E, Saunders R, Weise C, Schmidt am Busch M, Knapp EW, Wedde M, Vilcinskas A. A Kunitz type protease inhibitor related protein is synthesized in Drosophila prepupal salivary glands and released into the moulting fluid during pupation. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2004; 34:855-869. [PMID: 15262289 DOI: 10.1016/j.ibmb.2004.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2004] [Accepted: 05/04/2004] [Indexed: 05/24/2023]
Abstract
From the Drosophila virilis late puff region 31C, we microcloned two neighbouring genes, Kil-1 and Kil-2, that encode putative Kunitz serine protease inhibitor like proteins. The Kil-1 gene is expressed exclusively in prepupal salivary glands. Using a size mutant of the KIL-1 protein and MALDI-TOF analysis, we demonstrate that during pupation this protein is released from the prepupal salivary glands into the pupation fluid covering the surface of the pupa. 3-D-structure predictions are consistent with the known crystal structure of the human Kunitz type protease inhibitor 2KNT. This is the first experimental proof for the extracorporal presence of a distinct Drosophila prepupal salivary gland protein. Possible functions of KIL-1 in the context of the control of proteolytic activities in the pupation fluid are discussed.
Collapse
Affiliation(s)
- Horst Kress
- Institut für Biologie-Genetik, Freie Universität Berlin, Arnimallee 7, D-14195, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Kress H, Kunze P, Swida U, Heiser V, Maletz S. Ecdysone-controlled mRNA stability in Drosophila salivary glands: deadenylation-independent degradation of larval glue protein gene message during the larval/prepupal transition. Mol Cell Endocrinol 2001; 182:129-44. [PMID: 11500246 DOI: 10.1016/s0303-7207(01)00494-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
20-Hydroxyecdysone induces poly(A) shortening and the subsequent degradation of transcripts encoding the larval glue protein LGP-1 in Drosophila virilis late third larval instar salivary glands. Degradation concurs with the transient increase of ribonucleolytic activities in the gland cells. In vitro nuclease assays using crude cytoplasmic extracts of ecdysone-treated salivary glands demonstrate degradation to be deadenylation-independent and that the induced ribonucleolytic activities initiate the degradation of the Lgp-1 transcripts in putative single-stranded loop regions. The independence of degradation from deadenylation is also found in vivo in transformed D. melanogaster carrying a modified Lgp-1 gene.
Collapse
Affiliation(s)
- H Kress
- Institut für Biologie-Genetik, Freie Universität Berlin, Arnimallee 7, D-14 195 Berlin, Germany.
| | | | | | | | | |
Collapse
|
5
|
Melnick M, Chen H, Zhou Y, Jaskoll T. An alternatively spliced Muc10 glycoprotein ligand for putative L-selectin binding during mouse embryonic submandibular gland morphogenesis. Arch Oral Biol 2001; 46:745-57. [PMID: 11389866 DOI: 10.1016/s0003-9969(01)00027-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Late-gestation (embryonic day 18; E18) mouse submandibular glands (SMG) comprise a network of large and small ducts that terminate in lumen-containing, presumptive acini (terminal buds) expressing unique, cell membrane-associated embryonic mucin. The objective here was to clone and sequence embryonic low molecular-weight SMG mucin, predict its secondary structure, and begin to investigate its possible role in SMG development. Evidence was found that: (1) embryonic low molecular-weight mucin is an alternatively spliced Muc10 gene product, 220 amino acids in size (approximately 25 kDa), rich in potential O-glycosylation sites, and variably glycosylated (approximately 40 and 68 kDa); (2) consensus secondary-structure prediction for embryonic low molecular-weight mucin is consistent with a molecule that is anchored to the plasma membrane, directly or indirectly (via a glycolipid), and has a protein core that serves as a scaffold for carbohydrate presentation; (3) embryonic L-selectin is immunolocalized to the plasma membrane region of terminal-bud epithelial cells in a pattern similar to that seen for embryonic mucin; (4) embryonic, but not adult, mucin is able to bind L-selectin and does so endogenously in E18 SMG. As the primary role of L-selectin is to mediate cell adhesion and its ligands are mucin-like glycoproteins, it is suggested that this embryonic low molecular-weight mucin be termed MucCAM.
