1
|
Cen J, Hu N, Shen J, Gao Y, Lu H. Pathological Functions of Lysosomal Ion Channels in the Central Nervous System. Int J Mol Sci 2024; 25:6565. [PMID: 38928271 PMCID: PMC11203704 DOI: 10.3390/ijms25126565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Lysosomes are highly dynamic organelles that maintain cellular homeostasis and regulate fundamental cellular processes by integrating multiple metabolic pathways. Lysosomal ion channels such as TRPML1-3, TPC1/2, ClC6/7, CLN7, and TMEM175 mediate the flux of Ca2+, Cl-, Na+, H+, and K+ across lysosomal membranes in response to osmotic stimulus, nutrient-dependent signals, and cellular stresses. These ion channels serve as the crucial transducers of cell signals and are essential for the regulation of lysosomal biogenesis, motility, membrane contact site formation, and lysosomal homeostasis. In terms of pathophysiology, genetic variations in these channel genes have been associated with the development of lysosomal storage diseases, neurodegenerative diseases, inflammation, and cancer. This review aims to discuss the current understanding of the role of these ion channels in the central nervous system and to assess their potential as drug targets.
Collapse
Affiliation(s)
| | | | | | - Yongjing Gao
- Institute of Pain Medicine and Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China; (J.C.); (N.H.); (J.S.)
| | - Huanjun Lu
- Institute of Pain Medicine and Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China; (J.C.); (N.H.); (J.S.)
| |
Collapse
|
2
|
Yuan Y, Jaślan D, Rahman T, Bracher F, Grimm C, Patel S. Coordinating activation of endo-lysosomal two-pore channels and TRP mucolipins. J Physiol 2024; 602:1623-1636. [PMID: 38598430 DOI: 10.1113/jp283829] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/12/2024] [Indexed: 04/12/2024] Open
Abstract
Two-pore channels and TRP mucolipins are ubiquitous endo-lysosomal cation channels of pathophysiological relevance. Both are Ca2+-permeable and regulated by phosphoinositides, principally PI(3,5)P2. Accumulating evidence has uncovered synergistic channel activation by PI(3,5)P2 and endogenous metabolites such as the Ca2+ mobilizing messenger NAADP, synthetic agonists including approved drugs and physical cues such as voltage and osmotic pressure. Here, we provide an overview of this coordination.
Collapse
Affiliation(s)
- Yu Yuan
- Department of Cell and Developmental Biology, UCL, London, UK
| | - Dawid Jaślan
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilian University, Munich, Germany
| | - Taufiq Rahman
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Franz Bracher
- Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians University, Munich, Germany
| | - Christian Grimm
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilian University, Munich, Germany
- Immunology, Infection and Pandemic Research IIP, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, Germany
| | - Sandip Patel
- Department of Cell and Developmental Biology, UCL, London, UK
| |
Collapse
|
3
|
Steiner P, Arlt E, Boekhoff I, Gudermann T, Zierler S. Two-Pore Channels Regulate Inter-Organellar Ca 2+ Homeostasis in Immune Cells. Cells 2022; 11:1465. [PMID: 35563771 PMCID: PMC9103377 DOI: 10.3390/cells11091465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/13/2022] [Accepted: 04/16/2022] [Indexed: 02/01/2023] Open
Abstract
Two-pore channels (TPCs) are ligand-gated cation-selective ion channels that are preserved in plant and animal cells. In the latter, TPCs are located in membranes of acidic organelles, such as endosomes, lysosomes, and endolysosomes. Here, we focus on the function of these unique ion channels in mast cells, which are leukocytes that mature from myeloid hematopoietic stem cells. The cytoplasm of these innate immune cells contains a large number of granules that comprise messenger substances, such as histamine and heparin. Mast cells, along with basophil granulocytes, play an essential role in anaphylaxis and allergic reactions by releasing inflammatory mediators. Signaling in mast cells is mainly regulated via the release of Ca2+ from the endoplasmic reticulum as well as from acidic compartments, such as endolysosomes. For the crosstalk of these organelles TPCs seem essential. Allergic reactions and anaphylaxis were previously shown to be associated with the endolysosomal two-pore channel TPC1. The release of histamine, controlled by intracellular Ca2+ signals, was increased upon genetic or pharmacologic TPC1 inhibition. Conversely, stimulation of TPC channel activity by one of its endogenous ligands, namely nicotinic adenine dinucleotide phosphate (NAADP) or phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2), were found to trigger the release of Ca2+ from the endolysosomes; thereby improving the effect of TPC1 on regulated mast cell degranulation. In this review we discuss the importance of TPC1 for regulating Ca2+ homeostasis in mast cells and the overall potential of TPC1 as a pharmacological target in anti-inflammatory therapy.
