1
|
Czyrek AA, Baran K, Hruba E, Horackova A, Bosakova V, Chudzian J, Fafilek B, Laskova V, Stepankova V, Bednar D, Karl K, Kasparek P, Bosakova M, Killinger M, Szotkowska T, Prochazka J, Zieba JT, Rico-Llanos G, Fric J, Hadzic S, Loku E, Wujak M, Svozilova K, Stroblova M, Sedlacek R, Hristova K, Krakow D, Kubovciak J, Delattre M, Bartoszewski R, Buchtova M, Krowarsch D, Chaloupkova R, Zakrzewska M, Krejci P. Increased thermal stability of FGF10 leads to ectopic signaling during development. Cell Mol Life Sci 2025; 82:167. [PMID: 40257501 PMCID: PMC12011707 DOI: 10.1007/s00018-025-05681-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 03/18/2025] [Accepted: 03/26/2025] [Indexed: 04/22/2025]
Abstract
Fibroblast growth factors (FGFs) control organ morphogenesis during development as well as tissue homeostasis and repair in the adult organism. Despite their importance, many mechanisms that regulate FGF function are still poorly understood. Interestingly, the thermodynamic stability of 22 mammalian FGFs varies widely, with some FGFs remaining stable at body temperature for more than 24 h, while others lose their activity within minutes. How thermodynamic stability contributes to the function of FGFs during development remains unknown. Here we show that FGF10, an important limb and lung morphogen, exists as an intrinsically unstable protein that is prone to unfolding and is rapidly inactivated at 37 °C. Using rationally driven directed mutagenesis, we have developed several highly stable (STAB) FGF10 variants with a melting temperature of over 19 °C more than that of wildtype FGF10. In cellular assays in vitro, the FGF10-STABs did not differ from wildtype FGF10 in terms of binding to FGF receptors, activation of downstream FGF receptor signaling in cells, and induction of gene expression. In mouse embryonal lung explants, FGF10-STABs, but not wildtype FGF10, suppressed branching, resulting in increased alveolarization and expansion of epithelial tissue. Similarly, FGF10-STAB1, but not FGF10 wildtype, inhibited the growth of mouse embryonic tibias and markedly altered limb morphogenesis when implanted into chicken limb buds, collectively demonstrating that thermal instability should be considered an important regulator of FGF function that prevents ectopic signaling. Furthermore, we show enhanced differentiation of human iPSC-derived lung organoids and improved regeneration in ex vivo lung injury models mediated by FGF10-STABs, suggesting an application in cell therapy.
Collapse
Affiliation(s)
- Aleksandra A Czyrek
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, 62500, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, 65691, Czech Republic
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, 50-383, Poland
| | - Karolina Baran
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, 50-383, Poland
| | - Eva Hruba
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, 60200, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic
| | | | - Veronika Bosakova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, 62500, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, 65691, Czech Republic
| | - Julia Chudzian
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, 50-383, Poland
| | - Bohumil Fafilek
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, 62500, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, 65691, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, 60200, Czech Republic
| | | | | | - David Bednar
- International Clinical Research Center, St. Anne's University Hospital, Brno, 65691, Czech Republic
- Enantis Ltd, Brno, 62500, Czech Republic
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic
| | - Kelly Karl
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Petr Kasparek
- Czech Center for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, 25250, Czech Republic
| | - Michaela Bosakova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, 62500, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, 60200, Czech Republic
| | - Michal Killinger
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, 60200, Czech Republic
| | - Tereza Szotkowska
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, 60200, Czech Republic
| | - Jan Prochazka
- Czech Center for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, 25250, Czech Republic
| | - Jennifer T Zieba
- Department of Orthopaedic Surgery, Human Genetics, and Obstetrics and Gynecology, University of California Los Angeles, California Los Angeles, CA, 90095, USA
| | - Gustavo Rico-Llanos
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, 62500, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, 65691, Czech Republic
| | - Jan Fric
- International Clinical Research Center, St. Anne's University Hospital, Brno, 65691, Czech Republic
- Institute of Hematology and Blood Transfusion, Prague, 12800, Czech Republic
| | - Stefan Hadzic
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, 35392, Giessen, Germany
| | - Edma Loku
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, 35392, Giessen, Germany
| | - Magdalena Wujak
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, 35392, Giessen, Germany
- Department of Medicinal Chemistry, Collegium Medicum in Bydgoszcz, Faculty of Pharmacy, Nicolaus Copernicus University in Torun, Bydgoszcz, 85-089, Poland
| | - Katerina Svozilova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, 62500, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, 60200, Czech Republic
| | - Michaela Stroblova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, 62500, Czech Republic
| | - Radislav Sedlacek
- Czech Center for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, 25250, Czech Republic
| | - Kalina Hristova
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Deborah Krakow
- Department of Orthopaedic Surgery, Human Genetics, and Obstetrics and Gynecology, University of California Los Angeles, California Los Angeles, CA, 90095, USA
| | - Jan Kubovciak
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, 14200, Czech Republic
| | - Mathys Delattre
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, 14200, Czech Republic
| | - Rafal Bartoszewski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, 50-383, Poland
| | - Marcela Buchtova
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, 60200, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic
| | - Daniel Krowarsch
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, 50-383, Poland
| | - Radka Chaloupkova
- Enantis Ltd, Brno, 62500, Czech Republic.
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic.
| | - Malgorzata Zakrzewska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, 50-383, Poland.
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, 62500, Czech Republic.
- International Clinical Research Center, St. Anne's University Hospital, Brno, 65691, Czech Republic.
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, 60200, Czech Republic.
| |
Collapse
|
2
|
Dalecka L, Hruba E, Andrasova M, Steklikova K, Pavlikova Z, Kucerova K, Szotkowska T, Bartos M, Buchtova M, Tucker AS, Hovorakova M. Sprouty2/4 deficiency disrupts early signaling centers impacting chondrogenesis in the mouse forelimb. JBMR Plus 2025; 9:ziaf002. [PMID: 39906257 PMCID: PMC11792080 DOI: 10.1093/jbmrpl/ziaf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/18/2024] [Accepted: 01/08/2025] [Indexed: 02/06/2025] Open
Abstract
The FGF signaling pathway plays an important role in the regulation of limb development, controlling cell migration, proliferation, differentiation, and apoptosis. Sprouty proteins act as antagonists of the FGF pathway and control the extent of FGF signaling as part of a negative feedback loop. Sprouty2/4 deficient mice evince defects in endochondral bone formation and digit patterning in their forelimbs, with pathogenesis recently related to ciliopathies. To understand the mechanisms behind these pathologies, the limb defects in Sprouty2+/-;Sprouty4-/- male and female mice were characterized and correlated to the dynamic expression patterns of Sprouty2 and Sprouty4, and the impact on the main signaling centers of the limb bud was assessed. Sprouty2 and Sprouty4 exhibited dynamic expressions during limb development. Interestingly, despite similar expression patterns in all limbs, the hindlimbs did not evince any obvious alterations in development, while the forelimbs showed consistent phenotypes of variable severity. Prenatally as well as postnatally, the left forelimb was significantly more severely affected than the right one. A broad variety of pathologies was present in the autopodium of the forelimb, including changes in digit number, size, shape, and number of bones, hand clefts, and digit fusions. Ectopic ossification of bones and abnormal bone fusions detected in micro-CT scans were frequently observed in the digital as well as in the carpal and metacarpal areas. Sprouty2+/-;Sprouty4-/- limb buds showed patchy loss of Fgf8 expression in the apical ectodermal ridge, and a loss of tissue underlying these regions. The zone of polarizing activity was also impacted, with lineage analysis highlighting a change in the contribution of Sonic hedgehog expressing cells. These findings support the link between Sproutys and Hedgehog signaling during limb development and highlight the importance of Sprouty2 and Sprouty4 in controlling early signaling centers in the limb.
Collapse
Affiliation(s)
- Linda Dalecka
- First Faculty of Medicine, Institute of Histology and Embryology, Charles University, 128 00 Prague, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Eva Hruba
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 602 00 Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Marketa Andrasova
- First Faculty of Medicine, Institute of Histology and Embryology, Charles University, 128 00 Prague, Czech Republic
- Department of Anthropology and Human Genetics, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Klara Steklikova
- First Faculty of Medicine, Institute of Histology and Embryology, Charles University, 128 00 Prague, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Zuzana Pavlikova
- First Faculty of Medicine, Institute of Histology and Embryology, Charles University, 128 00 Prague, Czech Republic
- Department of Anthropology and Human Genetics, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Klara Kucerova
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 602 00 Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Tereza Szotkowska
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 602 00 Brno, Czech Republic
| | - Martin Bartos
- First Faculty of Medicine, General University Hospital, Institute of Dental Medicine, 121 08 Prague, Czech Republic
- First Faculty of Medicine, Institute of Anatomy, Charles University, 128 00 Prague, Czech Republic
| | - Marcela Buchtova
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 602 00 Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Abigail Saffron Tucker
- First Faculty of Medicine, Institute of Histology and Embryology, Charles University, 128 00 Prague, Czech Republic
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, Guys Hospital, London, TN8 7LR, United Kingdom
| | - Maria Hovorakova
- First Faculty of Medicine, Institute of Histology and Embryology, Charles University, 128 00 Prague, Czech Republic
| |
Collapse
|
3
|
Hausott B, Pircher L, Kind M, Park JW, Claus P, Obexer P, Klimaschewski L. Sprouty2 Regulates Endocytosis and Degradation of Fibroblast Growth Factor Receptor 1 in Glioblastoma Cells. Cells 2024; 13:1967. [PMID: 39682716 PMCID: PMC11639775 DOI: 10.3390/cells13231967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 11/07/2024] [Accepted: 11/14/2024] [Indexed: 12/18/2024] Open
Abstract
The Sprouty (SPRY) proteins are evolutionary conserved modulators of receptor tyrosine kinase (RTK) signaling. SPRY2 inhibits fibroblast growth factor (FGF) signaling, whereas it enhances epidermal growth factor (EGF) signaling through inhibition of EGF receptor (EGFR) endocytosis, ubiquitination, and degradation. In this study, we analyzed the effects of SPRY2 on endocytosis and degradation of FGF receptor 1 (FGFR1) using two human glioblastoma (GBM) cell lines with different endogenous SPRY2 levels. SPRY2 overexpression (SPRY2-OE) inhibited clathrin- and caveolae-mediated endocytosis of FGFR1, reduced the number of caveolin-1 vesicles and the uptake of transferrin. Furthermore, FGFR1 protein was decreased by SPRY2-OE, whereas EGFR protein was increased. SPRY2-OE enhanced FGFR1 degradation by increased c-casitas b-lineage lymphoma (c-CBL)-mediated ubiquitination, but it diminished binding of phospholipase Cγ1 (PLCγ1) to FGFR1. Consequently, SPRY2-OE inhibited FGF2-induced activation of PLCγ1, whereas it enhanced EGF-induced PLCγ1 activation. Despite the reduction of FGFR1 protein and the inhibition of FGF signaling, SPRY2-OE increased cell viability, and knockdown of SPRY2 enhanced the sensitivity to cisplatin. These results demonstrate that the inhibitory effect of SPRY2-OE on FGF signaling is at least in part due to the reduction in FGFR1 levels and the decreased binding of PLCγ1 to the receptor.
Collapse
Affiliation(s)
- Barbara Hausott
- Institute of Neuroanatomy, Medical University of Innsbruck, 6020 Innsbruck, Austria; (L.P.); (M.K.); (J.-W.P.); (L.K.)
| | - Lena Pircher
- Institute of Neuroanatomy, Medical University of Innsbruck, 6020 Innsbruck, Austria; (L.P.); (M.K.); (J.-W.P.); (L.K.)
| | - Michaela Kind
- Institute of Neuroanatomy, Medical University of Innsbruck, 6020 Innsbruck, Austria; (L.P.); (M.K.); (J.-W.P.); (L.K.)
| | - Jong-Whi Park
- Institute of Neuroanatomy, Medical University of Innsbruck, 6020 Innsbruck, Austria; (L.P.); (M.K.); (J.-W.P.); (L.K.)
| | - Peter Claus
- Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany;
- Center for Systems Neuroscience, 30625 Hannover, Germany
| | - Petra Obexer
- Department of Pediatrics II, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Lars Klimaschewski
- Institute of Neuroanatomy, Medical University of Innsbruck, 6020 Innsbruck, Austria; (L.P.); (M.K.); (J.-W.P.); (L.K.)
| |
Collapse
|
4
|
Bogale DE. The roles of FGFR3 and c-MYC in urothelial bladder cancer. Discov Oncol 2024; 15:295. [PMID: 39031286 PMCID: PMC11264706 DOI: 10.1007/s12672-024-01173-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/16/2024] [Indexed: 07/22/2024] Open
Abstract
Bladder cancer is one of the most frequently occurring cancers worldwide. At diagnosis, 75% of urothelial bladder cancer cases have non-muscle invasive bladder cancer while 25% have muscle invasive or metastatic disease. Aberrantly activated fibroblast growth factor receptor (FGFR)-3 has been implicated in the pathogenesis of bladder cancer. Activating mutations of FGFR3 are observed in around 70% of NMIBC cases and ~ 15% of MIBCs. Activated FGFR3 leads to ligand-independent receptor dimerization and activation of downstream signaling pathways that promote cell proliferation and survival. FGFR3 is an important therapeutic target in bladder cancer, and clinical studies have shown the benefit of FGFR inhibitors in a subset of bladder cancer patients. c-MYC is a well-known major driver of carcinogenesis and is one of the most commonly deregulated oncogenes identified in human cancers. Studies have shown that the antitumor effects of FGFR inhibition in FGFR3 dependent bladder cancer cells and other FGFR dependent cancers may be mediated through c-MYC, a key downstream effector of activated FGFR that is involved tumorigenesis. This review will summarize the current general understanding of FGFR signaling and MYC alterations in cancer, and the role of FGFR3 and MYC dysregulation in the pathogenesis of urothelial bladder cancer with the possible therapeutic implications.