Collapse
Affiliation(s)
- M Melnick
- Laboratory for Developmental Genetics, University of Southern California, 925 W 34th Street, DEN-4266, CA 90089-0641, Los Angeles, USA.
| | | | | | | |
Collapse
|
6
|
Affiliation(s)
- I F Zhimulev
- Institute of Cytology and Genetics, Siberian Division of Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
7
|
Saleh DS, Zhang J, Wyatt GR, Walker VK. Cloning and characterization of an ecdysone receptor cDNA from Locusta migratoria. Mol Cell Endocrinol 1998; 143:91-9. [PMID: 9806353 DOI: 10.1016/s0303-7207(98)00131-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To facilitate studies on the hormonal control of development in the migratory locust, Locusta migratoria, we have undertaken the cloning of cDNAs for nuclear hormone receptors. Sequences obtained by polymerase chain reaction (PCR) showed homology with receptor family members including the ecdysteroid receptor (EcR). A cDNA clone corresponding to the EcR fragment includes an open reading frame of 1622 nucleotides, predicting a 59 kDa protein showing clear homology with EcRs and distinct from other classes of nuclear receptors. Northern analysis revealed a major transcript of 9.2 kb. In fifth instar fat body, the transcript was most abundant at the end of the instar when ecdysone titres are highest. There was no obvious evidence of EcR regulation by a juvenile hormone analog. Although its role in development may be similar, the locust ecdysone receptor (LmEcR) is divergent from EcRs characterized from insects belonging to the dipteran and lepidopteran orders, presumably reflecting the more ancestral sequence in the relatively primitive locust.
Collapse
Affiliation(s)
- D S Saleh
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| | | | | | | |
Collapse
|
8
|
|
9
|
Abstract
The up- and down-regulation of the salivary gland secretion protein (Sgs) genes during the third larval instar of Drosophila melanogaster are controlled by fluctuations of the titre of the steroid hormone 20-hydroxyecdysone (20E). Induction of these genes by a low hormone titre is a secondary response to 20E mediated by products of 20E-induced 'early' genes. Surprisingly, in the case of the Sgs-4 gene this response also requires a direct contribution of the 20E-receptor complex. A model is presented which proposes that the Sgs genes, and other 20E-regulated genes with similar temporal expression profiles, are regulated by complex hormone response units. The hormonal signal is effectively transmitted by these response units only after binding of additional factors, e.g. secretion enhancer binding proteins, which act together in a synergistic manner with the 20E receptor and early gene products to establish a stage- and tissue-specific expression pattern.
Collapse
Affiliation(s)
- M Lehmann
- Institut für Genetik Freie Universität Berlin, Germany
| |
Collapse
|
10
|
Henrich VC, Brown NE. Insect nuclear receptors: a developmental and comparative perspective. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 1995; 25:881-897. [PMID: 7550245 DOI: 10.1016/0965-1748(95)00030-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The appearance of puffs on the polytene chromosomes of insect salivary glands incubated with 20-hydroxyecdysone provided the first demonstration that steroids act directly at the gene transcriptional level to bring about subsequent cellular changes (Becker, 1959; Clever and Karlson, 1960). Despite that auspicious beginning, learning about the molecular mechanisms that underlie the hormonal regulation of insect development was impeded for many years by the difficulty associated with isolating and identifying rare regulatory factors from limited tissue sources. The advent of recombinant DNA methodology and powerful techniques such as the polymerase chain reaction (PCR) along with the recognition that many important endocrine factors are structurally conserved across a wide range of species has, however, all but eliminated the technical obstacles once facing the insect endocrinologist trying to isolate and study these regulatory molecules. This review will discuss recent progress and recall some earlier experiments concerning the molecular basis of hormonal action in insects focusing primarily on the members of the nuclear hormone receptor superfamily in Drosophila melanogaster. Two members of this family comprise the functional ecdysteroid receptor and at least a dozen other "orphans" have been identified in Drosophila for which no cognate ligand has yet been found. Many of these orphans are regulated by ecdysteroids. A discussion of juvenile hormone binding proteins that are not family members has been included because of their potential impact on nuclear receptor function. As receptor homologues have been identified in other insects, several general ideas concerning insect hormonal regulation have begun to emerge and these will be examined from a comparative point of view.