Collapse
Affiliation(s)
- Philip Steiner
- Institute of Pharmacology, Medical Faculty, Johannes Kepler University Linz, 4020 Linz, Austria;
| | - Elisabeth Arlt
- Walther Straub Institute of Pharmacology and Toxicology, Medical Faculty, Ludwig Maximilians University Munich, 80336 Munich, Germany; (E.A.); (I.B.); (T.G.)
| | - Ingrid Boekhoff
- Walther Straub Institute of Pharmacology and Toxicology, Medical Faculty, Ludwig Maximilians University Munich, 80336 Munich, Germany; (E.A.); (I.B.); (T.G.)
| | - Thomas Gudermann
- Walther Straub Institute of Pharmacology and Toxicology, Medical Faculty, Ludwig Maximilians University Munich, 80336 Munich, Germany; (E.A.); (I.B.); (T.G.)
| | - Susanna Zierler
- Institute of Pharmacology, Medical Faculty, Johannes Kepler University Linz, 4020 Linz, Austria;
- Walther Straub Institute of Pharmacology and Toxicology, Medical Faculty, Ludwig Maximilians University Munich, 80336 Munich, Germany; (E.A.); (I.B.); (T.G.)
| |
Collapse
|
4
|
Skelding KA, Barry DL, Theron DZ, Lincz LF. Targeting the two-pore channel 2 in cancer progression and metastasis. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:62-89. [PMID: 36046356 PMCID: PMC9400767 DOI: 10.37349/etat.2022.00072] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/02/2022] [Indexed: 11/19/2022] Open
Abstract
The importance of Ca2+ signaling, and particularly Ca2+ channels, in key events of cancer cell function such as proliferation, metastasis, autophagy and angiogenesis, has recently begun to be appreciated. Of particular note are two-pore channels (TPCs), a group of recently identified Ca2+-channels, located within the endolysosomal system. TPC2 has recently emerged as an intracellular ion channel of significant pathophysiological relevance, specifically in cancer, and interest in its role as an anti-cancer drug target has begun to be explored. Herein, an overview of the cancer-related functions of TPC2 and a discussion of its potential as a target for therapeutic intervention, including a summary of clinical trials examining the TPC2 inhibitors, naringenin, tetrandrine, and verapamil for the treatment of various cancers is provided.
