1
|
Ell CM, Safyan A, Chayengia M, Kustermann MMM, Lorenz J, Schächtle M, Pyrowolakis G. A genome-engineered tool set for Drosophila TGF-β/BMP signaling studies. Development 2024; 151:dev204222. [PMID: 39494616 DOI: 10.1242/dev.204222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/15/2024] [Indexed: 11/05/2024]
Abstract
Ligands of the TGF-β/BMP superfamily are crucially involved in the regulation of growth, patterning and organogenesis and can act as long-range morphogens. Essential for understanding TGF-β/BMP signaling dynamics and regulation are tools that allow monitoring and manipulating pathway components at physiological expression levels and endogenous spatiotemporal patterns. We used genome engineering to generate a comprehensive library of endogenously epitope- or fluorescent-tagged versions of receptors, co-receptors, transcription factors and key feedback regulators of the Drosophila BMP and Activin signaling pathways. We demonstrate that the generated alleles are biologically active and can be used for assessing tissue and subcellular distribution of the corresponding proteins. Furthermore, we show that the genomic platforms can be used for in locus structure-function and cis-regulatory analyses. Finally, we present a complementary set of protein binder-based tools, which allow visualization as well as manipulation of the stability and subcellular localization of epitope-tagged proteins, providing new tools for the analysis of BMP signaling and beyond.
Collapse
Affiliation(s)
- Clara-Maria Ell
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104 Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
- Institute for Biology I, Faculty of Biology, HMH, Habsburgerstr. 49, University of Freiburg, 79104 Freiburg, Germany
| | - Abu Safyan
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
- Institute for Biology I, Faculty of Biology, HMH, Habsburgerstr. 49, University of Freiburg, 79104 Freiburg, Germany
- International Max Planck Research School for Immunobiology, Epigenetics, and Metabolism, 79108 Freiburg, Germany
| | - Mrinal Chayengia
- Institute for Biology I, Faculty of Biology, HMH, Habsburgerstr. 49, University of Freiburg, 79104 Freiburg, Germany
| | - Manuela M M Kustermann
- Institute for Biology I, Faculty of Biology, HMH, Habsburgerstr. 49, University of Freiburg, 79104 Freiburg, Germany
| | - Jennifer Lorenz
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104 Freiburg, Germany
- Institute for Biology I, Faculty of Biology, HMH, Habsburgerstr. 49, University of Freiburg, 79104 Freiburg, Germany
| | - Melanie Schächtle
- Institute for Biology I, Faculty of Biology, HMH, Habsburgerstr. 49, University of Freiburg, 79104 Freiburg, Germany
| | - George Pyrowolakis
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
- Institute for Biology I, Faculty of Biology, HMH, Habsburgerstr. 49, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
2
|
Cyromazine Effects the Reproduction of Drosophila by Decreasing the Number of Germ Cells in the Female Adult Ovary. INSECTS 2022; 13:insects13050414. [PMID: 35621750 PMCID: PMC9144682 DOI: 10.3390/insects13050414] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 02/08/2023]
Abstract
Simple Summary Cyromazine, an insect growth regulator, is used to control the Dipteran pest population. Previous findings observed that treatment with cyromazine increased the larval mortality, by interfering with the ecdysone signaling. In addition, the application of exogenous 20E significantly reduced the mortality caused by cyromazine. Many studies have also supported the role of ecdysone signaling in the maintenance of germline stem cells (GSCs), where mutations in ecdysone signaling-related genes significantly decreased the number of GSCs. However, to date, no study has reported the effect of cyromazine on the GSCs of Drosophila melanogaster. In the present study, we observed that cyromazine significantly reduced the number of both GSCs and cystoblasts (CBs) in the ovary of adult female. To further understand the effect of cyromazine on germ cells, we selected some key genes related to the ecdysone signaling pathway and evaluated their expression through RT-qPCR. Additionally, we measured the ecdysone titer from the cyromazine-treated ovaries. Our results indicated a significant decrease in the expression of ecdysone signaling-related genes and also in the ecdysone titer. These results further supported our findings that cyromazine reduced the number of germ cells by interfering with the ecdysone signaling pathway. Abstract In the present study, we observed a 58% decrease in the fecundity of Drosophila melanogaster, after treatment with the cyromazine. To further elucidate the effects of cyromazine on reproduction, we counted the number of both germline stem cells (GSCs) and cystoblasts (CBs) in the ovary of a 3-day-old adult female. The results showed a significant decrease in the number of GSCs and CBs as compared to the control group. The mode of action of cyromazine is believed to be through the ecdysone signaling pathway. To further support this postulate, we observed the expression of key genes involved in the ecdysone signaling pathway and also determined the ecdysone titer from cyromazine-treated ovaries. Results indicated a significant decrease in the expression of ecdysone signaling-related genes as compared to the control group. Furthermore, the titer of the ecdysone hormone was also markedly reduced (90%) in cyromazine-treated adult ovaries, suggesting that ecdysone signaling was directly related to the decrease in the number of GSCs and CBs. However, further studies are required to understand the mechanism by which cyromazine affects the GSCs and CBs in female adult ovaries.