Collapse
Affiliation(s)
- Dereje E Bogale
- School of Medicine, Department of Oncology, Addis Ababa University, Addis Ababa, Ethiopia.
| |
Collapse
|
5
|
Pan H, Xu R, Zhang Y. Role of SPRY4 in health and disease. Front Oncol 2024; 14:1376873. [PMID: 38686189 PMCID: PMC11056578 DOI: 10.3389/fonc.2024.1376873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/01/2024] [Indexed: 05/02/2024] Open
Abstract
SPRY4 is a protein encoding gene that belongs to the Spry family. It inhibits the mitogen-activated protein kinase (MAPK) signaling pathway and plays a role in various biological functions under normal and pathological conditions. The SPRY4 protein has a specific structure and interacts with other molecules to regulate cellular behavior. It serves as a negative feedback inhibitor of the receptor protein tyrosine kinases (RTK) signaling pathway and interferes with cell proliferation and migration. SPRY4 also influences inflammation, oxidative stress, and cell apoptosis. In different types of tumors, SPRY4 can act as a tumor suppressor or an oncogene. Its dysregulation is associated with the development and progression of various cancers, including colorectal cancer, glioblastoma, hepatocellular carcinoma, perihilar cholangiocarcinoma, gastric cancer, breast cancer, and lung cancer. SPRY4 is also involved in organ development and is associated with ischemic diseases. Further research is ongoing to understand the expression and function of SPRY4 in specific tumor microenvironments and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Hao Pan
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Renjie Xu
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Zhang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Freyer J, Labadie JD, Huff JT, Denyer M, Forman OP, Chodroff Foran R, Donner J. Association of FGF4L1 Retrogene Insertion with Prolapsed Gland of the Nictitans (Cherry Eye) in Dogs. Genes (Basel) 2024; 15:198. [PMID: 38397188 PMCID: PMC10887708 DOI: 10.3390/genes15020198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Cherry eye is the common name for prolapse of the nictitans gland, a tear-producing gland situated under the third eyelid of dogs. Cherry eye is characterized by a red fleshy protuberance in the corner of the eye, resembling a cherry. This protrusion is a displacement of the normal gland of the third eyelid, thought to be caused by a defect in the connective tissue that secures the gland in place. Options for treatment may include anti-inflammatory medications in mild cases, but surgical replacement of the gland is usually indicated. Cherry eye is most often seen in dogs under the age of two years, with certain breeds having a higher incidence, suggesting a potential genetic association. Integration of panel genetic testing into routine clinical practice allows for the generation of large numbers of genotyped individuals paired with clinical records and enables the investigation of common disorders using a genome-wide association study (GWAS) approach at scale. In this investigation, several thousand cases and controls for cherry eye in both purebred dogs and mixed breeds are used for a large-scale GWAS, revealing a single peak of genome-wide significance on canine chromosome 18, directly at the location of the previously identified FGF4 insertion known to cause chondrodysplasia in several breeds.
Collapse
Affiliation(s)
- Jamie Freyer
- Wisdom Panel, Mars Petcare Science and Diagnostics, Portland, OR 97209, USA; (J.D.L.); (J.T.H.); (R.C.F.)
| | - Julia D. Labadie
- Wisdom Panel, Mars Petcare Science and Diagnostics, Portland, OR 97209, USA; (J.D.L.); (J.T.H.); (R.C.F.)
| | - Jason T. Huff
- Wisdom Panel, Mars Petcare Science and Diagnostics, Portland, OR 97209, USA; (J.D.L.); (J.T.H.); (R.C.F.)
| | - Michael Denyer
- Wisdom Panel, Mars Petcare Science and Diagnostics, Waltham on the Wolds, Leicestershire LE14 4RS, UK; (M.D.); (O.P.F.)
| | - Oliver P. Forman
- Wisdom Panel, Mars Petcare Science and Diagnostics, Waltham on the Wolds, Leicestershire LE14 4RS, UK; (M.D.); (O.P.F.)
| | - Rebecca Chodroff Foran
- Wisdom Panel, Mars Petcare Science and Diagnostics, Portland, OR 97209, USA; (J.D.L.); (J.T.H.); (R.C.F.)
| | - Jonas Donner
- Wisdom Panel, Mars Petcare Science and Diagnostics, 00581 Helsinki, Finland;
| |
Collapse
|
7
|
Maniou E, Farah F, Marshall AR, Crane-Smith Z, Krstevski A, Stathopoulou A, Greene NDE, Copp AJ, Galea GL. Caudal Fgfr1 disruption produces localised spinal mis-patterning and a terminal myelocystocele-like phenotype in mice. Development 2023; 150:dev202139. [PMID: 37756583 PMCID: PMC10617625 DOI: 10.1242/dev.202139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
Closed spinal dysraphisms are poorly understood malformations classified as neural tube (NT) defects. Several, including terminal myelocystocele, affect the distal spine. We have previously identified a NT closure-initiating point, Closure 5, in the distal spine of mice. Here, we document equivalent morphology of the caudal-most closing posterior neuropore (PNP) in mice and humans. Closure 5 forms in a region of active FGF signalling, and pharmacological FGF receptor blockade impairs its formation in cultured mouse embryos. Conditional genetic deletion of Fgfr1 in caudal embryonic tissues with Cdx2Cre diminishes neuroepithelial proliferation, impairs Closure 5 formation and delays PNP closure. After closure, the distal NT of Fgfr1-disrupted embryos dilates to form a fluid-filled sac overlying ventrally flattened spinal cord. This phenotype resembles terminal myelocystocele. Histological analysis reveals regional and progressive loss of SHH- and FOXA2-positive ventral NT domains, resulting in OLIG2 labelling of the ventral-most NT. The OLIG2 domain is also subsequently lost, eventually producing a NT that is entirely positive for the dorsal marker PAX3. Thus, a terminal myelocystocele-like phenotype can arise after completion of NT closure with localised spinal mis-patterning caused by disruption of FGFR1 signalling.
Collapse
Affiliation(s)
- Eirini Maniou
- Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Faduma Farah
- Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Abigail R. Marshall
- Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Zoe Crane-Smith
- Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Andrea Krstevski
- Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Athanasia Stathopoulou
- Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Nicholas D. E. Greene
- Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Andrew J. Copp
- Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Gabriel L. Galea
- Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| |
Collapse
|
8
|
Li S, Zhao S, Liang N, Zhang S, Zhang L, Zhou L, Liu A, Cao X, Tian J, Yu Y, Fan Z, Xiao K, Wang M, Zhao H, Bai R, Sun J. SPRY4 inhibits and sensitizes the primary KIT mutants in gastrointestinal stromal tumors (GISTs) to imatinib. Gastric Cancer 2023; 26:677-690. [PMID: 37222910 DOI: 10.1007/s10120-023-01402-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/15/2023] [Indexed: 05/25/2023]
Abstract
BACKGROUND KIT is frequently mutated in gastrointestinal stromal tumors (GISTs), and the treatment of GISTs largely relies on targeting KIT currently. In this study, we aimed to investigate the role of sprouty RTK signaling antagonist 4 (SPRY4) in GISTs and related mechanisms. METHODS Ba/F3 cells and GIST-T1 cell were used as cell models, and mice carrying germline KIT/V558A mutation were used as animal model. Gene expression was examined by qRT-PCR and western blot. Protein association was examined by immunoprecipitation. RESULTS Our study revealed that KIT increased the expression of SPRY4 in GISTs. SPRY4 was found to bind to both wild-type KIT and primary KIT mutants in GISTs, and inhibited KIT expression and activation, leading to decreased cell survival and proliferation mediated by KIT. We also observed that inhibition of SPRY4 expression in KITV558A/WT mice led to increased tumorigenesis of GISTs in vivo. Moreover, our results demonstrated that SPRY4 enhanced the inhibitory effect of imatinib on the activation of primary KIT mutants, as well as on cell proliferation and survival mediated by the primary KIT mutants. However, in contrast to this, SPRY4 did not affect the expression and activation of drug-resistant secondary KIT mutants, nor did it affect the sensitivity of secondary KIT mutants to imatinib. These findings suggested that secondary KIT mutants regulate a different downstream signaling cascade than primary KIT mutants. CONCLUSIONS Our results suggested that SPRY4 acts as negative feedback of primary KIT mutants in GISTs by inhibiting KIT expression and activation. It can increase the sensitivity of primary KIT mutants to imatinib. In contrast, secondary KIT mutants are resistant to the inhibition of SPRY4.
Collapse
Affiliation(s)
- Shujing Li
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
- Department of Pediatrics, The General Hospital of Ningxia Medical University, Yinchuan, China
| | - Sien Zhao
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Nianhai Liang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Shaoting Zhang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Liangying Zhang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Liangji Zhou
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Anbu Liu
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Xu Cao
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Jinhai Tian
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Yuanyuan Yu
- Department of Emergency, The General Hospital of Ningxia Medical University, Yinchuan, China
| | - Zhaoyang Fan
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Kun Xiao
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Ming Wang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Hui Zhao
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ru Bai
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Jianmin Sun
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China.
| |
Collapse
|
9
|
Xu J, Mead O, Moya A, Caglar C, Miller DJ, Adamski M, Adamska M. Wound healing and regeneration in the reef building coral Acropora millepora. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2022.979278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Branching scleractinian corals are niche-constructing organisms, providing continuously-growing, structural foundation for spectacularly biodiverse coral reef ecosystems. A large part of their success lies in the ability to quickly regenerate following mechanical damage. Even now, when the corals undergo great decline due to anthropogenic weather and storm extremes, it is surprising how little is known about molecular mechanisms governing regeneration in these iconic organisms. In this study, we used RNA-seq to identify genes involved in the regeneration of Acropora millepora, starting with the initial wound closure up to complete rebuilding of lost structures. Many of the differentially expressed genes we found in the wound healing steps are homologues of genes known to be involved in wound healing and regeneration of bilaterian and other cnidarian species, prominently including multiple components of FGF and Wnt signalling pathways. Comparison between genes involved in wound healing and continuous growth of the colony demonstrates both similarity and distinctiveness of the genetic programmes controlling these processes. A striking example is specific expression of c-Fos, a transcription factor with conserved role in early injury response, during the earliest stages of wound healing of A. millepora. By comparing results obtained in diverse experimental conditions including a closed-loop, recirculating aquarium and a flow-through system of marine station, we have demonstrated feasibility of using zooxanthellate scleractinian corals as experimental models in fundamental biology research, including studies of regeneration.
Collapse
|
10
|
Cui S, Chen Y, Guo Y, Wang X, Chen D. Hsa-miR-22-3p inhibits liver cancer cell EMT and cell migration/ invasion by indirectly regulating SPRY2. PLoS One 2023; 18:e0281536. [PMID: 36749775 PMCID: PMC9904474 DOI: 10.1371/journal.pone.0281536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 01/24/2023] [Indexed: 02/08/2023] Open
Abstract
The general mechanism for microRNAs to play biological function is through their inhibition on the expression of their target genes. In cancer, microRNAs may accelerate cell senescence, block angiogenesis, decrease energy supplies, repress tumor cell cycle and promote apoptosis to function as the tumor repressors. On the other hand, microRNAs can modulate tumor suppressor molecules to activate oncogene relevant signaling pathway to initiate tumorigenesis and promote tumor progression. By targeting different genes, miR-22 can function as either a tumor suppressor or a tumor promoter in different types of cancer. In liver cancer, miR-22 mainly functions as a tumor suppressor via its regulation on different genes. In this study, we demonstrated that miR-22 indirectly regulates SPRY2 by inhibiting CBL, an E3 ligase for SPRY2 that has been confirmed. As one of the modulators of the MAPK (mitogen-activated protein kinase)/ERK (extracellular signal-regulated kinase) signaling pathway, SPRY2 plays important roles in many developmental and physiological processes, and its deregulation has been reported in different types of cancer and shown to affect cancer development, progression, and metastasis. By inhibiting the expression of CBL, which stabilizes SPRY2, miR-22 indirectly upregulates SPRY2, thereby suppressing the epithelial-mesenchymal transition (EMT), cell migration, and invasion and decreasing the expression of liver cancer stem cell (CSC) marker genes. The inhibitory effects of miR-22 on EMT, cell migration, and invasion can be blocked by the knockdown of SPRY2 expression in miR-22 overexpressing cells. Additionally, we demonstrated that miR-22 expression inhibits the ERK signaling pathway and that this effect is due to its upregulation of SPRY2. Overall, our study revealed a novel miR-22-3p/CBL/SPRY2/ERK axis that plays an important role in EMT, cell migration, and invasion of liver cancer cells.
Collapse
Affiliation(s)
- Shuaishuai Cui
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Yuanyuan Chen
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Yunfei Guo
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Xing Wang
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Dahu Chen
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
- * E-mail:
| |
Collapse
|
11
|
Sakai H, Sato K, Ito K, Kosugi I, Kiyama M, Kon R, Ikarashi N, Kamei J, Chiba Y, Hosoe T. Inhibition of Spred/Sprouty Expression in the Skin of a Contact Dermatitis-Like Model. Biol Pharm Bull 2022; 45:1208-1212. [DOI: 10.1248/bpb.b22-00279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hiroyasu Sakai
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University
| | - Ken Sato
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University
| | - Koya Ito
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University
| | - Ikoi Kosugi
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University
| | - Miho Kiyama
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University
| | - Risako Kon
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University
| | - Nobutomo Ikarashi
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University
| | - Junzo Kamei
- Juntendo Advanced Research Institute for Health Science, Juntendo University
| | - Yoshihiko Chiba
- Department of Physiology and Molecular Sciences, School of Pharmacy, Hoshi University
| | - Tomoo Hosoe
- Department of Bioregulatory Science, School of Pharmacy, Hoshi University
| |
Collapse
|
12
|
Chibly AM, Aure MH, Patel VN, Hoffman MP. Salivary gland function, development, and regeneration. Physiol Rev 2022; 102:1495-1552. [PMID: 35343828 PMCID: PMC9126227 DOI: 10.1152/physrev.00015.2021] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/27/2021] [Accepted: 03/17/2022] [Indexed: 02/08/2023] Open
Abstract
Salivary glands produce and secrete saliva, which is essential for maintaining oral health and overall health. Understanding both the unique structure and physiological function of salivary glands, as well as how they are affected by disease and injury, will direct the development of therapy to repair and regenerate them. Significant recent advances, particularly in the OMICS field, increase our understanding of how salivary glands develop at the cellular, molecular, and genetic levels: the signaling pathways involved, the dynamics of progenitor cell lineages in development, homeostasis, and regeneration, and the role of the extracellular matrix microenvironment. These provide a template for cell and gene therapies as well as bioengineering approaches to repair or regenerate salivary function.