Collapse
Affiliation(s)
- Kathryn A. Skelding
- Cancer Cell Biology Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, New South Wales 2308, Australia;Hunter Medical Research Institute, New Lambton Heights, New South Wales 2305, Australia
| | - Daniel L. Barry
- Cancer Cell Biology Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, New South Wales 2308, Australia;Hunter Medical Research Institute, New Lambton Heights, New South Wales 2305, Australia
| | - Danielle Z. Theron
- Cancer Cell Biology Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, New South Wales 2308, Australia;Hunter Medical Research Institute, New Lambton Heights, New South Wales 2305, Australia
| | - Lisa F. Lincz
- Cancer Cell Biology Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, New South Wales 2308, Australia;Hunter Medical Research Institute, New Lambton Heights, New South Wales 2305, Australia;Hunter Hematology Research Group, Calvary Mater Newcastle Hospital, Waratah, New South Wales 2298, Australia
| |
Collapse
|
5
|
Hirazawa K, Tateyama M, Kubo Y, Shimomura T. Phosphoinositide regulates dynamic movement of the S4 voltage sensor in the second repeat in two-pore channel 3. J Biol Chem 2021; 297:101425. [PMID: 34800436 PMCID: PMC8665364 DOI: 10.1016/j.jbc.2021.101425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 11/24/2022] Open
Abstract
The two-pore channels (TPCs) are voltage-gated cation channels consisting of single polypeptides with two repeats of a canonical 6-transmembrane unit. TPCs are known to be regulated by various physiological signals such as membrane voltage and phosphoinositide (PI). The fourth helix in the second repeat (second S4) plays a major role in detecting membrane voltage, whereas the first repeat contains a PI binding site. Therefore, each of these stimuli is detected by a unique repeat to regulate the gating of the TPC central pore. How these various stimuli regulate the dynamic structural rearrangement of the TPC molecule remain unknown. Here, we found that PI binding to the first repeat in TPC3 regulates the movement of the distally located second S4 helix, showing that the PI-binding signal is not confined to the pore gate but also transmitted to the voltage sensor. Using voltage clamp fluorometry, measurement of gating charges, and Cys-accessibility analysis, we observed that PI binding significantly potentiates the voltage dependence of the movement of the second S4 helix. Notably, voltage clamp fluorometry analysis revealed that the voltage-dependent movement of the second S4 helix occurred in two phases, of which the second phase corresponds to the transfer of the gating charges. This movement was observed in the voltage range where gate-opening occurs and was potentiated by PI. In conclusion, this regulation of the second S4 helix by PI indicates a tight inter-repeat coupling within TPC3, a feature which might be conserved among TPC family members to integrate various physiological signals.
Collapse
Affiliation(s)
- Kiichi Hirazawa
- Division of Biophysics and Neurobiology, National Institute for Physiological Sciences, Okazaki, Japan; Department of Physiological Sciences, The Graduate University for Advanced Studies, Hayama, Japan
| | - Michihiro Tateyama
- Division of Biophysics and Neurobiology, National Institute for Physiological Sciences, Okazaki, Japan; Department of Physiological Sciences, The Graduate University for Advanced Studies, Hayama, Japan
| | - Yoshihiro Kubo
- Division of Biophysics and Neurobiology, National Institute for Physiological Sciences, Okazaki, Japan; Department of Physiological Sciences, The Graduate University for Advanced Studies, Hayama, Japan
| | - Takushi Shimomura
- Division of Biophysics and Neurobiology, National Institute for Physiological Sciences, Okazaki, Japan; Department of Physiological Sciences, The Graduate University for Advanced Studies, Hayama, Japan.
| |
Collapse
|
6
|
Jin X, Zhang Y, Alharbi A, Hanbashi A, Alhoshani A, Parrington J. Targeting Two-Pore Channels: Current Progress and Future Challenges. Trends Pharmacol Sci 2021; 41:582-594. [PMID: 32679067 PMCID: PMC7365084 DOI: 10.1016/j.tips.2020.06.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/04/2020] [Accepted: 06/04/2020] [Indexed: 12/19/2022]
Abstract
Two-pore channels (TPCs) are cation-permeable channels located on endolysosomal membranes and important mediators of intracellular Ca2+ signalling. TPCs are involved in various pathophysiological processes, including cell growth and development, metabolism, and cancer progression. Most studies of TPCs have used TPC–/– cell or whole-animal models, or Ned-19, an indirect inhibitor. The TPC activation mechanism remains controversial, which has made it difficult to develop selective modulators. Recent studies of TPC structure and their interactomes are aiding the development of direct pharmacological modulators. This process is still in its infancy, but will facilitate future research and TPC targeting for therapeutical purposes. Here, we review the progress of current research into TPCs, including recent insights into their structures, functional roles, mechanisms of activation, and pharmacological modulators. Two-pore channel (TPC)-mediated endolysosomal Ca2+ signalling regulates a variety of processes, including cell proliferation, differentiation, metabolism, viral infection, and cardiac function. Despite the well-established model that TPCs are Ca2+-selective channels indirectly activated by nicotinic acid adenine dinucleotide phosphate (NAADP), it has also been proposed that TPCs as Na+ channels are activated directly by phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2]. 3D structures of mouse TPC1 and human TPC2 were recently determined, which made it possible for structure-based virtual screening methods to identify pharmacological modulators of TPC. Recent identification by high-throughput screens of pharmacological modulators that target TPCs will help reveal the molecular mechanisms underlying the role of endolysosomal Ca2+ signalling in different pathophysiological processes, and to develop new therapeutics.