Collapse
|
3
|
Hinnant TD, Merkle JA, Ables ET. Coordinating Proliferation, Polarity, and Cell Fate in the Drosophila Female Germline. Front Cell Dev Biol 2020; 8:19. [PMID: 32117961 PMCID: PMC7010594 DOI: 10.3389/fcell.2020.00019] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/10/2020] [Indexed: 01/05/2023] Open
Abstract
Gametes are highly specialized cell types produced by a complex differentiation process. Production of viable oocytes requires a series of precise and coordinated molecular events. Early in their development, germ cells are an interconnected group of mitotically dividing cells. Key regulatory events lead to the specification of mature oocytes and initiate a switch to the meiotic cell cycle program. Though the chromosomal events of meiosis have been extensively studied, it is unclear how other aspects of oocyte specification are temporally coordinated. The fruit fly, Drosophila melanogaster, has long been at the forefront as a model system for genetics and cell biology research. The adult Drosophila ovary continuously produces germ cells throughout the organism’s lifetime, and many of the cellular processes that occur to establish oocyte fate are conserved with mammalian gamete development. Here, we review recent discoveries from Drosophila that advance our understanding of how early germ cells balance mitotic exit with meiotic initiation. We discuss cell cycle control and establishment of cell polarity as major themes in oocyte specification. We also highlight a germline-specific organelle, the fusome, as integral to the coordination of cell division, cell polarity, and cell fate in ovarian germ cells. Finally, we discuss how the molecular controls of the cell cycle might be integrated with cell polarity and cell fate to maintain oocyte production.
Collapse
Affiliation(s)
- Taylor D Hinnant
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Julie A Merkle
- Department of Biology, University of Evansville, Evansville, IN, United States
| | - Elizabeth T Ables
- Department of Biology, East Carolina University, Greenville, NC, United States
| |
Collapse
|
4
|
Drummond-Barbosa D. Local and Physiological Control of Germline Stem Cell Lineages in Drosophila melanogaster. Genetics 2019; 213:9-26. [PMID: 31488592 PMCID: PMC6727809 DOI: 10.1534/genetics.119.300234] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/09/2019] [Indexed: 12/12/2022] Open
Abstract
The long-term survival of any multicellular species depends on the success of its germline in producing high-quality gametes and maximizing survival of the offspring. Studies in Drosophila melanogaster have led our growing understanding of how germline stem cell (GSC) lineages maintain their function and adjust their behavior according to varying environmental and/or physiological conditions. This review compares and contrasts the local regulation of GSCs by their specialized microenvironments, or niches; discusses how diet and diet-dependent factors, mating, and microorganisms modulate GSCs and their developing progeny; and briefly describes the tie between physiology and development during the larval phase of the germline cycle. Finally, it concludes with broad comparisons with other organisms and some future directions for further investigation.