Collapse
Affiliation(s)
- Alejandro M Chibly
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Marit H Aure
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Vaishali N Patel
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Matthew P Hoffman
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
13
|
Hausott B, Glueckert R, Schrott-Fischer A, Klimaschewski L. Signal Transduction Regulators in Axonal Regeneration. Cells 2022; 11:cells11091537. [PMID: 35563843 PMCID: PMC9104247 DOI: 10.3390/cells11091537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/16/2022] Open
Abstract
Intracellular signal transduction in response to growth factor receptor activation is a fundamental process during the regeneration of the nervous system. In this context, intracellular inhibitors of neuronal growth factor signaling have become of great interest in the recent years. Among them are the prominent signal transduction regulators Sprouty (SPRY) and phosphatase and tensin homolog deleted on chromosome 10 (PTEN), which interfere with major signaling pathways such as extracellular signal-regulated kinase (ERK) or phosphoinositide 3-kinase (PI3K)/Akt in neurons and glial cells. Furthermore, SPRY and PTEN are themselves tightly regulated by ubiquitin ligases such as c-casitas b-lineage lymphoma (c-CBL) or neural precursor cell expressed developmentally down-regulated protein 4 (NEDD4) and by different microRNAs (miRs) including miR-21 and miR-222. SPRY, PTEN and their intracellular regulators play an important role in the developing and the lesioned adult central and peripheral nervous system. This review will focus on the effects of SPRY and PTEN as well as their regulators in various experimental models of axonal regeneration in vitro and in vivo. Targeting these signal transduction regulators in the nervous system holds great promise for the treatment of neurological injuries in the future.
Collapse
Affiliation(s)
- Barbara Hausott
- Institute of Neuroanatomy, Medical University Innsbruck, 6020 Innsbruck, Austria;
- Correspondence:
| | - Rudolf Glueckert
- Department of Otorhinolaryngology, Medical University Innsbruck, 6020 Innsbruck, Austria; (R.G.); (A.S.-F.)
| | - Anneliese Schrott-Fischer
- Department of Otorhinolaryngology, Medical University Innsbruck, 6020 Innsbruck, Austria; (R.G.); (A.S.-F.)
| | - Lars Klimaschewski
- Institute of Neuroanatomy, Medical University Innsbruck, 6020 Innsbruck, Austria;
| |
Collapse
|
14
|
Kamptner AZM, Mayer CE, Sutterlüty H. Sprouty3, but Not Sprouty1, Expression Is Beneficial for the Malignant Potential of Osteosarcoma Cells. Int J Mol Sci 2021; 22:ijms222111944. [PMID: 34769378 PMCID: PMC8585105 DOI: 10.3390/ijms222111944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/21/2021] [Accepted: 10/31/2021] [Indexed: 11/16/2022] Open
Abstract
Sprouty proteins are widely accepted modulators of receptor tyrosine kinase-associated pathways and fulfill diversified roles in cancerogenesis dependent on the originating cells. In this study we detected a high expression of Sprouty3 in osteosarcoma-derived cells and addressed the question of whether Sprouty3 and Sprouty1 influence the malignant phenotype of this bone tumor entity. By using adenoviruses, the Sprouty proteins were expressed in two different cell lines and their influence on cellular behavior was assessed. Growth curve analyses and Scratch assays revealed that Sprouty3 accelerates cell proliferation and migration. Additionally, more colonies were grown in Soft agar if the cells express Sprouty3. In parallel, Sprouty1 had no significant effect on the measured endpoints of the study in osteosarcoma-derived cells. The promotion of the tumorigenic capacities in the presence of Sprouty3 coincided with an increased activation of signaling as measured by evaluating the phosphorylation of extracellular signal-regulated kinases (ERKs). Ectopic expression of a mutated Sprouty3 protein, in which the tyrosine necessary for its activation was substituted, resulted in inhibited migration of the treated cells. Our findings identify Sprouty3 as a candidate for a tumor promoter in osteosarcoma.
Collapse
|
15
|
Ates KM, Estes AJ, Liu Y. Potential underlying genetic associations between keratoconus and diabetes mellitus. ADVANCES IN OPHTHALMOLOGY PRACTICE AND RESEARCH 2021; 1:100005. [PMID: 34746916 PMCID: PMC8570550 DOI: 10.1016/j.aopr.2021.100005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/18/2021] [Accepted: 08/29/2021] [Indexed: 12/14/2022]
Abstract
Background Keratoconus (KC) is the most common ectatic corneal disease, characterized by significantly localized thinning of the corneal stroma. Genetic, environmental, hormonal, and metabolic factors contribute to the pathogenesis of KC. Additionally, multiple comorbidities, such as diabetes mellitus, may affect the risk of KC. Main Body Patients with diabetes mellitus (DM) have been reported to have lower risk of developing KC by way of increased endogenous collagen crosslinking in response to chronic hyperglycemia. However, this remains a debated topic as other studies have suggested either a positive association or no association between DM and KC. To gain further insight into the underlying genetic components of these two diseases, we reviewed candidate genes associated with KC and central corneal thickness in the literature. We then explored how these genes may be regulated similarly or differentially under hyperglycemic conditions and the role they play in the systemic complications associated with DM. Conclusion Our comprehensive review of potential genetic factors underlying KC and DM provides a direction for future studies to further determine the genetic etiology of KC and how it is influenced by systemic diseases such as diabetes.
Collapse
Affiliation(s)
- Kristin M. Ates
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Amy J. Estes
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, USA
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Yutao Liu
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, USA
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
16
|
Hruba E, Kavkova M, Dalecka L, Macholan M, Zikmund T, Varecha M, Bosakova M, Kaiser J, Krejci P, Hovorakova M, Buchtova M. Loss of Sprouty Produces a Ciliopathic Skeletal Phenotype in Mice Through Upregulation of Hedgehog Signaling. J Bone Miner Res 2021; 36:2258-2274. [PMID: 34423857 DOI: 10.1002/jbmr.4427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 08/13/2021] [Accepted: 08/18/2021] [Indexed: 01/23/2023]
Abstract
The Sprouty family is a highly conserved group of intracellular modulators of receptor tyrosine kinase (RTK)-signaling pathways, which have been recently linked to primary cilia. Disruptions in the structure and function of primary cilia cause inherited disorders called ciliopathies. We aimed to evaluate Sprouty2 and Sprouty4 gene-dependent alterations of ciliary structure and to focus on the determination of its association with Hedgehog signaling defects in chondrocytes. Analysis of the transgenic mice phenotype with Sprouty2 and Sprouty4 deficiency revealed several defects, including improper endochondral bone formation and digit patterning, or craniofacial and dental abnormalities. Moreover, reduced bone thickness and trabecular bone mass, skull deformities, or chondroma-like lesions were revealed. All these pathologies might be attributed to ciliopathies. Elongation of the ciliary axonemes in embryonic and postnatal growth plate chondrocytes was observed in Sprouty2-/- and Sprouty2+/- /Sprouty4-/- mutants compared with corresponding littermate controls. Also, cilia-dependent Hedgehog signaling was upregulated in Sprouty2/4 mutant animals. Ptch1 and Ihh expression were upregulated in the autopodium and the proximal tibia of Sprouty2-/- /Sprouty4-/- mutants. Increased levels of the GLI3 repressor (GLI3R) form were detected in Sprouty2/4 mutant primary fibroblast embryonic cell cultures and tissues. These findings demonstrate that mouse lines deficient in Sprouty proteins manifest phenotypic features resembling ciliopathic phenotypes in multiple aspects and may serve as valuable models to study the association between overactivation of RTK and dysfunction of primary cilia during skeletogenesis. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Eva Hruba
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic.,Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Michaela Kavkova
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Linda Dalecka
- Institute of Histology and Embryology, First Faculty of Medicine, Charles University, Prague, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Miloš Macholan
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | - Tomas Zikmund
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Miroslav Varecha
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Michaela Bosakova
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic.,Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jozef Kaiser
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Pavel Krejci
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic.,Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Maria Hovorakova
- Institute of Histology and Embryology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Marcela Buchtova
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic.,Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
17
|
Epigenetic DNA Modifications Upregulate SPRY2 in Human Colorectal Cancers. Cells 2021; 10:cells10102632. [PMID: 34685612 PMCID: PMC8534322 DOI: 10.3390/cells10102632] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/15/2021] [Accepted: 09/27/2021] [Indexed: 11/17/2022] Open
Abstract
Conventional wisdom is that Sprouty2 (SPRY2), a suppressor of Receptor Tyrosine Kinase (RTK) signaling, functions as a tumor suppressor and is downregulated in many solid tumors. We reported, for the first time, that increased expression of SPRY2 augments cancer phenotype and Epithelial-Mesenchymal-Transition (EMT) in colorectal cancer (CRC). In this report, we assessed epigenetic DNA modifications that regulate SPRY2 expression in CRC. A total of 4 loci within SPRY2 were evaluated for 5mC using Combined Bisulfite Restriction Analysis (COBRA). Previously sequenced 5hmC nano-hmC seal data within SPRY2 promoter and gene body were evaluated in CRC. Combined bioinformatics analyses of SPRY2 CRC transcripts by RNA-seq/microarray and 450K methyl-array data archived in The Cancer Genome Atlas (TCGA) and GEO database were performed. SPRY2 protein in CRC tumors and cells was measured by Western blotting. Increased SPRY2 mRNA was observed across several CRC datasets and increased protein expression was observed among CRC patient samples. For the first time, SPRY2 hypomethylation was identified in adenocarcinomas in the promoter and gene body. We also revealed, for the first time, increases of 5hmC deposition in the promoter region of SPRY2 in CRC. SPRY2 promoter hypomethylation and increased 5hmC may play an influential role in upregulating SPRY2 in CRC.
Collapse
|
18
|
Kawamura N, Takaoka K, Hamada H, Hadjantonakis AK, Sun-Wada GH, Wada Y. Rab7-Mediated Endocytosis Establishes Patterning of Wnt Activity through Inactivation of Dkk Antagonism. Cell Rep 2021; 31:107733. [PMID: 32521258 PMCID: PMC8171381 DOI: 10.1016/j.celrep.2020.107733] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 03/16/2020] [Accepted: 05/13/2020] [Indexed: 12/12/2022] Open
Abstract
Endocytosis has been proposed to modulate cell signaling activities. However, the role of endocytosis in embryogenesis, which requires coordination of multiple signaling inputs, has remained less understood. We previously showed that mouse embryos lacking a small guanosine triphosphate (GTP)-binding protein Rab7 implicated in endocytic flow are defective in gastrulation. Here, we investigate how subcellular defects associated with Rab7 deficiency are related to the observed developmental defects. Rab7-deficient embryos fail to organize mesodermal tissues due to defects in Wnt-β-catenin signaling. Visceral endoderm (VE)-specific ablation of Rab7 results in patterning defects similar to systemic Rab7 deletion. Rab7 mutants accumulate the Wnt antagonist Dkk1 in the extracellular space and in intracellular compartments throughout the VE epithelium. These data indicate that Rab7-dependent endocytosis regulates the concentration and availability of extracellular Dkk1, thereby relieving the epiblast of antagonism. This intercellular mechanism therefore organizes distinct spatiotemporal patterns of canonical Wnt activity during the peri-gastrulation stages of embryonic development.
Collapse
Affiliation(s)
- Nobuyuki Kawamura
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kohdo, Kyotanabe, Kyoto 610-0395, Japan
| | - Katsuyoshi Takaoka
- Institute of Advanced Medical Sciences, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | - Hiroshi Hamada
- RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan; Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ge-Hong Sun-Wada
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kohdo, Kyotanabe, Kyoto 610-0395, Japan.
| | - Yoh Wada
- Division of Biological Sciences, Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan.
| |
Collapse
|
19
|
Andrikou C, Hejnol A. FGF signaling acts on different levels of mesoderm development within Spiralia. Development 2021; 148:264929. [PMID: 33999997 PMCID: PMC8180254 DOI: 10.1242/dev.196089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 04/08/2021] [Indexed: 01/23/2023]
Abstract
FGF signaling is involved in mesoderm induction in members of deuterostomes (e.g. tunicates, hemichordates), but not in flies and nematodes, in which it has a role in mesoderm patterning and migration. However, we need comparable studies in other protostome taxa in order to decipher whether this mesoderm-inducing function of FGF extends beyond the lineage of deuterostomes. Here, we investigated the role of FGF signaling in mesoderm development in three species of lophophorates, a clade within the protostome group Spiralia. Our gene expression analyses show that the mesodermal molecular patterning is conserved between brachiopods and phoronids, but the spatial and temporal recruitment of transcription factors differs significantly. Moreover, the use of the inhibitor SU5402 demonstrates that FGF signaling is involved in different steps of mesoderm development, as well as in morphogenetic movements of gastrulation and axial elongation. Our findings suggest that the mesoderm-inducing role of FGF extends beyond the group of deuterostomes.
Collapse
Affiliation(s)
- Carmen Andrikou
- University of Bergen, Department of Biological Sciences, Thormøhlensgate 55, 5006 Bergen, Norway.,Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006 Bergen, Norway
| | - Andreas Hejnol
- University of Bergen, Department of Biological Sciences, Thormøhlensgate 55, 5006 Bergen, Norway.,Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006 Bergen, Norway
| |
Collapse
|
20
|
Sripada A, Sirohi K, Michalec L, Guo L, McKay JT, Yadav S, Verma M, Good J, Rollins D, Gorska MM, Alam R. Sprouty2 positively regulates T cell function and airway inflammation through regulation of CSK and LCK kinases. PLoS Biol 2021; 19:e3001063. [PMID: 33684096 PMCID: PMC7971865 DOI: 10.1371/journal.pbio.3001063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 03/18/2021] [Accepted: 02/12/2021] [Indexed: 11/19/2022] Open
Abstract
The function of Sprouty2 (Spry2) in T cells is unknown. Using 2 different (inducible and T cell-targeted) knockout mouse strains, we found that Spry2 positively regulated extracellular signal-regulated kinase 1/2 (ERK1/2) signaling by modulating the activity of LCK. Spry2-/- CD4+ T cells were unable to activate LCK, proliferate, differentiate into T helper cells, or produce cytokines. Spry2 deficiency abrogated type 2 inflammation and airway hyperreactivity in a murine model of asthma. Spry2 expression was higher in blood and airway CD4+ T cells from patients with asthma, and Spry2 knockdown impaired human T cell proliferation and cytokine production. Spry2 deficiency up-regulated the lipid raft protein caveolin-1, enhanced its interaction with CSK, and increased CSK interaction with LCK, culminating in augmented inhibitory phosphorylation of LCK. Knockdown of CSK or dislodgment of caveolin-1-bound CSK restored ERK1/2 activation in Spry2-/- T cells, suggesting an essential role for Spry2 in LCK activation and T cell function.