Collapse
Affiliation(s)
- V C Henrich
- Department of Biology, University of North Carolina-Greensboro 27412-5001, USA
| | | |
Collapse
|
11
|
Lanio W, Swida U, Kress H. Molecular cloning of the Drosophila virilis larval glue protein gene Lgp-3 and its comparative analysis with other Drosophila glue protein genes. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1219:576-80. [PMID: 7918662 DOI: 10.1016/0167-4781(94)90092-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
DNA comprising the larval glue protein gene Lgp-3 of Drosophila virilis was isolated from a lambda genomic and a cDNA library. The transcription start site, two polyadenylation sites and the boundaries of the single intron were determined. An open reading frame encoding 379 amino acids was found. At the DNA level the presence of similar introns and three conserved sequence motifs in the proximal promoters suggest that the gene is related to those of the D. virilis lgp-1 and the D. melanogaster sgs-3, -7 and -8 glue proteins. Their common ancestry is also substantiated by the comparisons of the deduced amino acid sequences and the profiles of hydropathic indices, which reveal striking similarities of the N- and C-termini and of the central repeat domains, although the lengths and the primary structures of the proteins diverged considerably during 60 million years of separate evolution of the two Drosophila species.
Collapse
Affiliation(s)
- W Lanio
- Institut für Genetik, Freie Universität Berlin, Germany
| | | | | |
Collapse
|
12
|
Kress H. The salivary gland chromosomes of Drosophila virilis: a cytological map, pattern of transcription and aspects of chromosome evolution. Chromosoma 1993; 102:734-42. [PMID: 8149815 DOI: 10.1007/bf00650901] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
By combining information from microscopical observation and photography a graphical map of Drosophila virilis salivary gland chromosomes was constructed. About 1,560 individual bands are shown and patterns of transcription at about 360 sites are indicated. The application of the map is demonstrated by using genetic, morphological and in situ hybridization data to identify the white-Notch regions of D. virilis and Drosophila melanogaster as homologous chromosome segments with constant and variable features.
Collapse
Affiliation(s)
- H Kress
- Genetisches Institut der Freien Universität Berlin, Germany
| |
Collapse
|
13
|
Thüroff E, Stöven S, Kress H. Drosophila salivary glands exhibit a regional reprogramming of gene expression during the third larval instar. Mech Dev 1992; 37:81-93. [PMID: 1606022 DOI: 10.1016/0925-4773(92)90017-e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In D. virilis salivary glands transcripts of two early gland protein genes, Egp-1 and Egp-2, which encode putative secretory proteins, accumulate in all cells from the first to mid third larval instar. Subsequently the transcripts disappear from the cytoplasm of the corpus cells, but not from their nuclei, where they accumulate at the chromosomal site of their synthesis. In the collum cells, however, Egp-transcripts continue to be detectable in the cytoplasm until the end of larval life. In the salivary glands of transgenic D. melanogaster the presence of a Egp-1/lacZ fusion protein shows the same regional shift as the cytoplasmic Egp-transcripts in D. virilis. We predict that the expression of Egp-genes is related to an early secretory function of the larval salivary glands which is executed by all cells during earlier larval stages but becomes restricted exclusively to the collum cells during the third larval instar.
Collapse
Affiliation(s)
- E Thüroff
- Institut für Genetik, Freie Universität Berlin, Germany
| | | | | |
Collapse
|
14
|
Kress H, Swida U. Drosophila glue protein gene expression. A proposal for its ecdysone-dependent developmental control. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 1990; 77:317-24. [PMID: 2205808 DOI: 10.1007/bf01138385] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The primary targets of steroid hormones are genes. For the ecdysone-controlled genes of Drosophila larval glue proteins proximal and distal control elements were identified by mutagenesis and sequence comparison. Their presence is required for the correct stage- and tissue-specific expression of these genes. The supposed function of these elements is described in a working model.
Collapse
Affiliation(s)
- H Kress
- Institut für Allgemeine Genetik, Freien Universität, Berlin
| | | |
Collapse
|