Collapse
Affiliation(s)
- Xuhui Jin
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Yuxuan Zhang
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Abeer Alharbi
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Ali Hanbashi
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Ali Alhoshani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11454, Kingdom of Saudi Arabia
| | - John Parrington
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.
| |
Collapse
|
7
|
Santella L, Limatola N, Chun JT. Cellular and molecular aspects of oocyte maturation and fertilization: a perspective from the actin cytoskeleton. ZOOLOGICAL LETTERS 2020; 6:5. [PMID: 32313685 PMCID: PMC7158055 DOI: 10.1186/s40851-020-00157-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/26/2020] [Indexed: 05/06/2023]
Abstract
ABSTRACT Much of the scientific knowledge on oocyte maturation, fertilization, and embryonic development has come from the experiments using gametes of marine organisms that reproduce by external fertilization. In particular, echinoderm eggs have enabled the study of structural and biochemical changes related to meiotic maturation and fertilization owing to the abundant availability of large and transparent oocytes and eggs. Thus, in vitro studies of oocyte maturation and sperm-induced egg activation in starfish are carried out under experimental conditions that resemble those occurring in nature. During the maturation process, immature oocytes of starfish are released from the prophase of the first meiotic division, and acquire the competence to be fertilized through a highly programmed sequence of morphological and physiological changes at the oocyte surface. In addition, the changes in the cortical and nuclear regions are essential for normal and monospermic fertilization. This review summarizes the current state of research on the cortical actin cytoskeleton in mediating structural and physiological changes during oocyte maturation and sperm and egg activation in starfish and sea urchin. The common denominator in these studies with echinoderms is that exquisite rearrangements of the egg cortical actin filaments play pivotal roles in gamete interactions, Ca2+ signaling, exocytosis of cortical granules, and control of monospermic fertilization. In this review, we also compare findings from studies using invertebrate eggs with what is known about the contributions made by the actin cytoskeleton in mammalian eggs. Since the cortical actin cytoskeleton affects microvillar morphology, movement, and positioning of organelles and vesicles, and the topography of the egg surface, these changes have impacts on the fertilization process, as has been suggested by recent morphological studies on starfish oocytes and eggs using scanning electron microscopy. Drawing the parallelism between vitelline layer of echinoderm eggs and the zona pellucida of mammalian eggs, we also discuss the importance of the egg surface in mediating monospermic fertilization. GRAPHICAL ABSTRACT
Collapse
Affiliation(s)
- Luigia Santella
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli 80121, Italy
| | - Nunzia Limatola
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli 80121, Italy
| | - Jong Tai Chun
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli 80121, Italy
| |
Collapse
|
8
|
Webb SE, Kelu JJ, Miller AL. Role of Two-Pore Channels in Embryonic Development and Cellular Differentiation. Cold Spring Harb Perspect Biol 2020; 12:a035170. [PMID: 31358517 PMCID: PMC6942120 DOI: 10.1101/cshperspect.a035170] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Since the identification of nicotinic acid adenine dinucleotide phosphate (NAADP) and its putative target, the two-pore channel (TPC), the NAADP/TPC/Ca2+ signaling pathway has been reported to play a role in a diverse range of functions in a variety of different cell types. TPCs have also been associated with a number of diseases, which arise when their activity is perturbed. In addition, TPCs have been shown to play key roles in various embryological processes and during the differentiation of a variety of cell types. Here, we review the role of NAADP/TPC/Ca2+ signaling during early embryonic development and cellular differentiation. We pay particular attention to the role of TPC2 in the development and maturation of early neuromuscular activity in zebrafish, and during the differentiation of isolated osteoclasts, endothelial cells, and keratinocytes. Our aim is to emphasize the conserved features of TPC-mediated Ca2+ signaling in a number of selected examples.