Collapse
Affiliation(s)
- Anand Sripada
- Division of Allergy and Immunology, Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
| | - Kapil Sirohi
- Division of Allergy and Immunology, Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
| | - Lidia Michalec
- Division of Allergy and Immunology, Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
| | - Lei Guo
- Division of Allergy and Immunology, Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
| | - Jerome T McKay
- Division of Allergy and Immunology, Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
| | - Sangya Yadav
- Division of Allergy and Immunology, Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
| | - Mukesh Verma
- Division of Allergy and Immunology, Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
| | - James Good
- Division of Pulmonary and Critical Care, Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Donald Rollins
- Division of Pulmonary and Critical Care, Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Magdalena M Gorska
- Division of Allergy and Immunology, Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Rafeul Alam
- Division of Allergy and Immunology, Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| |
Collapse
|
21
|
Chen QY, Li YN, Wang XY, Zhang X, Hu Y, Li L, Suo DQ, Ni K, Li Z, Zhan JR, Zeng TT, Zhu YH, Li Y, Ma LJ, Guan XY. Tumor Fibroblast-Derived FGF2 Regulates Expression of SPRY1 in Esophageal Tumor-Infiltrating T Cells and Plays a Role in T-cell Exhaustion. Cancer Res 2020; 80:5583-5596. [PMID: 33093168 DOI: 10.1158/0008-5472.can-20-1542] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/25/2020] [Accepted: 10/19/2020] [Indexed: 11/16/2022]
Abstract
T-cell exhaustion was initially identified in chronic infection in mice and was subsequently described in humans with cancer. Although the distinct signature of exhausted T (TEX) cells in cancer has been well investigated, the molecular mechanism of T-cell exhaustion in cancer is not fully understood. Using single-cell RNA sequencing, we report here that TEX cells in esophageal cancer are more heterogeneous than previously clarified. Sprouty RTK signaling antagonist 1 (SPRY1) was notably enriched in two subsets of exhausted CD8+ T cells. When overexpressed, SPRY1 impaired T-cell activation by interacting with CBL, a negative regulator of ZAP-70 tyrosine phosphorylation. Data from the Tumor Immune Estimation Resource revealed a strong correlation between FGF2 and SPRY1 expression in esophageal cancer. High expression of FGF2 was evident in fibroblasts from esophageal cancer tissue and correlated with poor overall survival. In vitro administration of FGF2 significantly upregulated expression of SPRY1 in CD8+ T cells and attenuated T-cell receptor-triggered CD8+ T-cell activation. A mouse tumor model confirmed that overexpression of FGF2 in fibroblasts significantly upregulated SPRY1 expression in TEX cells, impaired T-cell cytotoxic activity, and promoted tumor growth. Thus, these findings identify FGF2 as an important regulator of SPRY1 expression involved in establishing the dysfunctional state of CD8+ T cells in esophageal cancer. SIGNIFICANCE: These findings reveal FGF2 as an important regulator of SPRY1 expression involved in establishing the dysfunctional state of CD8+ T cells and suggest that inhibition of FGF2 has potential clinical value in ESCC. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/24/5583/F1.large.jpg.
Collapse
Affiliation(s)
- Qing-Yun Chen
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P.R. China
| | - Yi-Ni Li
- Westlake Institute for Advanced Study, Westlake University, Hangzhou, Zhejiang, P.R. China
| | - Xin-Yue Wang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P.R. China
| | - Xu Zhang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P.R. China
| | - Yi Hu
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P.R. China
| | - Lei Li
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P.R. China
| | - Da-Qin Suo
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P.R. China
| | - Ke Ni
- Westlake Institute for Advanced Study, Westlake University, Hangzhou, Zhejiang, P.R. China
| | - Zhuo Li
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P.R. China
| | - Jia-Rong Zhan
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P.R. China
| | - Ting-Ting Zeng
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P.R. China
| | - Ying-Hui Zhu
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P.R. China
| | - Yan Li
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P.R. China
| | - Li-Jia Ma
- Westlake Institute for Advanced Study, Westlake University, Hangzhou, Zhejiang, P.R. China.
| | - Xin-Yuan Guan
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P.R. China. .,Department of Clinical Oncology, The University of Hong Kong, Hong Kong, P.R. China
| |
Collapse
|
22
|
Pan Y, Fang Y, Xie M, Liu Y, Yu T, Wu X, Xu T, Ma P, Shu Y. LINC00675 Suppresses Cell Proliferation and Migration via Downregulating the H3K4me2 Level at the SPRY4 Promoter in Gastric Cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:766-778. [PMID: 33230474 PMCID: PMC7595884 DOI: 10.1016/j.omtn.2020.09.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023]
Abstract
Accumulating evidence indicates that long noncoding RNAs (lncRNAs) are dysregulated in diverse tumors and take a pivotal role in modulating biological processes. In our study, a decreased expression level of LINC00675 in gastric cancer (GC) was first determined by data from The Cancer Genome Atlas (TCGA) and was identified using specimens from GC patients. Then, in vitro and in vivo functional experiments elaborated that LINC00675 could suppress cell proliferation and migration in GC. Multiple differentially expressed genes (DEGs) in LINC00675-overexpressing cells were identified through RNA sequencing analysis. An RNA-binding protein immunoprecipitation (RIP) assay was conducted to reveal that LINC00675 competitively bound with lysine-specific demethylase 1 (LSD1). A coimmunoprecipitation (coIP) assay indicated that LINC00675 overexpression may strengthen the binding of LSD1 and H3K4me2, whereas the chromatin immunoprecipitation (ChIP) assay results verified lower expression of H3K4me2 at the sprouty homolog 4 (SPRY4) promoter region. Together, our research identified that LINC00675 was remarkably downregulated in GC tissues and cells relative to nontumor tissues and cells. LINC00675 could repress GC tumorigenesis and metastasis via competitively binding with LSD1 and intensifying the binding of LSD1 and its target H3K4me2. Importantly, this contributed to attenuated binding of H3K4me2 at the promoter region of oncogene SPRY4 and suppressed SPRY4 transcription, thus suppressing GC cell proliferation and migration.
Collapse
Affiliation(s)
- Yutian Pan
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Yuan Fang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Mengyan Xie
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Yu Liu
- Department of the Orthopaedics, RWTH Aachen University Clinic, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Tao Yu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Xi Wu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Tongpeng Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Pei Ma
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China.,Department of Oncology, Affiliated Sir Run Hospital of Nanjing Medical University, Nanjing 211166, People's Republic of China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| |
Collapse
|
23
|
Wang YY, Wang WC, Su CW, Hsu CW, Yuan SS, Chen YK. Overexpression of sprouty 1 protein in human oral squamous cell carcinogenesis. J Dent Sci 2020; 16:21-28. [PMID: 33384774 PMCID: PMC7770302 DOI: 10.1016/j.jds.2020.07.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 07/23/2020] [Indexed: 01/18/2023] Open
Abstract
Abstract Background/purpose Sprouty (SPRY) has four isoforms, SPRY1–4, and its deficiency produces haphazard ‘sprouting’ of tracheal tubules. This study investigated SPRY1 protein expression in human oral potentially malignant disorders (OPMDs) and oral squamous cell carcinomas (OSCCs). Materials and methods 90 OSCCs, 10 OPMDs with malignant transformation (MT), 17 OPMDs without MT, and six normal oral mucosa (NOM) tissue samples were subjected to immunohistochemical staining. Three human oral cancer cell lines (OCCLs), an oral precancer cell line (DOK), and a primary culture of normal oral keratinocytes (HOK) were used for western blotting. Results Significantly increased expression of SPRY1 protein from NOM and OPMD without MT to OSCC was observed. The protein expressions of SPRY1 in OCCLs were significantly enhanced as compared with DOK and HOK. Increased phosphor/total-ERK expression was observed in OCCLs as compared with HOK. A significantly increased SPRY1 protein level was noted in OPMDs with MT as compared with those without MT, in addition to a significant increase in DOK in comparison with HOK. Conclusion Our results indicated that overexpression of SPRY1 protein is potentially associated with human oral squamous cell carcinogenesis.
Collapse
Affiliation(s)
- Yen-Yun Wang
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Chen Wang
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Oral Pathology & Maxillofacial Radiology, Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Oral & Maxillofacial Imaging Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chiang-Wei Su
- Division of Oral & Maxillofacial Surgery, Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ching-Wei Hsu
- Division of Oral & Maxillofacial Surgery, Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Shyng-Shiou Yuan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Translational Research Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Obstetrics and Gynecology and Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Corresponding author. Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan. Fax: +886 7 3210637.
| | - Yuk-Kwan Chen
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Oral Pathology & Maxillofacial Radiology, Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Oral & Maxillofacial Imaging Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Corresponding author. School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan. Fax: +886 7 3210637.
| |
Collapse
|
24
|
Giacomini A, Grillo E, Rezzola S, Ribatti D, Rusnati M, Ronca R, Presta M. The FGF/FGFR system in the physiopathology of the prostate gland. Physiol Rev 2020; 101:569-610. [PMID: 32730114 DOI: 10.1152/physrev.00005.2020] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fibroblast growth factors (FGFs) are a family of proteins possessing paracrine, autocrine, or endocrine functions in a variety of biological processes, including embryonic development, angiogenesis, tissue homeostasis, wound repair, and cancer. Canonical FGFs bind and activate tyrosine kinase FGF receptors (FGFRs), triggering intracellular signaling cascades that mediate their biological activity. Experimental evidence indicates that FGFs play a complex role in the physiopathology of the prostate gland that ranges from essential functions during embryonic development to modulation of neoplastic transformation. The use of ligand- and receptor-deleted mouse models has highlighted the requirement for FGF signaling in the normal development of the prostate gland. In adult prostate, the maintenance of a functional FGF/FGFR signaling axis is critical for organ homeostasis and function, as its disruption leads to prostate hyperplasia and may contribute to cancer progression and metastatic dissemination. Dissection of the molecular landscape modulated by the FGF family will facilitate ongoing translational efforts directed toward prostate cancer therapy.
Collapse
Affiliation(s)
- Arianna Giacomini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Elisabetta Grillo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Sara Rezzola
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Domenico Ribatti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Marco Rusnati
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Marco Presta
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| |
Collapse
|
25
|
Zhang Y, Yuan F, Liu L, Chen Z, Ma X, Lin Z, Zou J. The Role of the miR-21/SPRY2 Axis in Modulating Proangiogenic Factors, Epithelial Phenotypes, and Wound Healing in Corneal Epithelial Cells. Invest Ophthalmol Vis Sci 2020; 60:3854-3862. [PMID: 31529118 PMCID: PMC6881141 DOI: 10.1167/iovs.19-27013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Purpose Subconjunctival injection of antagomir-21 attenuates the progression of corneal neovascularization. We examined the underlying mechanism by investigating the regulation of microRNA (miR)-21 expression and the involvement of miR-21 in the homeostasis of corneal epithelial cells. Methods Corneal epithelial cells were cultured with TGF-β1 and/or under hypoxia conditions. miR-21 expression was measured by quantitative PCR. The direct targets of miR-21 were validated by the 3'-UTR luciferase reporter assay. Alterations of proangiogenic signaling and the epithelial-mesenchymal transition (EMT) phenotype after miR-21/Sprouty2 (SPRY2) knockdown were examined by Western blotting. The effect of conditioned medium on angiogenesis was assessed using the tube formation assay. Wound healing was evaluated by the migration and scratch assays. Results TGF-β1 or hypoxia upregulated miR-21, and miR-21 silencing abolished TGF-β1/hypoxia-induced hypoxia inducible factor (HIF)-1α and VEGF expression. miR-21 inhibited SPRY2 by directly targeting its 3'-UTR. Simultaneous silencing of miR-21 and SPRY2 significantly upregulated p-ERK, HIF-1α, and VEGF and promoted angiogenesis. Induction of miR-21 or inhibition of SPRY2 reduced the levels of cytokeratin (CK)-3 and CK-12 and promoted EMT. Transwell and wound healing assays indicated that miR-21 promoted cell migration. Conclusions TGF-β1 or hypoxia induced miR-21 and inhibited SPRY2, thereby enhancing proangiogenic signaling, suppressing the epithelial phenotype, and promoting wound healing in corneal epithelial cells.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China.,Institute of Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fukang Yuan
- Department of Vascular Surgery, XuZhou Central Hospital, Xuzhou, China
| | - Lin Liu
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Zufeng Chen
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Xiaoyun Ma
- Department of Ophthalmology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Zhen Lin
- Department of Pathology, Tulane University School of Medicine, New Orleans, Louisiana, United States
| | - Jun Zou
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| |
Collapse
|
26
|
Park JW, Wollmann G, Urbiola C, Fogli B, Florio T, Geley S, Klimaschewski L. Sprouty2 enhances the tumorigenic potential of glioblastoma cells. Neuro Oncol 2019; 20:1044-1054. [PMID: 29635363 PMCID: PMC6280149 DOI: 10.1093/neuonc/noy028] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Sprouty2 (SPRY2), a feedback regulator of receptor tyrosine kinase (RTK) signaling, has been shown to be associated with drug resistance and cell proliferation in glioblastoma (GBM), but the underlying mechanisms are still poorly defined. Methods SPRY2 expression and survival patterns of patients with gliomas were analyzed using publicly available databases. Effects of RNA interference targeting SPRY2 on cellular proliferation in established GBM or patient-derived GBM stemlike cells were examined. Loss- or gain-of-function of SPRY2 to regulate the tumorigenic capacity was assessed in both intracranial and subcutaneous xenografts. Results SPRY2 was found to be upregulated in GBM, which correlated with reduced survival in GBM patients. SPRY2 knockdown significantly impaired proliferation of GBM cells but not of normal astrocytes. Silencing of SPRY2 increased epidermal growth factor-induced extracellular signal-regulated kinase (ERK) and Akt activation causing premature onset of DNA replication, increased DNA damage, and impaired proliferation, suggesting that SPRY2 suppresses DNA replication stress. Abrogating SPRY2 function strongly inhibited intracranial tumor growth and led to significantly prolonged survival of U87 xenograft-bearing mice. In contrast, SPRY2 overexpression promoted tumor propagation of low-tumorigenic U251 cells. Conclusions The present study highlights an antitumoral effect of SPRY2 inhibition that is based on excessive activation of ERK signaling and DNA damage response, resulting in reduced cell proliferation and increased cytotoxicity, proposing SPRY2 as a promising pharmacological target in GBM patients.