Collapse
Affiliation(s)
- Daniela Drummond-Barbosa
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205
| |
Collapse
|
5
|
Li M, Hu X, Zhang S, Ho MS, Wu G, Zhang L. Traffic jam regulates the function of the ovarian germline stem cell progeny differentiation niche during pre-adult stage in Drosophila. Sci Rep 2019; 9:10124. [PMID: 31300663 PMCID: PMC6626045 DOI: 10.1038/s41598-019-45317-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 03/29/2019] [Indexed: 11/28/2022] Open
Abstract
Stem cell self-renewal and the daughter cell differentiation are tightly regulated by the respective niches, which produce extrinsic cues to support the proper development. In Drosophila ovary, Dpp is secreted from germline stem cell (GSC) niche and activates the BMP signaling in GSCs for their self-renewal. Escort cells (ECs) in differentiation niche restrict Dpp outside the GSC niche and extend protrusions to help with proper differentiation of the GSC daughter cells. Here we provide evidence that loss of large Maf transcriptional factor Traffic jam (Tj) blocks GSC progeny differentiation. Spatio-temporal specific knockdown experiments indicate that Tj is required in pre-adult EC lineage for germline differentiation control. Further molecular and genetic analyses suggest that the defective germline differentiation caused by tj-depletion is partly attributed to the elevated dpp in the differentiation niche. Moreover, our study reveals that tj-depletion induces ectopic En expression outside the GSC niche, which contributes to the upregulated dpp expression in ECs as well as GSC progeny differentiation defect. Alternatively, loss of EC protrusions and decreased EC number elicited by tj-depletion may also partially contribute to the germline differentiation defect. Collectively, our findings suggest that Tj in ECs regulates germline differentiation by controlling the differentiation niche characteristics.
Collapse
Affiliation(s)
- Mengjie Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, The Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaolong Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, The Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shu Zhang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Margaret S Ho
- School of Life Science and Technology, Shanghai Tech University, Shanghai, 201210, China
| | - Geng Wu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, The Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Lei Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China. .,School of Life Science and Technology, Shanghai Tech University, Shanghai, 201210, China.
| |
Collapse
|
6
|
Allbee AW, Rincon-Limas DE, Biteau B. Lmx1a is required for the development of the ovarian stem cell niche in Drosophila. Development 2018; 145:dev.163394. [PMID: 29615466 DOI: 10.1242/dev.163394] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/26/2018] [Indexed: 01/02/2023]
Abstract
The Drosophila ovary serves as a model for pioneering studies of stem cell niches, with defined cell types and signaling pathways supporting both germline and somatic stem cells. The establishment of the niche units begins during larval stages with the formation of terminal filament-cap structures; however, the genetics underlying their development remains largely unknown. Here, we show that the transcription factor Lmx1a is required for ovary morphogenesis. We found that Lmx1a is expressed in early ovarian somatic lineages and becomes progressively restricted to terminal filaments and cap cells. We show that Lmx1a is required for the formation of terminal filaments, during the larval-pupal transition. Finally, our data demonstrate that Lmx1a functions genetically downstream of Bric-à-Brac, and is crucial for the expression of key components of several conserved pathways essential to ovarian stem cell niche development. Importantly, expression of chicken Lmx1b is sufficient to rescue the null Lmx1a phenotype, indicating functional conservation across the animal kingdom. These results significantly expand our understanding of the mechanisms controlling stem cell niche development in the fly ovary.
Collapse
Affiliation(s)
- Andrew W Allbee
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Diego E Rincon-Limas
- Department of Neurology, McKnight Brain Institute, University of Florida, 1149 Newell Drive, FL 32611, USA
| | - Benoît Biteau
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| |
Collapse
|
7
|
Yatsenko AS, Shcherbata HR. Stereotypical architecture of the stem cell niche is spatiotemporally established by miR-125-dependent coordination of Notch and steroid signaling. Development 2018; 145:dev.159178. [PMID: 29361571 PMCID: PMC5818007 DOI: 10.1242/dev.159178] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 01/15/2018] [Indexed: 12/15/2022]
Abstract
Stem cell niches act as signaling platforms that regulate stem cell self-renewal and sustain stem cells throughout life; however, the specific developmental events controlling their assembly are not well understood. Here, we show that during Drosophila ovarian germline stem cell niche formation, the status of Notch signaling in the cell can be reprogrammed. This is controlled via steroid-induced miR-125, which targets a negative regulator of Notch signaling, Tom. Thus, miR-125 acts as a spatiotemporal coordinator between paracrine Notch and endocrine steroid signaling. Moreover, a dual security mechanism for Notch signaling activation exists to ensure the robustness of niche assembly. Particularly, stem cell niche cells can be specified either via lateral inhibition, in which a niche cell precursor acquires Notch signal-sending status randomly, or via peripheral induction, whereby Delta is produced by a specific cell. When one mechanism is perturbed due to mutations, developmental defects or environmental stress, the remaining mechanism ensures that the niche is formed, perhaps abnormally, but still functional. This guarantees that the germline stem cells will have their residence, thereby securing progressive oogenesis and, thus, organism reproduction. Highlighted Article: In Drosophila, the robustness of stem cell niche assembly is safeguarded via a dual mechanism of Notch activation. Cellular Notch status can be reprogrammed by miR-125, which spatiotemporally coordinates paracrine and endocrine signaling.