Collapse
Affiliation(s)
- Sarah E Webb
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology (HKUST), Clearwater Bay, Hong Kong, PRC
| | - Jeffrey J Kelu
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology (HKUST), Clearwater Bay, Hong Kong, PRC
| | - Andrew L Miller
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology (HKUST), Clearwater Bay, Hong Kong, PRC
| |
Collapse
|
9
|
Shimomura T, Kubo Y. Phosphoinositides modulate the voltage dependence of two-pore channel 3. J Gen Physiol 2019; 151:986-1006. [PMID: 31182502 PMCID: PMC6683669 DOI: 10.1085/jgp.201812285] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 04/26/2019] [Accepted: 05/23/2019] [Indexed: 02/03/2023] Open
Abstract
Two-pore channels, or two-pore Na+ channels (TPCs), contain two homologous domains, each containing a functional unit typical of voltage-dependent cation channels. Each domain is considered to be responsible for either phosphoinositide (PI) binding or voltage sensing. Among the three members of the TPC family, TPC1 and TPC2 are activated by PI(3,5)P2, while TPC3 has been thought not to be affected by any PIs. Here, we report that TPC3 is sensitive to PI(3,4)P2 and PI(3,5)P2, but not to PI(4,5)P2, and that the extremely slow increase in TPC3 currents induced by depolarization in Xenopus oocytes is due to the production of PI(3,4)P2 Similarly to TPC1, the cluster of basic amino acid residues in domain I is critical for PI sensitivity, but with a slight variation that may allow TPC3 to be sensitive to both PI(3,4)P2 and PI(3,5)P2 We also found that TPC3 has a unique PI-dependent modulation mechanism of voltage dependence, which is achieved by a specific bridging interaction between domain I and domain II. Taken together, these findings show that TPC3 is a unique member of the TPC family that senses PIs and displays a strong coupling between PI binding and voltage-dependent gating.
Collapse
Affiliation(s)
- Takushi Shimomura
- Division of Biophysics and Neurobiology, National Institute for Physiological Sciences, Okazaki, Japan .,Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Hayama, Japan
| | - Yoshihiro Kubo
- Division of Biophysics and Neurobiology, National Institute for Physiological Sciences, Okazaki, Japan.,Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Hayama, Japan
| |
Collapse
|
10
|
Vasilev F, Limatola N, Chun JT, Santella L. Contributions of suboolemmal acidic vesicles and microvilli to the intracellular Ca 2+ increase in the sea urchin eggs at fertilization. Int J Biol Sci 2019; 15:757-775. [PMID: 30906208 PMCID: PMC6429021 DOI: 10.7150/ijbs.28461] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 12/15/2018] [Indexed: 12/03/2022] Open
Abstract
The onset of fertilization in echinoderms is characterized by instantaneous increase of Ca2+ in the egg cortex, which is called 'cortical flash', and the subsequent Ca2+ wave. While the cortical flash is due to the ion influx through L-type Ca2+ channels in starfish eggs, its amplitude was shown to be affected by the integrity of the egg cortex. Here, we investigated the contribution of cortical granules (CG) and yolk granules (YG) to the sperm-induced Ca2+ signals in sea urchin eggs. To this end, prior to fertilization, Paracentrotus lividus eggs were treated with agents that disrupt or relocate CG beneath the plasma membrane: namely, glycyl-L-phenylalanine 2-naphthylamide (GPN), procaine, urethane, and NH4Cl. All these pretreatments consistently suppressed the cortical flash in the fertilized eggs, and accelerated the decay kinetics of the subsiding Ca2+ wave in most cases. By contrast, centrifugation of the eggs, which stratifies organelles but not the CG, did not exhibit such changes except that the CF was much enhanced in the centrifugal pole where YG are localized. Surprisingly, we noted that pretreatment of the eggs with these CG-disrupting agents or with the inhibitors of L-type Ca2+ channels all drastically reduced the density of the microvilli and their individual shapes on the egg surface. Taken together, our results suggest that the integrity of the egg cortex ensures successful generation of the Ca2+ responses at fertilization, and that modulation of microvilli shape and density may serve as a mechanism of controlling ion flux across the plasma membrane.