Collapse
Affiliation(s)
- Jong-Whi Park
- Division of Neuroanatomy, Medical University of Innsbruck, Innsbruck, Austria
| | - Guido Wollmann
- Christian Doppler Laboratory for Viral Immunotherapy of Cancer, Division of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Carles Urbiola
- Christian Doppler Laboratory for Viral Immunotherapy of Cancer, Division of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Barbara Fogli
- Division of Neuroanatomy, Medical University of Innsbruck, Innsbruck, Austria
| | - Tullio Florio
- Section of Pharmacology, Department of Internal Medicine and Center of Excellence for Biomedical Research, University of Genova, Genova, Italy
| | - Stephan Geley
- Division of Molecular Pathophysiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Lars Klimaschewski
- Division of Neuroanatomy, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
27
|
Gomez GA, Prasad MS, Wong M, Charney RM, Shelar PB, Sandhu N, Hackland JOS, Hernandez JC, Leung AW, García-Castro MI. WNT/β-catenin modulates the axial identity of embryonic stem cell-derived human neural crest. Development 2019; 146:dev.175604. [PMID: 31399472 DOI: 10.1242/dev.175604] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 07/26/2019] [Indexed: 12/27/2022]
Abstract
WNT/β-catenin signaling is crucial for neural crest (NC) formation, yet the effects of the magnitude of the WNT signal remain ill-defined. Using a robust model of human NC formation based on human pluripotent stem cells (hPSCs), we expose that the WNT signal modulates the axial identity of NCs in a dose-dependent manner, with low WNT leading to anterior OTX+ HOX- NC and high WNT leading to posterior OTX- HOX+ NC. Differentiation tests of posterior NC confirm expected derivatives, including posterior-specific adrenal derivatives, and display partial capacity to generate anterior ectomesenchymal derivatives. Furthermore, unlike anterior NC, posterior NC exhibits a transient TBXT+/SOX2+ neuromesodermal precursor-like intermediate. Finally, we analyze the contributions of other signaling pathways in posterior NC formation, which suggest a crucial role for FGF in survival/proliferation, and a requirement of BMP for NC maturation. As expected retinoic acid (RA) and FGF are able to modulate HOX expression in the posterior NC. Surprisingly, early RA supplementation prohibits NC formation. This work reveals for the first time that the amplitude of WNT signaling can modulate the axial identity of NC cells in humans.
Collapse
Affiliation(s)
- Gustavo A Gomez
- School of Medicine Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA
| | - Maneeshi S Prasad
- School of Medicine Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA
| | - Man Wong
- School of Medicine Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA
| | - Rebekah M Charney
- School of Medicine Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA
| | - Patrick B Shelar
- School of Medicine Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA
| | - Nabjot Sandhu
- School of Medicine Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA
| | - James O S Hackland
- School of Medicine Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA
| | - Jacqueline C Hernandez
- School of Medicine Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA
| | - Alan W Leung
- School of Medicine Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA
| | - Martín I García-Castro
- School of Medicine Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA
| |
Collapse
|
28
|
Park S, Arai Y, Kim BJ, Bello A, Ashraf S, Park H, Park KS, Lee SH. Suppression of SPRY4 Promotes Osteogenic Differentiation and Bone Formation of Mesenchymal Stem Cell. Tissue Eng Part A 2019; 25:1646-1657. [PMID: 30982407 DOI: 10.1089/ten.tea.2019.0056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The directed differentiation of human adipose-derived stem cells (hASCs) into different cell types has shown great therapeutic potential in treating various diseases. To maximize the therapeutic potentials, researchers have tried manipulating master transcriptional genes that promote efficient differentiation of mesenchymal stem cells (MSCs) such as the MAPK/ERK signaling pathway. Sprouty (SPRY) is a family of proteins that are known to inhibit the MAPK/ERK signaling pathway. Although the role of some SPRY isoforms in MSC differentiation is known, the function of SPRY4 isoform has not been fully elucidated. In the present study, the role of SPRY4 in the multilineage differentiation of hASCs has been elucidated. To investigate the role of SPRY4 in hASC differentiation and tissue regeneration, we performed a transient knockdown of SPRY expression via a small interfering RNA (siSPRY4). Western blot and quantitative polymerase chain reaction results revealed that the treatment of siSPRY4 before induction of differentiation had no significant effect on adipogenic, but reduced chondrogenic, differentiation of hASCs. Interestingly, SPRY4 transient knockdown had a significant effect on the osteogenic differentiation as indicated by the increased messenger RNA (mRNA) and protein expression of osteogenic markers such as alkaline phosphatase (ALP; 2.3-fold) and osteopontin (OPN; 3.5-fold) and increased calcium deposition measured via Alizarin red staining (3.3-fold). Moreover, in vivo tissue regeneration of siSPRY4-treated hASCs in ectopic bone formation and calvarial defect mouse models showed higher bone volume (5.24-fold) and trabecular number (4.59-fold) assessed via histological and microcomputed tomography analyses. We also determined that the enhanced osteogenic differentiation in SPRY4-treated hASCs was due to the induction of ERK1/2 phosphorylation. Taken together, our results suggest that the regulation of SPRY4 through MAPK signaling is a potentially critical aspect on the osteogenic differentiation of hASCs and for bone tissue regeneration, and thus, may be utilized as a potent technique in the development of effective bone therapeutics. Impact Statement This study tried to expand our current understanding of the osteogenic differentiation of mesenchymal stem cells. The transient downregulation of the SPRY4 expression via small interfering RNA (siRNA) showed significant enhancement of the osteogenic differentiation of adipose-derived stem cells via the induction of ERK 1/2 phosphorylation. This suggests the possible mechanism to maximize the potential of stem cell as therapeutics and has a great potential in treating various bone-related diseases.
Collapse
Affiliation(s)
- Sunghyun Park
- Department of Medical Biotechnology, Dongguk University, Goyang-si, Republic of Korea.,Department of Biomedical Science, CHA University, Seongnam-si, Republic of Korea
| | - Yoshie Arai
- Department of Medical Biotechnology, Dongguk University, Goyang-si, Republic of Korea
| | - Byoung Ju Kim
- Department of Medical Biotechnology, Dongguk University, Goyang-si, Republic of Korea
| | - Alvin Bello
- Department of Medical Biotechnology, Dongguk University, Goyang-si, Republic of Korea.,Department of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Sajjad Ashraf
- Department of Biomedical Science, CHA University, Seongnam-si, Republic of Korea
| | - Hansoo Park
- Department of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Kyung-Soon Park
- Department of Biomedical Science, CHA University, Seongnam-si, Republic of Korea
| | - Soo-Hong Lee
- Department of Medical Biotechnology, Dongguk University, Goyang-si, Republic of Korea
| |
Collapse
|
29
|
Sprouty3 and Sprouty4, Two Members of a Family Known to Inhibit FGF-Mediated Signaling, Exert Opposing Roles on Proliferation and Migration of Glioblastoma-Derived Cells. Cells 2019; 8:cells8080808. [PMID: 31374860 PMCID: PMC6721513 DOI: 10.3390/cells8080808] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 12/26/2022] Open
Abstract
Dysregulation of receptor tyrosine kinase-induced pathways is a critical step driving the oncogenic potential of brain cancer. In this study, we investigated the role of two members of the Sprouty (Spry) family in brain cancer-derived cell lines. Using immunoblot analyses we found essential differences in the pattern of endogenous Spry3 and Spry4 expression. While Spry4 expression was mitogen-dependent and repressed in a number of cells from higher malignant brain cancers, Spry3 levels neither fluctuated in response to serum withdrawal nor were repressed in glioblastoma (GBM)-derived cell lines. In accordance to the well-known inhibitory role of Spry proteins in fibroblast growth factor (FGF)-mediated signaling, both Spry proteins were able to interfere with FGF-induced activation of the MAPK pathway although to a different extent. In response to serum solely, Spry4 exerts its role as a negative regulator of MAPK activation. Ectopic expression of Spry4 inhibited proliferation and migration of GBM-originated cells, positioning it as a tumor suppressor in brain cancer. In contrast, elevated Spry3 levels accelerated both proliferation and migration of these cell lines, while repression of Spry3 levels using shRNA caused a significant diminished growth and migration velocity rate of a GBM-derived cell line. This argues for a tumor-promoting function of Spry3 in GBMs. Based on these data we conclude that Spry3 and Spry4 fulfill different if not opposing roles within the cancerogenesis of brain malignancies.
Collapse
|
30
|
Cho HJ, Shan Y, Whittington NC, Wray S. Nasal Placode Development, GnRH Neuronal Migration and Kallmann Syndrome. Front Cell Dev Biol 2019; 7:121. [PMID: 31355196 PMCID: PMC6637222 DOI: 10.3389/fcell.2019.00121] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/14/2019] [Indexed: 12/22/2022] Open
Abstract
The development of Gonadotropin releasing hormone-1 (GnRH) neurons is important for a functional reproduction system in vertebrates. Disruption of GnRH results in hypogonadism and if accompanied by anosmia is termed Kallmann Syndrome (KS). From their origin in the nasal placode, GnRH neurons migrate along the olfactory-derived vomeronasal axons to the nasal forebrain junction and then turn caudally into the developing forebrain. Although research on the origin of GnRH neurons, their migration and genes associated with KS has identified multiple factors that influence development of this system, several aspects still remain unclear. This review discusses development of the olfactory system, factors that regulate GnRH neuron formation and development of the olfactory system, migration of the GnRH neurons from the nose into the brain, and mutations in humans with KS that result from disruption of normal GnRH/olfactory systems development.
Collapse
Affiliation(s)
- Hyun-Ju Cho
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Yufei Shan
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Niteace C Whittington
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Susan Wray
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
31
|
Dittmer J, Stütz A, Vanas V, Salhi J, Reisecker JM, Kral RM, Sutterlüty-Fall H. Spatial signal repression as an additional role of Sprouty2 protein variants. Cell Signal 2019; 62:109332. [PMID: 31154002 DOI: 10.1016/j.cellsig.2019.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/29/2019] [Accepted: 05/29/2019] [Indexed: 11/19/2022]
Abstract
Sprouty2 (Spry2) is a prominent member of a protein family with crucial functions in the modulation of signal transduction. One of its main actions is the repression of mitogen-activated protein kinase (MAPK) pathway in response to growth factor-induced signalling. A common single nucleotide polymorphism within the Spry2 gene creates two protein variants where a proline adjacent to the serine rich domain is converted to an additional serine. Both protein variants perform similar functions although their efficiency in fulfilling these tasks varies. In this report, we used biochemical fractionation methods as well as confocal microscopy to analyse quantitative and qualitative differences in the distribution of Spry2 variants. We found that Spry2 proteins localize not solely to the plasma membrane, but also to other membrane engulfed compartments like for example the Golgi apparatus. In these less dense organelles, predominantly slower migrating forms reside indicating that posttranslational modification contributes to the distribution profile of Spry2. However there is no significant difference in the distribution of the two variants. Additionally, we found that Spry2 could be found exclusively in membrane fractions irrespective of the mitogen availability and the phosphorylation status. Considering the interference of extracellular signal-regulated kinase (ERK) activation in the cytoplasm, both Spry2 variants inhibited the levels of phosphorylated ERK (pERK) significantly to a similar extent. In contrast, the induction profiles of pERK levels were completely different in the nuclei. Again, both Spry2 variants diminished the levels of pERK. While the proline variant lowered the activation throughout the observation period, the serine variant failed to interfere with immediate accumulation of nuclear pERK levels, but the signal duration was shortened. Since the extent of the pERK inhibition in the nuclei was drastically more pronounced than in the cytoplasm, we conclude that Spry2 - in addition to its known functions as a repressor of general ERK phosphorylation - functions as a spatial repressor of nucleic ERK activation. Accordingly, a dominant negative version of Spry2 was only able to enhance the pERK levels of serum-deprived cells in the cytosol, while in the nucleus the intensity of the pERK signal in response to serum addition was significantly increased.
Collapse
Affiliation(s)
- Jakob Dittmer
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Astrid Stütz
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Vanita Vanas
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Jihen Salhi
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| | - Johannes Manfred Reisecker
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| | - Rosana Maria Kral
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| | - Hedwig Sutterlüty-Fall
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
32
|
Wu P, Yan J, Lai YC, Ng CS, Li A, Jiang X, Elsey RM, Widelitz R, Bajpai R, Li WH, Chuong CM. Multiple Regulatory Modules Are Required for Scale-to-Feather Conversion. Mol Biol Evol 2019; 35:417-430. [PMID: 29177513 DOI: 10.1093/molbev/msx295] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The origin of feathers is an important question in Evo-Devo studies, with the eventual evolution of vaned feathers which are aerodynamic, allowing feathered dinosaurs and early birds to fly and venture into new ecological niches. Studying how feathers and scales are developmentally specified provides insight into how a new organ may evolve. We identified feather-associated genes using genomic analyses. The candidate genes were tested by expressing them in chicken and alligator scale forming regions. Ectopic expression of these genes induced intermediate morphotypes between scales and feathers which revealed several major morphogenetic events along this path: Localized growth zone formation, follicle invagination, epithelial branching, feather keratin differentiation, and dermal papilla formation. In addition to molecules known to induce feathers on scales (retinoic acid, β-catenin), we identified novel scale-feather converters (Sox2, Zic1, Grem1, Spry2, Sox18) which induce one or more regulatory modules guiding these morphogenetic events. Some morphotypes resemble filamentous appendages found in feathered dinosaur fossils, whereas others exhibit characteristics of modern avian feathers. We propose these morpho-regulatory modules were used to diversify archosaur scales and to initiate feather evolution. The regulatory combination and hierarchical integration may have led to the formation of extant feather forms. Our study highlights the importance of integrating discoveries between developmental biology and paleontology.