Collapse
Affiliation(s)
- Andriy S Yatsenko
- Max Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Halyna R Shcherbata
- Max Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|
8
|
Upadhyay A, Moss-Taylor L, Kim MJ, Ghosh AC, O'Connor MB. TGF-β Family Signaling in Drosophila. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a022152. [PMID: 28130362 DOI: 10.1101/cshperspect.a022152] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The transforming growth factor β (TGF-β) family signaling pathway is conserved and ubiquitous in animals. In Drosophila, fewer representatives of each signaling component are present compared with vertebrates, simplifying mechanistic study of the pathway. Although there are fewer family members, the TGF-β family pathway still regulates multiple and diverse functions in Drosophila. In this review, we focus our attention on several of the classic and best-studied functions for TGF-β family signaling in regulating Drosophila developmental processes such as embryonic and imaginal disc patterning, but we also describe several recently discovered roles in regulating hormonal, physiological, neuronal, innate immunity, and tissue homeostatic processes.
Collapse
Affiliation(s)
- Ambuj Upadhyay
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Lindsay Moss-Taylor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Myung-Jun Kim
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Arpan C Ghosh
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Michael B O'Connor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
9
|
Regulation of Drosophila hematopoietic sites by Activin-β from active sensory neurons. Nat Commun 2017; 8:15990. [PMID: 28748922 PMCID: PMC5537569 DOI: 10.1038/ncomms15990] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 05/23/2017] [Indexed: 12/21/2022] Open
Abstract
An outstanding question in animal development, tissue homeostasis and disease is how cell populations adapt to sensory inputs. During Drosophila larval development, hematopoietic sites are in direct contact with sensory neuron clusters of the peripheral nervous system (PNS), and blood cells (hemocytes) require the PNS for their survival and recruitment to these microenvironments, known as Hematopoietic Pockets. Here we report that Activin-β, a TGF-β family ligand, is expressed by sensory neurons of the PNS and regulates the proliferation and adhesion of hemocytes. These hemocyte responses depend on PNS activity, as shown by agonist treatment and transient silencing of sensory neurons. Activin-β has a key role in this regulation, which is apparent from reporter expression and mutant analyses. This mechanism of local sensory neurons controlling blood cell adaptation invites evolutionary parallels with vertebrate hematopoietic progenitors and the independent myeloid system of tissue macrophages, whose regulation by local microenvironments remain undefined.