Collapse
Affiliation(s)
- F Vasilev
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - N Limatola
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - J T Chun
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - L Santella
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, Napoli, Italy
| |
Collapse
|
11
|
Kelu JJ, Webb SE, Galione A, Miller AL. Characterization of ADP-ribosyl cyclase 1-like (ARC1-like) activity and NAADP signaling during slow muscle cell development in zebrafish embryos. Dev Biol 2018; 445:211-225. [PMID: 30447180 DOI: 10.1016/j.ydbio.2018.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/09/2018] [Accepted: 11/09/2018] [Indexed: 10/27/2022]
Abstract
We recently demonstrated the requirement of two-pore channel type 2 (TPC2)-mediated Ca2+ release during slow muscle cell differentiation and motor circuit maturation in intact zebrafish embryos. However, the upstream trigger(s) of TPC2/Ca2+ signaling during these developmental processes remains unclear. Nicotinic acid adenine dinucleotide phosphate (NAADP) is a potent Ca2+ mobilizing messenger, which is suggested to target TPC2 in mediating the release of Ca2+ from acidic vesicles. Here, we report the molecular cloning of the zebrafish ADP ribosyl cyclase (ARC) homolog (i.e., ARC1-like), which is a putative enzyme for generating NAADP. We characterized the expression of the arc1-like transcript and the NAADP levels between ~ 16 h post-fertilization (hpf) and ~ 48 hpf in whole zebrafish embryos. We showed that if ARC1-like (when fused with either EGFP or tdTomato) was overexpressed it localized in the plasma membrane, and associated with intracellular organelles, such as the acidic vesicles, Golgi complex and sarcoplasmic reticulum, in primary muscle cell cultures. Morpholino (MO)-mediated knockdown of arc1-like or pharmacological inhibition of ARC1-like (via treatment with nicotinamide), led to an attenuation of Ca2+ signaling and disruption of slow muscle cell development. In addition, the injection of arc1-like mRNA into ARC1-like morphants partially rescued the Ca2+ signals and slow muscle cell development. Together, our data might suggest a link between ARC1-like, NAADP, TPC2 and Ca2+ signaling during zebrafish myogenesis.
Collapse
Affiliation(s)
- Jeffrey J Kelu
- Division of Life Science&State Key Laboratory of Molecular Neuroscience, HKUST, Hong Kong
| | - Sarah E Webb
- Division of Life Science&State Key Laboratory of Molecular Neuroscience, HKUST, Hong Kong
| | - Antony Galione
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Andrew L Miller
- Division of Life Science&State Key Laboratory of Molecular Neuroscience, HKUST, Hong Kong.
| |
Collapse
|
12
|
Wiseman E, Bates L, Dubé A, Carroll DJ. Starfish as a Model System for Analyzing Signal Transduction During Fertilization. Results Probl Cell Differ 2018; 65:49-67. [PMID: 30083915 DOI: 10.1007/978-3-319-92486-1_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023]
Abstract
The starfish oocyte and egg offer advantages for use as a model system for signal transduction research. Some of these have been recognized for over a century, including the ease of procuring gametes, in vitro fertilization, and culturing the embryos. New advances, particularly in genomics, have also opened up opportunities for the use of these animals. In this chapter, we give a few examples of the historical use of the starfish for research in cell biology and then describe some new areas in which we believe the starfish can contribute to our understanding of signal transduction-particularly in fertilization.