Collapse
Affiliation(s)
- Ping Wu
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Jie Yan
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA.,Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yung-Chih Lai
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA.,Integrative Stem Cell Center, China Medical University Hospital, China Medical University, Taichung, Taiwan.,Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | - Chen Siang Ng
- Institute of Molecular and Cellular Biology & Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Ang Li
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Xueyuan Jiang
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Ruth M Elsey
- Louisiana Department of Wildlife and Fisheries, Rockefeller Wildlife Refuge, Grand Chenier, LA
| | - Randall Widelitz
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Ruchi Bajpai
- Center for Craniofacial Molecular Biology and Department of Biochemistry, University of Southern California, Los Angeles, CA
| | - Wen-Hsiung Li
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA.,Integrative Stem Cell Center, China Medical University Hospital, China Medical University, Taichung, Taiwan.,Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan.,International Laboratory for Wound Repair and Regenerative Research, Graduated Institute of Clinical Medicine, National Cheng Kung University, Tainan, Taiwan.,Integrative and Evolutionary Galliformes Genomics Research Center (iEGG), National Chung-Hsing University, Taichung, Taiwan
| |
Collapse
|
33
|
Alakoski T, Ulvila J, Yrjölä R, Vainio L, Magga J, Szabo Z, Licht JD, Kerkelä R. Inhibition of cardiomyocyte Sprouty1 protects from cardiac ischemia-reperfusion injury. Basic Res Cardiol 2019; 114:7. [PMID: 30635790 PMCID: PMC6329741 DOI: 10.1007/s00395-018-0713-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/27/2018] [Indexed: 12/23/2022]
Abstract
Sprouty1 (Spry1) is a negative modulator of receptor tyrosine kinase signaling, but its role in cardiomyocyte survival has not been elucidated. The aim of this study was to investigate the potential role of cardiomyocyte Spry1 in cardiac ischemia–reperfusion (I/R) injury. Infarct areas of mouse hearts showed an increase in Spry1 protein expression, which localized to cardiomyocytes. To investigate if cardiomyocyte Spry1 regulates I/R injury, 8-week-old inducible cardiomyocyte Spry1 knockout (Spry1 cKO) mice and control mice were subjected to cardiac I/R injury. Spry1 cKO mice showed reduction in release of cardiac troponin I and reduced infarct size after I/R injury compared to control mice. Similar to Spry1 knockdown in cardiomyocytes in vivo, RNAi-mediated Spry1 silencing in isolated cardiomyocytes improved cardiomyocyte survival following simulated ischemia injury. Mechanistically, Spry1 knockdown induced cardiomyocyte extracellular signal-regulated kinase (ERK) phosphorylation in healthy hearts and isolated cardiomyocytes, and enhanced ERK phosphorylation after I/R injury. Spry1-deficient cardiomyocytes showed better preserved mitochondrial membrane potential following ischemic injury and an increase in levels of phosphorylated ERK and phosphorylated glycogen synthase kinase-3β (GSK-3β) in mitochondria of hypoxic cardiomyocytes. Overexpression of constitutively active GSK-3β abrogated the protective effect of Spry1 knockdown. Moreover, pharmacological inhibition of GSK-3β protected wild-type cardiomyocytes from cell death, but did not further protect Spry1-silenced cardiomyocytes from hypoxia-induced injury. Cardiomyocyte Spry1 knockdown promotes ERK phosphorylation and offers protection from I/R injury. Our findings indicate that Spry1 is an important regulator of cardiomyocyte viability during ischemia–reperfusion injury.
Collapse
Affiliation(s)
- Tarja Alakoski
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, P. O. BOX 5000, 90014, Oulu, Finland
| | - Johanna Ulvila
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, P. O. BOX 5000, 90014, Oulu, Finland
| | - Raisa Yrjölä
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, P. O. BOX 5000, 90014, Oulu, Finland
| | - Laura Vainio
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, P. O. BOX 5000, 90014, Oulu, Finland
| | - Johanna Magga
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, P. O. BOX 5000, 90014, Oulu, Finland
| | - Zoltan Szabo
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, P. O. BOX 5000, 90014, Oulu, Finland
| | - Jonathan D Licht
- University of Florida Health Cancer Center, Gainesville, FL, 32610, USA
| | - Risto Kerkelä
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, P. O. BOX 5000, 90014, Oulu, Finland. .,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland.
| |
Collapse
|
34
|
Jin L, Wu J, Bellusci S, Zhang JS. Fibroblast Growth Factor 10 and Vertebrate Limb Development. Front Genet 2019; 9:705. [PMID: 30687387 PMCID: PMC6338048 DOI: 10.3389/fgene.2018.00705] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 12/14/2018] [Indexed: 12/11/2022] Open
Abstract
Early limb development requires fibroblast growth factor (Fgf)-mediated coordination between growth and patterning to ensure the proper formation of a functional organ. The apical ectodermal ridge (AER) is a domain of thickened epithelium located at the distal edge of the limb bud that coordinates outgrowth along the proximodistal axis. Considerable amount of work has been done to elucidate the cellular and molecular mechanisms underlying induction, maintenance and regression of the AER. Fgf10, a paracrine Fgf that elicits its biological responses by activating the fibroblast growth factor receptor 2b (Fgfr2b), is crucial for governing proximal distal outgrowth as well as patterning and acts upstream of the known AER marker Fgf8. A transgenic mouse line allowing doxycycline-based inducible and ubiquitous expression of a soluble form of Fgfr2b has been extensively used to identify the role of Fgfr2b ligands at different time points during development. Overexpression of soluble Fgfr2b (sFgfr2b) post-AER induction leads to irreversible loss of cellular β-catenin organization and decreased Fgf8 expression in the AER. A similar approach has been carried out pre-AER induction. The observed limb phenotype is similar to the severe proximal truncations observed in human babies exposed to thalidomide, which has been proposed to block the Fgf10-AER-Fgf8 feedback loop. Novel insights on the role of Fgf10 signaling in limb formation pre- and post-AER induction are summarized in this review and will be integrated with possible future investigations on the role of Fgf10 throughout limb development.
Collapse
Affiliation(s)
- Libo Jin
- Institute of Life Sciences, Wenzhou University-Wenzhou Medical University Collaborative Innovation Center for Biomedicine, Wenzhou, China
| | - Jin Wu
- Institute of Life Sciences, Wenzhou University-Wenzhou Medical University Collaborative Innovation Center for Biomedicine, Wenzhou, China
| | - Saverio Bellusci
- Institute of Life Sciences, Wenzhou University-Wenzhou Medical University Collaborative Innovation Center for Biomedicine, Wenzhou, China.,Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Justus-Liebig-University Giessen, Giessen, Germany
| | - Jin-San Zhang
- Institute of Life Sciences, Wenzhou University-Wenzhou Medical University Collaborative Innovation Center for Biomedicine, Wenzhou, China.,Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
35
|
Gu X, Su X, Jia C, Lin L, Liu S, Zhang P, Wang X, Jiang X. Sprouty1 regulates neuritogenesis and survival of cortical neurons. J Cell Physiol 2018; 234:12847-12864. [PMID: 30569452 DOI: 10.1002/jcp.27949] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 11/16/2018] [Indexed: 12/25/2022]
Abstract
In multicellular organisms, receptor tyrosine kinases (RTKs) control a variety of cellular processes, including cell proliferation, differentiation, migration, and survival. Sprouty (SPRY) proteins represent an important class of ligand-inducible inhibitors of RTK-dependent signaling pathways. Here, we investigated the role of SPRY1 in cells of the central nervous system (CNS). Expression of SPRY1 was substantially higher in neural stem cells than in cortical neurons and was increased during neuronal differentiation of cortical neurons. We found that SPRY1 was a direct target gene of the CNS-specific microRNA, miR-124 and miR-132. In primary cultures of cortical neurons, the neurotrophic factors brain-derived neurotrophic factor (BDNF) and Basic fibroblast growth factor (FGF2) downregulated SPRY1 expression to positively regulate their own functions. In immature cortical neurons and mouse N2 A cells, we found that overexpression of SPRY1 inhibited neurite development, whereas knockdown of SPRY1 expression promoted neurite development. In mature neurons, overexpression of SPRY1 inhibited the prosurvival effects of both BDNF and FGF2 on glutamate-mediated neuronal cell death. SPRY1 was also upregulated upon glutamate treatment in mature neurons and partially contributed to the cytotoxic effect of glutamate. Together, our results indicate that SPRY1 contributes to the regulation of CNS functions by influencing both neuronal differentiation under normal physiological processes and neuronal survival under pathological conditions.
Collapse
Affiliation(s)
- Xi Gu
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Xiaohong Su
- Department of Neurobiology, Southern Medical University, Guangzhou, China
| | - Chunhong Jia
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Lifang Lin
- Department of Neurobiology, Southern Medical University, Guangzhou, China
| | - Shuhu Liu
- Department of Neurobiology, Southern Medical University, Guangzhou, China
| | - Peidong Zhang
- Department of Neurobiology, Southern Medical University, Guangzhou, China
| | - Xuemin Wang
- Department of Neurobiology, Southern Medical University, Guangzhou, China
| | - Xiaodan Jiang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| |
Collapse
|
36
|
Hausott B, Klimaschewski L. Sprouty2-a Novel Therapeutic Target in the Nervous System? Mol Neurobiol 2018; 56:3897-3903. [PMID: 30225774 PMCID: PMC6505497 DOI: 10.1007/s12035-018-1338-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 08/29/2018] [Indexed: 02/08/2023]
Abstract
Clinical trials applying growth factors to alleviate symptoms of patients with neurological disorders have largely been unsuccessful in the past. As an alternative approach, growth factor receptors or components of their signal transduction machinery may be targeted directly. In recent years, the search for intracellular signaling integrator downstream of receptor tyrosine kinases provided valuable novel substrates. Among them are the Sprouty proteins which mainly act as inhibitors of growth factor-dependent neuronal and glial signaling pathways. In this review, we summarize the role of Sprouties in the lesioned central and peripheral nervous system with particular reference to Sprouty2 that is upregulated in various experimental models of neuronal degeneration and regeneration. Increased synthesis under pathological conditions makes Sprouty2 an attractive pharmacological target to enhance intracellular signaling activities, notably the ERK pathway, in affected neurons or activated astrocytes. Interestingly, high Sprouty2 levels are also found in malignant glioma cells. We recently demonstrated that abrogating Sprouty2 function strongly inhibits intracranial tumor growth and leads to significantly prolonged survival of glioblastoma bearing mice by induction of ERK-dependent DNA replication stress. On the contrary, knockdown of Sprouty proteins increases proliferation of activated astrocytes and, consequently, reduces secondary brain damage in neuronal lesion models such as kainic acid-induced epilepsy or endothelin-induced ischemia. Furthermore, downregulation of Sprouty2 improves nerve regeneration in the lesioned peripheral nervous system. Taken together, targeting Sprouties as intracellular inhibitors of the ERK pathway holds great promise for the treatment of various neurological disorders including gliomas. Since the protein lacks enzymatic activities, it will be difficult to develop chemical compounds capable to directly and specifically modulate Sprouty functions. However, interfering with Sprouty expression by gene therapy or siRNA treatment provides a realistic approach to evaluate the therapeutic potential of indirectly stimulating ERK activities in neurological disease.
Collapse
Affiliation(s)
- Barbara Hausott
- Department of Anatomy, Histology and Embyrology, Division of Neuroanatomy, Medical University Innsbruck, Müllerstrasse 59, 6020, Innsbruck, Austria
| | - Lars Klimaschewski
- Department of Anatomy, Histology and Embyrology, Division of Neuroanatomy, Medical University Innsbruck, Müllerstrasse 59, 6020, Innsbruck, Austria. .,Division for Neuroanatomy, Medical University of Innsbruck, Müllerstrasse 59, 6020, Innsbruck, Austria.
| |
Collapse
|
37
|
Wang P, Zhou Y, Yang JQ, Landeck L, Min M, Chen XB, Chen JQ, Li W, Cai SQ, Zheng M, Man XY. The role of Sprouty1 in the proliferation, differentiation and apoptosis of epidermal keratinocytes. Cell Prolif 2018; 51:e12477. [PMID: 30039569 DOI: 10.1111/cpr.12477] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 05/03/2018] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES Sprouty (SPRY) 1 is one of the SPRY proteins that inhibits signalling from various growth factors pathways and has also been known as a tumour suppressor in various malignancies. However, no study elucidates the role of SPRY1 in the skin. Our study was conducted to determine the function of SPRY1 in human keratinocytes and the epidermis. MATERIALS AND METHODS In vitro primary cultured epidermal keratinocytes were used to investigate the proliferation, differentiation and apoptosis of these cells. We also established overexpression of SPRY1 in vitro and K14-SPRY1 transgenic mice. RESULTS SPRY1 was mainly located in the cytoplasm of the epidermal keratinocytes from the granular epidermal layer of the skin and cultured cells. Overexpressed SPRY1 in keratinocytes resulted in up-regulation of P21, P27 and down-regulation of cyclin B1; decrease in MMP3 and integrin α6. SPRY1-overexpressed primary keratinocytes exhibited a lower proliferation and migration capability and higher rates of apoptosis. Epidermis of SPRY1-TG mice represented delayed wound healing. Proteomics analysis and GO enrichment showed DEPs of SPRY1 TG mice epidermis is significantly enriched in immune- and inflammatory-associated biological process. CONCLUSIONS In summary, SPRY1 expression was inversely correlated with cell proliferation, migration and promote cell apoptosis of keratinocytes. SPRY1 maybe a negative feedback regulator in normal human epidermal keratinocytes and cutaneous inflammatory responses. Our study raised the possibility that enhancing expression of SPRY1 may have the potential to promote anti-inflammatory effects.
Collapse
Affiliation(s)
- Ping Wang
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuan Zhou
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian-Qiang Yang
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lilla Landeck
- Ernst von Bergmann General Hospital, Teaching Hospital of the Charité-University Medicine Berlin, Humboldt University, Potsdam, Germany
| | - Min Min
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xi-Bei Chen
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jia-Qi Chen
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Li
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sui-Qing Cai
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Min Zheng
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao-Yong Man
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
38
|
Morgani SM, Saiz N, Garg V, Raina D, Simon CS, Kang M, Arias AM, Nichols J, Schröter C, Hadjantonakis AK. A Sprouty4 reporter to monitor FGF/ERK signaling activity in ESCs and mice. Dev Biol 2018; 441:104-126. [PMID: 29964027 DOI: 10.1016/j.ydbio.2018.06.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 06/25/2018] [Accepted: 06/25/2018] [Indexed: 12/31/2022]
Abstract
The FGF/ERK signaling pathway is highly conserved throughout evolution and plays fundamental roles during embryonic development and in adult organisms. While a plethora of expression data exists for ligands, receptors and pathway regulators, we know little about the spatial organization or dynamics of signaling in individual cells within populations. To this end we developed a transcriptional readout of FGF/ERK activity by targeting a histone H2B-linked Venus fluorophore to the endogenous locus of Spry4, an early pathway target, and generated Spry4H2B-Venus embryonic stem cells (ESCs) and a derivative mouse line. The Spry4H2B-Venus reporter was heterogeneously expressed within ESC cultures and responded to FGF/ERK signaling manipulation. In vivo, the Spry4H2B-Venus reporter recapitulated the expression pattern of Spry4 and localized to sites of known FGF/ERK activity including the inner cell mass of the pre-implantation embryo and the limb buds, somites and isthmus of the post-implantation embryo. Additionally, we observed highly localized reporter expression within adult organs. Genetic and chemical disruption of FGF/ERK signaling, in vivo in pre- and post-implantation embryos, abrogated Venus expression establishing the reporter as an accurate signaling readout. This tool will provide new insights into the dynamics of the FGF/ERK signaling pathway during mammalian development.