Collapse
|
10
|
Specification and spatial arrangement of cells in the germline stem cell niche of the Drosophila ovary depend on the Maf transcription factor Traffic jam. PLoS Genet 2017; 13:e1006790. [PMID: 28542174 PMCID: PMC5459507 DOI: 10.1371/journal.pgen.1006790] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 06/05/2017] [Accepted: 05/01/2017] [Indexed: 02/06/2023] Open
Abstract
Germline stem cells in the Drosophila ovary are maintained by a somatic niche. The niche is structurally and functionally complex and contains four cell types, the escort, cap, and terminal filament cells and the newly identified transition cell. We find that the large Maf transcription factor Traffic jam (Tj) is essential for determining niche cell fates and architecture, enabling each niche in the ovary to support a normal complement of 2–3 germline stem cells. In particular, we focused on the question of how cap cells form. Cap cells express Tj and are considered the key component of a mature germline stem cell niche. We conclude that Tj controls the specification of cap cells, as the complete loss of Tj function caused the development of additional terminal filament cells at the expense of cap cells, and terminal filament cells developed cap cell characteristics when induced to express Tj. Further, we propose that Tj controls the morphogenetic behavior of cap cells as they adopted the shape and spatial organization of terminal filament cells but otherwise appeared to retain their fate when Tj expression was only partially reduced. Our data indicate that Tj contributes to the establishment of germline stem cells by promoting the cap cell fate, and controls the stem cell-carrying capacity of the niche by regulating niche architecture. Analysis of the interactions between Tj and the Notch (N) pathway indicates that Tj and N have distinct functions in the cap cell specification program. We propose that formation of cap cells depends on the combined activities of Tj and the N pathway, with Tj promoting the cap cell fate by blocking the terminal filament cell fate, and N supporting cap cells by preventing the escort cell fate and/or controlling the number of cap cell precursors. Establishment and maintenance of stem cells often depends on associated niche cells. The germline stem cell niche of the Drosophila ovary has been a long-standing model for the analysis of the interactions between stem cells and niche cells. Surprisingly little is known, however, about the mechanisms that pattern this niche, leading to the specification of different niche cell types and to their distinct arrangement around the stem cells. The observation that Tj is expressed at different levels in the different cell types of the niche motivated us to ask what contribution this transcription factor makes to the formation of the niche. Our data suggest that Tj activity is needed for the presence of escort cells and for the correct specification of cap cells but appears to be dispensable for the formation of terminal filament cells in the germline stem cell niche. Moreover, our analysis indicates that the establishment of the cap cell fate depends on the cooperation between Tj and the N signaling pathway. We conclude that Tj regulates the germline stem cell carrying capacity of the niche by controlling the fate and the spatial arrangement of niche cells.
Collapse
|
11
|
Abstract
In the fruit fly Drosophila melanogaster, ovarian germline stem cells (GSCs) and their niches form during larval development. This process is poorly studied partly due to technical difficulties in isolating early larval ovaries. In addition, purifying RNA from larval ovaries proves to be more challenging than purifying it from other organs. Here we describe a technique for dissecting ovaries from early larvae and advise on how to extract RNA with maximum yield and purity. RNA isolation allows assaying gene expression in a direct and quantitative manner, which is invaluable for understanding molecular events underlying ovarian niche formation and GSC establishment.
Collapse
|
12
|
Hitrik A, Popliker M, Gancz D, Mukamel Z, Lifshitz A, Schwartzman O, Tanay A, Gilboa L. Combgap Promotes Ovarian Niche Development and Chromatin Association of EcR-Binding Regions in BR-C. PLoS Genet 2016; 12:e1006330. [PMID: 27846223 PMCID: PMC5147775 DOI: 10.1371/journal.pgen.1006330] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 08/29/2016] [Indexed: 01/26/2023] Open
Abstract
The development of niches for tissue-specific stem cells is an important aspect of stem cell biology. Determination of niche size and niche numbers during organogenesis involves precise control of gene expression. How this is achieved in the context of a complex chromatin landscape is largely unknown. Here we show that the nuclear protein Combgap (Cg) supports correct ovarian niche formation in Drosophila by controlling ecdysone-Receptor (EcR)- mediated transcription and long-range chromatin contacts in the broad locus (BR-C). Both cg and BR-C promote ovarian growth and the development of niches for germ line stem cells. BR-C levels were lower when Combgap was either reduced or over-expressed, indicating an intricate regulation of the BR-C locus by Combgap. Polytene chromosome stains showed that Cg co-localizes with EcR, the major regulator of BR-C, at the BR-C locus and that EcR binding to chromatin was sensitive to changes in Cg levels. Proximity ligation assay indicated that the two proteins could reside in the same complex. Finally, chromatin conformation analysis revealed that EcR-bound regions within BR-C, which span ~30 KBs, contacted each other. Significantly, these contacts were stabilized in an ecdysone- and Combgap-dependent manner. Together, these results highlight Combgap as a novel regulator of chromatin structure that promotes transcription of ecdysone target genes and ovarian niche formation. Germ line stem cells (GSCs) supply either eggs or sperm throughout the life- time of many organisms, including mammals. For their function, GSCs require input from somatic niche cells. Understanding how niches form during development is an important initial step in understanding how stem cell units form, and by extension, how they may regenerate. In this work we describe a new function for the chromatin binding protein Combgap in ovarian niche formation of the model organism Drosophila melanogaster. Combgap is required for the correct expression of another factor, BR-C, in somatic ovarian cells. BR-C is one of the central target genes of the steroid hormone ecdysone, and its expression is controlled by the ecdysone receptor (EcR). Interestingly, EcR-enriched regions within the BR-C locus are engaged in long-range contacts that are stabilized by ecdysone in a Combgap-depended manner. We also found that EcR binding to chromatin depends on WT levels of Combgap. BR-C regulates GSC unit establishment, intestinal stem cells, immune responses, and many other processes. Understanding Combgaps’ function in shaping the BR-C chromatin landscape is a first step towards better appreciation of how this important locus is controlled, and the general machinery coupling gene expression to 3D chromatin structure.