Collapse
Affiliation(s)
- Emily Wiseman
- Department of Biological Sciences, Florida Institute of Technology, Melbourne, FL, USA
| | - Lauren Bates
- Department of Biological Sciences, Florida Institute of Technology, Melbourne, FL, USA
| | - Altair Dubé
- Department of Biological Sciences, Florida Institute of Technology, Melbourne, FL, USA
| | - David J Carroll
- Department of Biological Sciences, Florida Institute of Technology, Melbourne, FL, USA.
| |
Collapse
|
13
|
Feijóo-Bandín S, García-Vence M, García-Rúa V, Roselló-Lletí E, Portolés M, Rivera M, González-Juanatey JR, Lago F. Two-pore channels (TPCs): Novel voltage-gated ion channels with pleiotropic functions. Channels (Austin) 2016; 11:20-33. [PMID: 27440385 DOI: 10.1080/19336950.2016.1213929] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Two-pore channels (TPC1-3) comprise a subfamily of the eukaryotic voltage-gated ion channels (VGICs) superfamily that are mainly expressed in acidic stores in plants and animals. TPCS are widespread across the animal kingdom, with primates, mice and rats lacking TPC3, and mainly act as Ca+ and Na+ channels, although it was also suggested that they could be permeable to other ions. Nowadays, TPCs have been related to the development of different diseases, including Parkinson´s disease, obesity or myocardial ischemia. Due to this, their study has raised the interest of the scientific community to try to understand their mechanism of action in order to be able to develop an efficient drug that could regulate TPCs activity. In this review, we will provide an updated view regarding TPCs structure, function and activation, as well as their role in different pathophysiological processes.
Collapse
Affiliation(s)
- Sandra Feijóo-Bandín
- a Cellular and Molecular Cardiology Research Unit and Department of Cardiology , Institute of Biomedical Research and University Clinical Hospital , Santiago de Compostela , Spain
| | - María García-Vence
- a Cellular and Molecular Cardiology Research Unit and Department of Cardiology , Institute of Biomedical Research and University Clinical Hospital , Santiago de Compostela , Spain
| | - Vanessa García-Rúa
- a Cellular and Molecular Cardiology Research Unit and Department of Cardiology , Institute of Biomedical Research and University Clinical Hospital , Santiago de Compostela , Spain
| | - Esther Roselló-Lletí
- b Cardiocirculatory Unit, Health Institute of La Fe University Hospital , Valencia , Spain
| | - Manuel Portolés
- b Cardiocirculatory Unit, Health Institute of La Fe University Hospital , Valencia , Spain
| | - Miguel Rivera
- b Cardiocirculatory Unit, Health Institute of La Fe University Hospital , Valencia , Spain
| | - José Ramón González-Juanatey
- a Cellular and Molecular Cardiology Research Unit and Department of Cardiology , Institute of Biomedical Research and University Clinical Hospital , Santiago de Compostela , Spain
| | - Francisca Lago
- a Cellular and Molecular Cardiology Research Unit and Department of Cardiology , Institute of Biomedical Research and University Clinical Hospital , Santiago de Compostela , Spain
| |
Collapse
|
14
|
Ramakrishnan L, Uhlinger K, Dale L, Hamdoun A, Patel S. ADP-ribosyl cyclases regulate early development of the sea urchin. MESSENGER (LOS ANGELES, CALIF. : PRINT) 2016; 5:100-106. [PMID: 28529830 PMCID: PMC5435102 DOI: 10.1166/msr.2016.1052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
ADP-ribosyl cyclases are multifunctional enzymes involved in the metabolism of nucleotide derivatives necessary for Ca2+ signalling such as cADPR and NAADP. Although Ca2+ signalling is a critical regulator of early development, little is known of the role of ADP-ribosyl cyclases during embryogenesis. Here we analyze the expression, activity and function of ADP-ribosyl cyclases in the embryo of the sea urchin - a key organism for study of both Ca2+ signalling and embryonic development. ADP-ribosyl cyclase isoforms (SpARC1-4) showed unique changes in expression during early development. These changes were associated with an increase in the ratio of cADPR:NAADP production. Over-expression of SpARC4 (a preferential cyclase) disrupted gastrulation. Our data highlight the importance of ADP-ribosyl cyclases during embryogenesis.