Collapse
Affiliation(s)
- Sophie M Morgani
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Wellcome Trust-Medical Research Council Centre for Stem Cell Research, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Nestor Saiz
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Vidur Garg
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Dhruv Raina
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Claire S Simon
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Minjung Kang
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | | | - Jennifer Nichols
- Wellcome Trust-Medical Research Council Centre for Stem Cell Research, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Christian Schröter
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA.
| |
Collapse
|
39
|
Zhao G, Bailey CG, Feng Y, Rasko J, Lovicu FJ. Negative regulation of lens fiber cell differentiation by RTK antagonists Spry and Spred. Exp Eye Res 2018; 170:148-159. [PMID: 29501879 PMCID: PMC5924633 DOI: 10.1016/j.exer.2018.02.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/09/2018] [Accepted: 02/25/2018] [Indexed: 11/19/2022]
Abstract
Sprouty (Spry) and Spred proteins have been identified as closely related negative regulators of the receptor tyrosine kinase (RTK)-mediated MAPK pathway, inhibiting cellular proliferation, migration and differentiation in many systems. As the different members of this antagonist family are strongly expressed in the lens epithelium in overlapping patterns, in this study we used lens epithelial explants to examine the impact of these different antagonists on the morphologic and molecular changes associated with fibroblast growth factor (FGF)-induced lens fiber differentiation. Cells in lens epithelial explants were transfected using different approaches to overexpress the different Spry (Spry1, Spry2) and Spred (Spred1, Spred2, Spred3) members, and we compared their ability to undergo FGF-induced fiber differentiation. In cells overexpressing any of the antagonists, the propensity for FGF-induced cell elongation was significantly reduced, indicative of a block to lens fiber differentiation. Of these antagonists, Spry1 and Spred2 appeared to be the most potent among their respective family members, demonstrating the greatest block in FGF-induced fiber differentiation based on the percentage of cells that failed to elongate. Consistent with the reported activity of Spry and Spred, we show that overexpression of Spry2 was able to suppress FGF-induced ERK1/2 phosphorylation in lens cells, as well as the ERK1/2-dependent fiber-specific marker Prox1, but not the accumulation of β-crystallins. Taken together, Spry and Spred proteins that are predominantly expressed in the lens epithelium in situ, appear to have overlapping effects on negatively regulating ERK1/2-signaling associated with FGF-induced lens epithelial cell elongation leading to fiber differentiation. This highlights the important regulatory role for these RTK antagonists in establishing and maintaining the distinct architecture and polarity of the lens.
Collapse
Affiliation(s)
- Guannan Zhao
- Discipline of Anatomy and Histology, Bosch Institute, University of Sydney, NSW, Australia
| | - Charles G Bailey
- Gene & Stem Cell Therapy Program, Centenary Institute, Camperdown, NSW, Australia; Sydney Medical School, University of Sydney, NSW, Australia
| | - Yue Feng
- Gene & Stem Cell Therapy Program, Centenary Institute, Camperdown, NSW, Australia
| | - John Rasko
- Gene & Stem Cell Therapy Program, Centenary Institute, Camperdown, NSW, Australia; Sydney Medical School, University of Sydney, NSW, Australia; Department of Cell & Molecular Therapies, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Frank J Lovicu
- Discipline of Anatomy and Histology, Bosch Institute, University of Sydney, NSW, Australia; Save Sight Institute, University of Sydney, NSW, Australia.
| |
Collapse
|
40
|
Gao B, Ajima R, Yang W, Li C, Song H, Anderson MJ, Liu RR, Lewandoski MB, Yamaguchi TP, Yang Y. Coordinated directional outgrowth and pattern formation by integration of Wnt5a and Fgf signaling in planar cell polarity. Development 2018; 145:dev.163824. [PMID: 29615464 DOI: 10.1242/dev.163824] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/19/2018] [Indexed: 12/28/2022]
Abstract
Embryonic morphogenesis of a complex organism requires proper regulation of patterning and directional growth. Planar cell polarity (PCP) signaling is emerging as a crucial evolutionarily conserved mechanism whereby directional information is conveyed. PCP is thought to be established by global cues, and recent studies have revealed an instructive role of a Wnt signaling gradient in epithelial tissues of both invertebrates and vertebrates. However, it remains unclear whether Wnt/PCP signaling is regulated in a coordinated manner with embryonic patterning during morphogenesis. Here, in mouse developing limbs, we find that apical ectoderm ridge-derived Fgfs required for limb patterning regulate PCP along the proximal-distal axis in a Wnt5a-dependent manner. We demonstrate with genetic evidence that the Wnt5a gradient acts as a global cue that is instructive in establishing PCP in the limb mesenchyme, and that Wnt5a also plays a permissive role to allow Fgf signaling to orient PCP. Our results indicate that limb morphogenesis is regulated by coordination of directional growth and patterning through integration of Wnt5a and Fgf signaling.
Collapse
Affiliation(s)
- Bo Gao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China .,Developmental Genetics Section, Genetic Disease Research Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Rieko Ajima
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, NIH, Frederick, MD 21702, USA
| | - Wei Yang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Chunyu Li
- Developmental Genetics Section, Genetic Disease Research Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA.,Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Hai Song
- Developmental Genetics Section, Genetic Disease Research Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Matthew J Anderson
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, NIH, Frederick, MD 21702, USA
| | - Robert R Liu
- Developmental Genetics Section, Genetic Disease Research Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Mark B Lewandoski
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, NIH, Frederick, MD 21702, USA
| | - Terry P Yamaguchi
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, NIH, Frederick, MD 21702, USA
| | - Yingzi Yang
- Developmental Genetics Section, Genetic Disease Research Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA .,Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
41
|
Yang X, Gong Y, He Q, Licht JD, Liaw L, Friesel RE. Loss of Spry1 attenuates vascular smooth muscle proliferation by impairing mitogen-mediated changes in cell cycle regulatory circuits. J Cell Biochem 2018; 119:3267-3279. [PMID: 29105817 PMCID: PMC5826877 DOI: 10.1002/jcb.26486] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 09/22/2017] [Indexed: 12/25/2022]
Abstract
Signals from growth factors or mechanical stimuli converge to promote vascular smooth muscle cell (VSMC) migration and proliferation, key events in the pathogenesis of intimal hyperplasia upon vascular injury. Spry1, a regulator of receptor tyrosine kinases (RTK), plays a role in maintaining the contractile phenotype of VSMC. The aim of the current study was to determine the role of Spry1 in VSMC proliferation in vitro and injury induced neointimal hyperplasia in vivo. VSMC proliferation and neointima formation were evaluated in cultured human aortic SMC (hAoSMC) and ligation-induced injury of mouse carotid arteries from Spry1 gene targeted mice, and their corresponding wild type littermates. Human Spry1 or non-targeting control lentiviral shRNAs were used to knock down Spry1 in hAoSMC. Time course cell cycle analysis showed a reduced fraction of S-phase cells at 12 and 24 h after growth medium stimulation in Spry1 shRNA transduced hAoSMC. Consistent with reduced S-phase entry, the induction of cyclinD1 and the levels of pRbS807/S811, pH3Ser10, and pCdc2 were also reduced, while the cell cycle inhibitor p27Kip1 was maintained in Spry1 knockdown hAoSMC. In vivo, loss of Spry1 attenuated carotid artery ligation-induced neointima formation in mice, and this effect was accompanied by a decrease in cell proliferation similar to the in vitro results. Our findings demonstrate that loss of Spry1 attenuates mitogen-induced VSMC proliferation, and thus injury-induced neointimal hyperplasia likely via insufficient activation of Akt signaling causing decreased cyclinD1 and increased p27Kip1 and a subsequent decrease in Rb and cdc2 phosphorylation.
Collapse
Affiliation(s)
- Xuehui Yang
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME
| | - Yan Gong
- Department of Biological Repositories, Wuhan University Zhongnan Hopital, Wuhan, China
| | - Qing He
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Jonathan D. Licht
- Division of Hematology and Oncology
- Department of Medicine
- University of Florida Health Cancer Center
- University of Florida College of Medicine, Gainesville, FL
| | - Lucy Liaw
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME
- Department of Biological Repositories, Wuhan University Zhongnan Hopital, Wuhan, China
| | - Robert E. Friesel
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME
| |
Collapse
|
42
|
Naccache F, Metzger J, Distl O. Genetic risk factors for osteochondrosis in various horse breeds. Equine Vet J 2018; 50:556-563. [DOI: 10.1111/evj.12824] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 02/20/2018] [Indexed: 12/11/2022]
Affiliation(s)
- F. Naccache
- University of Veterinary Medicine Hannover, Foundation Institute for Animal Breeding and Genetics Hannover Germany
| | - J. Metzger
- University of Veterinary Medicine Hannover, Foundation Institute for Animal Breeding and Genetics Hannover Germany
| | - O. Distl
- University of Veterinary Medicine Hannover, Foundation Institute for Animal Breeding and Genetics Hannover Germany
| |
Collapse
|
43
|
Farreny MA, Agius E, Bel-Vialar S, Escalas N, Khouri-Farah N, Soukkarieh C, Danesin C, Pituello F, Cochard P, Soula C. FGF signaling controls Shh-dependent oligodendroglial fate specification in the ventral spinal cord. Neural Dev 2018. [PMID: 29519242 PMCID: PMC5842613 DOI: 10.1186/s13064-018-0100-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Background Most oligodendrocytes of the spinal cord originate from ventral progenitor cells of the pMN domain, characterized by expression of the transcription factor Olig2. A minority of oligodendrocytes is also recognized to emerge from dorsal progenitors during fetal development. The prevailing view is that generation of ventral oligodendrocytes depends on Sonic hedgehog (Shh) while dorsal oligodendrocytes develop under the influence of Fibroblast Growth Factors (FGFs). Results Using the well-established model of the chicken embryo, we show that ventral spinal progenitor cells activate FGF signaling at the onset of oligodendrocyte precursor cell (OPC) generation. Inhibition of FGF receptors at that time appears sufficient to prevent generation of ventral OPCs, highlighting that, in addition to Shh, FGF signaling is required also for generation of ventral OPCs. We further reveal an unsuspected interplay between Shh and FGF signaling by showing that FGFs serve dual essential functions in ventral OPC specification. FGFs are responsible for timely induction of a secondary Shh signaling center, the lateral floor plate, a crucial step to create the burst of Shh required for OPC specification. At the same time, FGFs prevent down-regulation of Olig2 in pMN progenitor cells as these cells receive higher threshold of the Shh signal. Finally, we bring arguments favoring a key role of newly differentiated neurons acting as providers of the FGF signal required to trigger OPC generation in the ventral spinal cord. Conclusion Altogether our data reveal that the FGF signaling pathway is activated and required for OPC commitment in the ventral spinal cord. More generally, our data may prove important in defining strategies to produce large populations of determined oligodendrocyte precursor cells from undetermined neural progenitors, including stem cells. In the long run, these new data could be useful in attempts to stimulate the oligodendrocyte fate in residing neural stem cells.
Collapse
Affiliation(s)
- Marie-Amélie Farreny
- Centre de Biologie du Développement (CBD) CNRS/UPS, Centre de Biologie Intégrative (CBI), Université de Toulouse, F-31062, Toulouse, France
| | - Eric Agius
- Centre de Biologie du Développement (CBD) CNRS/UPS, Centre de Biologie Intégrative (CBI), Université de Toulouse, F-31062, Toulouse, France
| | - Sophie Bel-Vialar
- Centre de Biologie du Développement (CBD) CNRS/UPS, Centre de Biologie Intégrative (CBI), Université de Toulouse, F-31062, Toulouse, France
| | - Nathalie Escalas
- Centre de Biologie du Développement (CBD) CNRS/UPS, Centre de Biologie Intégrative (CBI), Université de Toulouse, F-31062, Toulouse, France
| | - Nagham Khouri-Farah
- Centre de Biologie du Développement (CBD) CNRS/UPS, Centre de Biologie Intégrative (CBI), Université de Toulouse, F-31062, Toulouse, France
| | - Chadi Soukkarieh
- Centre de Biologie du Développement (CBD) CNRS/UPS, Centre de Biologie Intégrative (CBI), Université de Toulouse, F-31062, Toulouse, France
| | - Cathy Danesin
- Centre de Biologie du Développement (CBD) CNRS/UPS, Centre de Biologie Intégrative (CBI), Université de Toulouse, F-31062, Toulouse, France
| | - Fabienne Pituello
- Centre de Biologie du Développement (CBD) CNRS/UPS, Centre de Biologie Intégrative (CBI), Université de Toulouse, F-31062, Toulouse, France
| | - Philippe Cochard
- Centre de Biologie du Développement (CBD) CNRS/UPS, Centre de Biologie Intégrative (CBI), Université de Toulouse, F-31062, Toulouse, France
| | - Cathy Soula
- Centre de Biologie du Développement (CBD) CNRS/UPS, Centre de Biologie Intégrative (CBI), Université de Toulouse, F-31062, Toulouse, France.
| |
Collapse
|
44
|
Cheng JC, Chang HM, Xiong S, So WK, Leung PCK. Sprouty2 inhibits amphiregulin-induced down-regulation of E-cadherin and cell invasion in human ovarian cancer cells. Oncotarget 2018; 7:81645-81660. [PMID: 27835572 PMCID: PMC5348419 DOI: 10.18632/oncotarget.13162] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/22/2016] [Indexed: 11/25/2022] Open
Abstract
Similar to Drosophila Sprouty (SPRY), mammalian SPRY proteins inhibit the receptor tyrosine kinase-mediated activation of cellular signaling pathways. SPRY2 expression levels have been shown to be down-regulated in human ovarian cancer, and patients with low SPRY2 expression have significantly poorer survival than those with high SPRY2 expression. In addition, epidermal growth factor receptor (EGFR) is overexpressed in human ovarian cancer and is associated with more aggressive clinical behavior and a poor prognosis. Amphiregulin (AREG), the most abundant EGFR ligand in ovarian cancer, binds exclusively to EGFR and stimulates ovarian cancer cell invasion by down-regulating E-cadherin expression. However, thus far, the roles of SPRY2 in AREG-regulated E-cadherin expression and cell invasion remain unclear. In the present study, we show that treatment with AREG up-regulated SPRY2 expression by activating the EGFR-mediated ERK1/2 signaling pathway in two human ovarian cancer cell lines, SKOV3 and OVCAR5. In addition, overexpression of SPRY2 attenuated the AREG-induced down-regulation of E-cadherin by inhibiting the induction of the E-cadherin transcriptional repressor, Snail. Moreover, SPRY2 overexpression attenuated AREG-stimulated cell invasion and proliferation. This study reveals that SPRY2 acts as a tumor suppressor in human ovarian cancer and illustrates the underlying mechanisms that can be used as possible targets for the development of novel therapeutics.