Collapse
Affiliation(s)
- Anna Hitrik
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Malka Popliker
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Dana Gancz
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Zohar Mukamel
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Aviezer Lifshitz
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Omer Schwartzman
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Mol. Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Childhood Leukemia Research Institute, Sheba Medical Center, Ramat Gan, Israel
| | - Amos Tanay
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Lilach Gilboa
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
- * E-mail:
| |
Collapse
|
13
|
Liu R, Wang JH, Xu C, Sun B, Kang SO. Activin pathway enhances colorectal cancer stem cell self-renew and tumor progression. Biochem Biophys Res Commun 2016; 479:715-720. [PMID: 27693580 DOI: 10.1016/j.bbrc.2016.09.146] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/28/2016] [Indexed: 12/28/2022]
Abstract
Activin belongs to transforming growth factor (TGF)-β super family of growth and differentiation factors and activin pathway participated in broad range of cell process. Studies elaborated activin pathway maintain pluripotency in human stem cells and suggest that the function of activin/nodal signaling in self-renew would be conserved across embryonic and adult stem cells. In this study, we tried to determine the effect of activin signaling pathway in regulation of cancer stem cells as a potential target for cancer therapy in clinical trials. A population of colorectal cancer cells was selected by the treatment of activin A. This population of cell possessed stem cell character with sphere formation ability. We demonstrated activin pathway enhanced the colorectal cancer stem cells self-renew and contribute to colorectal cancer progression in vivo. Targeting activin pathway potentially provide effective strategy for colorectal cancer therapy.
Collapse
Affiliation(s)
- Rui Liu
- Laboratory of Biophysics, School of Biological Sciences, Seoul National University, Seoul 151-742, Republic of Korea; Institute of Microbiology, Seoul National University, Seoul 151-742, Republic of Korea
| | - Jun-Hua Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Chengxiong Xu
- Cancer Center, Daping Hospital and Research Institute of Surgery, The Third Military Medical University, Chongqing 400042, China
| | - Bo Sun
- Institute of Microbiology, Seoul National University, Seoul 151-742, Republic of Korea; State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Sa-Ouk Kang
- Laboratory of Biophysics, School of Biological Sciences, Seoul National University, Seoul 151-742, Republic of Korea; Institute of Microbiology, Seoul National University, Seoul 151-742, Republic of Korea.
| |
Collapse
|
14
|
Yang H, Li M, Hu X, Xin T, Zhang S, Zhao G, Xuan T, Li M. MicroRNA-dependent roles of Drosha and Pasha in the Drosophila larval ovary morphogenesis. Dev Biol 2016; 416:312-23. [DOI: 10.1016/j.ydbio.2016.06.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/17/2016] [Accepted: 06/17/2016] [Indexed: 01/04/2023]
|
15
|
Barton LJ, Lovander KE, Pinto BS, Geyer PK. Drosophila male and female germline stem cell niches require the nuclear lamina protein Otefin. Dev Biol 2016; 415:75-86. [PMID: 27174470 DOI: 10.1016/j.ydbio.2016.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 04/28/2016] [Accepted: 05/02/2016] [Indexed: 12/11/2022]
Abstract
The nuclear lamina is an extensive protein network that underlies the inner nuclear envelope. This network includes the LAP2-emerin-MAN1-domain (LEM-D) protein family, proteins that share an association with the chromatin binding protein Barrier-to-autointegration factor (BAF). Loss of individual LEM-D proteins causes progressive, tissue-restricted diseases, known as laminopathies. Mechanisms associated with laminopathies are not yet understood. Here we present our studies of one of the Drosophila nuclear lamina LEM-D proteins, Otefin (Ote), a homologue of emerin. Previous studies have shown that Ote is autonomously required for the survival of female germline stem cells (GSCs). We demonstrate that Ote is also required for survival of somatic cells in the ovarian niche, with loss of Ote causing a decrease in cap cell number and altered signal transduction. We show germ cell-restricted expression of Ote rescues these defects, revealing a non-autonomous function for Ote in niche maintenance and emphasizing that GSCs contribute to the maintenance of their own niches. Further, we investigate the requirement of Ote in the male fertility. We show that ote mutant males become prematurely sterile as they age. Parallel to observations in females, this sterility is associated with GSC loss and changes in somatic cells of the niche, phenotypes that are largely rescued by germ cell-restricted Ote expression. Taken together, our studies demonstrate that Ote is required autonomously for survival of two stem cell populations, as well as non-autonomously for maintenance of two somatic niches. Finally, our data add to growing evidence that LEM-D proteins have critical roles in stem cell survival and tissue homeostasis.