Collapse
Affiliation(s)
- Latha Ramakrishnan
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT UK
| | - Kevin Uhlinger
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093-0202 USA
| | - Leslie Dale
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT UK
| | - Amro Hamdoun
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093-0202 USA
| | - Sandip Patel
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT UK
| |
Collapse
|
15
|
Santella L, Limatola N, Chun JT. Calcium and actin in the saga of awakening oocytes. Biochem Biophys Res Commun 2015; 460:104-13. [PMID: 25998739 DOI: 10.1016/j.bbrc.2015.03.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 03/06/2015] [Indexed: 12/12/2022]
Abstract
The interaction of the spermatozoon with the egg at fertilization remains one of the most fascinating mysteries of life. Much of our scientific knowledge on fertilization comes from studies on sea urchin and starfish, which provide plenty of gametes. Large and transparent, these eggs have served as excellent model systems for studying egg activation and embryo development in seawater, a plain natural medium. Starfish oocytes allow the study of the cortical, cytoplasmic and nuclear changes during the meiotic maturation process, which can also be triggered in vitro by hormonal stimulation. These morphological and biochemical changes ensure successful fertilization of the eggs at the first metaphase. On the other hand, sea urchin eggs are fertilized after the completion of meiosis, and are particularly suitable for the study of sperm-egg interaction, early events of egg activation, and embryonic development, as a large number of mature eggs can be fertilized synchronously. Starfish and sea urchin eggs undergo abrupt changes in the cytoskeleton and ion fluxes in response to the fertilizing spermatozoon. The plasma membrane and cortex of an egg thus represent "excitable media" that quickly respond to the stimulus with the Ca(2+) swings and structural changes. In this article, we review some of the key findings on the rapid dynamic rearrangements of the actin cytoskeleton in the oocyte/egg cortex upon hormonal or sperm stimulation and their roles in the modulation of the Ca(2+) signals and in the control of monospermic fertilization.
Collapse
Affiliation(s)
- Luigia Santella
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale 1, Napoli, I-80121, Italy.
| | - Nunzia Limatola
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale 1, Napoli, I-80121, Italy
| | - Jong T Chun
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale 1, Napoli, I-80121, Italy
| |
Collapse
|
16
|
Abstract
Two-pore channels (TPCs) are evolutionarily important members of the voltage-gated ion channel superfamily. TPCs localize to acidic Ca(2+) stores within the endolysosomal system. Most evidence indicate that TPCs mediate Ca(2+) signals through the Ca(2+)-mobilizing messenger nicotinic acid adenine dinucleotide phosphate (NAADP) to control a range of Ca(2+)-dependent events. Recent studies clarify the mechanism of TPC activation and identify roles for TPCs in disease, highlighting the regulation of endolysosomal membrane traffic by local Ca(2+) fluxes. Chemical targeting of TPCs to maintain endolysosomal "well-being" may be beneficial in disorders as diverse as Parkinson's disease, fatty liver disease, and Ebola virus infection.
Collapse
Affiliation(s)
- Sandip Patel
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK. E-mail:
| |
Collapse
|