Collapse
Affiliation(s)
- Jung-Chien Cheng
- Department of Obstetrics and Gynaecology, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4
| | - Hsun-Ming Chang
- Department of Obstetrics and Gynaecology, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4
| | - Siyuan Xiong
- Department of Obstetrics and Gynaecology, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4
| | - Wai-Kin So
- Department of Obstetrics and Gynaecology, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4
| |
Collapse
|
45
|
Liao PH, Wang YY, Wang WC, Chen CH, Kao YH, Hsu JW, Chen CY, Chen PH, Yuan SS, Chen YK. Overexpression of sprouty2 in human oral squamous cell carcinogenesis. Arch Oral Biol 2017; 87:131-142. [PMID: 29291435 DOI: 10.1016/j.archoralbio.2017.12.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 11/23/2017] [Accepted: 12/21/2017] [Indexed: 10/18/2022]
Abstract
OBJECTIVE This study investigated SPRY2 expression in human oral potentially malignant disorders (OPMDs) and oral squamous cell carcinomas (OSCCs). METHODS 75 OSCCs, 23 OPMDs with malignant transformation (MT), 17 OPMDs without MT, and eight normal oral mucosa (NOM) tissues were used for immunohistochemical staining; three OSCC tissues with normal tissue counterparts were used for western blotting. Three human oral cancer cell lines (OCCLs), an oral precancer cell line (DOK), and a NOM primary culture (NOMPC) were used for western blotting; OCCLs and NOMPC were employed for real-time quantitative reverse transcription-polymerase chain reaction. OCCLs were evaluated in terms of proliferation, migration, invasion and BRAF V600E point mutation assays. RESULTS Significantly increased SPRY2 protein expression was observed in OSCCs as compared with NOM, and SPRY2 expression also differed between OSCC patients with and without lymph-node metastasis. SPRY2 protein and mRNA expressions were significantly enhanced as compared with NOMPC. Increased phospho-ERK expression was observed in OCCLs as compared with NOMPC. Significant decreases in the proliferation rate, degrees of migration and invasion were noted in OCCLs with SPRY2 siRNA transfection as compared with those without SPRY2 siRNA transfection. No BRAF V600E point mutation was observed for OCCLs as compared with NOMPC. A significantly increased SPRY2 protein level was noted in OPMDs with MT as compared to those without MT, and was also found in OPMDs with MT in comparison with NOM, as well as in DOK in comparison with NOMPC. CONCLUSIONS Our results indicated that SPRY2 overexpression is associated with human oral squamous-cell carcinogenesis.
Collapse
Affiliation(s)
- Pei-Hsien Liao
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yen-Yun Wang
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Chen Wang
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Oral Pathology & Maxillofacial Radiology, Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Oral & Maxillofacial Imaging Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chung-Ho Chen
- Division of Oral & Maxillofacial Surgery, Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yu-Hsun Kao
- Division of Oral & Maxillofacial Surgery, Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Jing-Wei Hsu
- Division of Oral & Maxillofacial Surgery, Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ching-Yi Chen
- Division of Oral Pathology & Maxillofacial Radiology, Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Oral & Maxillofacial Imaging Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ping-Ho Chen
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shyng-Shiou Yuan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Translational Research Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Obstetrics and Gynecology and Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Yuk-Kwan Chen
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Oral Pathology & Maxillofacial Radiology, Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Oral & Maxillofacial Imaging Center, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
46
|
Zhang H, Wang L, Wong EYM, Tsang SL, Xu PX, Lendahl U, Sham MH. An Eya1-Notch axis specifies bipotential epibranchial differentiation in mammalian craniofacial morphogenesis. eLife 2017; 6:30126. [PMID: 29140246 PMCID: PMC5705218 DOI: 10.7554/elife.30126] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 11/13/2017] [Indexed: 01/04/2023] Open
Abstract
Craniofacial morphogenesis requires proper development of pharyngeal arches and epibranchial placodes. We show that the epibranchial placodes, in addition to giving rise to cranial sensory neurons, generate a novel lineage-related non-neuronal cell population for mouse pharyngeal arch development. Eya1 is essential for the development of epibranchial placodes and proximal pharyngeal arches. We identify an Eya1-Notch regulatory axis that specifies both the neuronal and non-neuronal commitment of the epibranchial placode, where Notch acts downstream of Eya1 and promotes the non-neuronal cell fate. Notch is regulated by the threonine phosphatase activity of Eya1. Eya1 dephosphorylates p-threonine-2122 of the Notch1 intracellular domain (Notch1 ICD), which increases the stability of Notch1 ICD and maintains Notch signaling activity in the non-neuronal epibranchial placodal cells. Our data unveil a more complex differentiation program in epibranchial placodes and an important role for the Eya1-Notch axis in craniofacial morphogenesis.
Collapse
Affiliation(s)
- Haoran Zhang
- School of Biomedical sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Li Wang
- School of Biomedical sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Elaine Yee Man Wong
- School of Biomedical sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Sze Lan Tsang
- School of Biomedical sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Pin-Xian Xu
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, United States
| | - Urban Lendahl
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Mai Har Sham
- School of Biomedical sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
47
|
Sato T, Kikkawa T, Saito T, Itoi K, Osumi N. Organizing activity of Fgf8 on the anterior telencephalon. Dev Growth Differ 2017; 59:701-712. [PMID: 29124740 DOI: 10.1111/dgd.12411] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/20/2017] [Accepted: 09/24/2017] [Indexed: 02/02/2023]
Abstract
The anterior part of the embryonic telencephalon gives rise to several brain regions that are important for animal behavior, including the frontal cortex (FC) and the olfactory bulb. The FC plays an important role in decision-making behaviors, such as social and cognitive behavior, and the olfactory bulb is involved in olfaction. Here, we show the organizing activity of fibroblast growth factor 8 (Fgf8) in the regionalization of the anterior telencephalon, specifically the FC and the olfactory bulb. Misexpression of Fgf8 in the most anterior part of the mouse telencephalon at embryonic day 11.5 (E11.5) by ex utero electroporation resulted in a lateral shift of dorsal FC subdivision markers and a lateral expansion of the dorsomedial part of the FC, the future anterior cingulate and prelimbic cortex. Fgf8-transfected brains had lacked ventral FC, including the future orbital cortex, which was replaced by the expanded olfactory bulb. The olfactory region occupied a larger area of the FC when transfection efficiency of Fgf8 was higher. These results suggest that Fgf8 regulates the proportions of the FC and olfactory bulb in the anterior telencephalon and has a medializing effect on the formation of FC subdivisions.
Collapse
Affiliation(s)
- Tatsuya Sato
- Department of Developmental Neuroscience, Graduate School of Medicine, 980-8575, Tohoku University, Sendai, Japan.,Frontier Research Institute for Interdisciplinary Sciences, 980-8578, Tohoku University, Sendai, Japan
| | - Takako Kikkawa
- Department of Developmental Neuroscience, Graduate School of Medicine, 980-8575, Tohoku University, Sendai, Japan
| | - Tetsuichiro Saito
- Department of Developmental Biology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Keiichi Itoi
- Department of Information Biology, Graduate School of Information Sciences, Tohoku University, Sendai, 980-8579, Japan
| | - Noriko Osumi
- Department of Developmental Neuroscience, Graduate School of Medicine, 980-8575, Tohoku University, Sendai, Japan
| |
Collapse
|
48
|
Neben CL, Lo M, Jura N, Klein OD. Feedback regulation of RTK signaling in development. Dev Biol 2017; 447:71-89. [PMID: 29079424 DOI: 10.1016/j.ydbio.2017.10.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 10/17/2017] [Accepted: 10/23/2017] [Indexed: 02/07/2023]
Abstract
Precise regulation of the amplitude and duration of receptor tyrosine kinase (RTK) signaling is critical for the execution of cellular programs and behaviors. Understanding these control mechanisms has important implications for the field of developmental biology, and in recent years, the question of how augmentation or attenuation of RTK signaling via feedback loops modulates development has become of increasing interest. RTK feedback regulation is also important for human disease research; for example, germline mutations in genes that encode RTK signaling pathway components cause numerous human congenital syndromes, and somatic alterations contribute to the pathogenesis of diseases such as cancers. In this review, we survey regulators of RTK signaling that tune receptor activity and intracellular transduction cascades, with a focus on the roles of these genes in the developing embryo. We detail the diverse inhibitory mechanisms utilized by negative feedback regulators that, when lost or perturbed, lead to aberrant increases in RTK signaling. We also discuss recent biochemical and genetic insights into positive regulators of RTK signaling and how these proteins function in tandem with negative regulators to guide embryonic development.
Collapse
Affiliation(s)
- Cynthia L Neben
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco 94143, USA
| | - Megan Lo
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco 94143, USA; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Natalia Jura
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA.
| | - Ophir D Klein
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco 94143, USA; Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, San Francisco 94143, USA.
| |
Collapse
|
49
|
Carreno G, Apps JR, Lodge EJ, Panousopoulos L, Haston S, Gonzalez-Meljem JM, Hahn H, Andoniadou CL, Martinez-Barbera JP. Hypothalamic sonic hedgehog is required for cell specification and proliferation of LHX3/LHX4 pituitary embryonic precursors. Development 2017; 144:3289-3302. [PMID: 28807898 DOI: 10.1242/dev.153387] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/01/2017] [Indexed: 12/31/2022]
Abstract
Sonic hedgehog (SHH) is an essential morphogenetic signal that dictates cell fate decisions in several developing organs in mammals. In vitro data suggest that SHH is required to specify LHX3+/LHX4+ Rathke's pouch (RP) progenitor identity. However, in vivo studies have failed to reveal such a function, supporting instead a crucial role for SHH in promoting proliferation of these RP progenitors and for differentiation of pituitary cell types. Here, we have used a genetic approach to demonstrate that activation of the SHH pathway is necessary to induce LHX3+/LHX4+ RP identity in mouse embryos. First, we show that conditional deletion of Shh in the anterior hypothalamus results in a fully penetrant phenotype characterised by a complete arrest of RP development, with lack of Lhx3/Lhx4 expression in RP epithelium at 9.0 days post coitum (dpc) and total loss of pituitary tissue by 12.5 dpc. Conversely, overactivation of the SHH pathway by conditional deletion of Ptch1 in RP progenitors leads to severe hyperplasia and enlargement of the Sox2+ stem cell compartment by the end of gestation.
Collapse
Affiliation(s)
- Gabriela Carreno
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - John R Apps
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Emily J Lodge
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Leonidas Panousopoulos
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Scott Haston
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Jose Mario Gonzalez-Meljem
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Heidi Hahn
- Institute of Human Genetics, Tumor Genetics Group, University of Göttingen, 37073 Göttingen, Germany
| | - Cynthia L Andoniadou
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK.,Department of Internal Medicine III, Technische Universität Dresden, 01307 Dresden, Germany
| | - Juan Pedro Martinez-Barbera
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| |
Collapse
|
50
|
Kousa YA, Roushangar R, Patel N, Walter A, Marangoni P, Krumlauf R, Klein OD, Schutte BC. IRF6 and SPRY4 Signaling Interact in Periderm Development. J Dent Res 2017; 96:1306-1313. [PMID: 28732181 DOI: 10.1177/0022034517719870] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Rare mutations in IRF6 and GRHL3 cause Van der Woude syndrome, an autosomal dominant orofacial clefting disorder. Common variants in IRF6 and GRHL3 also contribute risk for isolated orofacial clefting. Similarly, variants within genes that encode receptor tyrosine kinase (RTK) signaling components, including members of the FGF pathway, EPHA3 and SPRY2, also contribute risk for isolated orofacial clefting. In the mouse, loss of Irf6 or perturbation of Fgf signaling leads to abnormal oral epithelial adhesions and cleft palate. Oral adhesions can result from a disruption of periderm formation. Here, we find that IRF6 and SPRY4 signaling interact in periderm function. We crossed Irf6 heterozygous ( Irf6+/-) mice with transgenic mice that express Spry4 in the basal epithelial layer ( TgKRT14::Spry4). While embryos with either of these mutations can have abnormal oral adhesions, using a new quantitative assay, we observed a nonadditive effect of abnormal oral epithelial adhesions in the most severely affected double mutant embryos ( Irf6+/-;TgKRT14::Spry4). At the molecular level, the sites of abnormal oral adhesions maintained periderm-like cells that express keratin 6, but we observed abnormal expression of GRHL3. Together, these data suggest that Irf6 and RTK signaling interact in regulating periderm differentiation and function, as well as provide a rationale to screen for epistatic interactions between variants in IRF6 and RTK signaling pathway genes in human orofacial clefting populations.
Collapse
Affiliation(s)
- Y A Kousa
- 1 Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - R Roushangar
- 1 Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - N Patel
- 2 Pediatrics and Human Development, Michigan State University, East Lansing, MI, USA
| | - A Walter
- 2 Pediatrics and Human Development, Michigan State University, East Lansing, MI, USA
| | - P Marangoni
- 3 Departments of Orofacial Sciences and Pediatrics and Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - R Krumlauf
- 4 Stowers Institute for Medical Research, Kansas City, MO, USA.,5 Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - O D Klein
- 3 Departments of Orofacial Sciences and Pediatrics and Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - B C Schutte
- 2 Pediatrics and Human Development, Michigan State University, East Lansing, MI, USA.,6 Departments of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| |
Collapse
|