Collapse
Affiliation(s)
- Lacy J Barton
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Kaylee E Lovander
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Belinda S Pinto
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Pamela K Geyer
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
16
|
Mendes CC, Mirth CK. Stage-Specific Plasticity in Ovary Size Is Regulated by Insulin/Insulin-Like Growth Factor and Ecdysone Signaling in Drosophila. Genetics 2016; 202:703-19. [PMID: 26715667 PMCID: PMC4788244 DOI: 10.1534/genetics.115.179960] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 12/21/2015] [Indexed: 02/07/2023] Open
Abstract
Animals from flies to humans adjust their development in response to environmental conditions through a series of developmental checkpoints, which alter the sensitivity of organs to environmental perturbation. Despite their importance, we know little about the molecular mechanisms through which this change in sensitivity occurs. Here we identify two phases of sensitivity to larval nutrition that contribute to plasticity in ovariole number, an important determinant of fecundity, in Drosophila melanogaster. These two phases of sensitivity are separated by the developmental checkpoint called "critical weight"; poor nutrition has greater effects on ovariole number in larvae before critical weight than after. We find that this switch in sensitivity results from distinct developmental processes. In precritical weight larvae, poor nutrition delays the onset of terminal filament cell differentiation, the starting point for ovariole development, and strongly suppresses the rate of terminal filament addition and the rate of increase in ovary volume. Conversely, in postcritical weight larvae, poor nutrition affects only the rate of increase in ovary volume. Our results further indicate that two hormonal pathways, the insulin/insulin-like growth factor and the ecdysone-signaling pathways, modulate the timing and rates of all three developmental processes. The change in sensitivity in the ovary results from changes in the relative contribution of each pathway to the rates of terminal filament addition and increase in ovary volume before and after critical weight. Our work deepens our understanding of how hormones act to modify the sensitivity of organs to environmental conditions, thereby affecting their plasticity.
Collapse
Affiliation(s)
- Cláudia C Mendes
- Development, Evolution, and the Environment Laboratory, Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Christen K Mirth
- Development, Evolution, and the Environment Laboratory, Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
17
|
Gilboa L. Organizing stem cell units in the Drosophila ovary. Curr Opin Genet Dev 2015; 32:31-6. [PMID: 25703842 DOI: 10.1016/j.gde.2015.01.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 01/17/2015] [Accepted: 01/21/2015] [Indexed: 01/20/2023]
Abstract
Organogenesis utilizes processes fundamental to development: cell proliferation, cell differentiation and morphogenesis. Each of these processes is complex in itself; the challenge of studying organogenesis is to determine how all of them integrate to shape organs with recurring precision. This review focuses on the emerging understanding of how synchronized proliferation and differentiation of both somatic and germ cell lineages form 16-20 germ line stem cell (GSC) units in the ovary of Drosophila melanogaster. Recent work demonstrates that the Insulin, ecdysone, Epidermal Growth Factor, Decapentaplegic and Activin signaling pathways are used reiteratively for proliferation and differentiation in both somatic and germ cell lineages. This linkage underlies ovarian coordinated development and provides opportunity for correction mechanisms for stem cell unit numbers.
Collapse
Affiliation(s)
- Lilach Gilboa
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|